Skip to main content
Log in

Robust \(H_\infty \) output feedback control for attitude stabilization of a flexible spacecraft

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Current spacecraft is always equipped with large flexible appendages and payloads, and the high-precision attitude control is therefore a challenging problem. This paper addresses the robust \(H_{\infty }\) output feedback control to achieve attitude stabilization of a flexible spacecraft. The Lagrange-like model of attitude dynamics is firstly proposed. Then a LMI-based output feedback controller is designed in the presence of disturbances. The stability of closed-loop system is discussed by the Lyapunov method. To deal with the model uncertainties, the convex optimization algorithm is presented. Numerical simulations are finally provided to illustrate the performance of the proposed controllers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wie, B., Liu, Q., Bauer, F.: Classical and robust \(H_{\infty }\) control redesign for the Hubble space telescope. J. Guid. Control Dyn. 16, 1069–1077 (1993)

    Article  MATH  Google Scholar 

  2. Sales, T.P., Rade, D.A., De Souza, L.C.G.: Passive vibration control of flexible spacecraft using shunted piezoelectric transducers. Aerosp. Sci. Technol. 29, 403–412 (2013)

  3. Jin, E., Sun, Z.: Robust attitude tracking control of flexible spacecraft for achieving globally asymptotic stability. Int. J. Robust Nonlinear Control 19, 1201–1223 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Wen, J.T.Y., Kreutz-Delgado, K.: The attitude control problem. IEEE Trans. Autom. Control 36, 1148–1161 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  5. Kristiansen, R., Nicklasson, P.J., Gravdahl, J.T.: Satellite attitude control by quaternion-based backstepping. IEEE Trans. Control Syst. Technol. 17, 227–232 (2009)

    Article  Google Scholar 

  6. Jin, E., Sun, Z.: Passivity-based control for a flexible spacecraft in the presence of disturbances. Int. J. Non-Linear Mech. 45, 348–356 (2010)

    Article  MathSciNet  Google Scholar 

  7. Shahravi, M., Kabganian, M., Alasty, A.: Adaptive robust attitude control of a flexible spacecraft. Int. J. Robust Nonlinear Control 16, 287–302 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hu, Q.: Robust adaptive sliding mode attitude maneuvering and vibration damping of three-axis-stabilized flexible spacecraft with actuator saturation limits. Nonlinear Dyn. 55, 301–321 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ding, S., Zheng, W.X., Gravdahl, J.T.: Nonsmooth attitude stabilization of a flexible spacecraft. IEEE Trans. Aerosp. Electron. Syst. 50, 1163–1181 (2014)

    Article  Google Scholar 

  10. Wu, S., Radice, G., Sun, Z.: Robust finite-time control for flexible spacecraft attitude maneuver. J. Aerosp. Eng. 27, 185–190 (2012)

    Article  Google Scholar 

  11. Zhou, Y.R., Huang, W.C., Zeng, J.P.: Nonlinear local stabilization control of flexible satellite attitude system. Control Theory Appl. 31, 279–284 (2014)

    Google Scholar 

  12. Malekzadeh, M., Naghash, A., Talebi, H.A.: Robust attitude and vibration control of a nonlinear flexible spacecraft. Asian J. Control 14, 553–563 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Allen, M., Bernelli-Zazzera, F., Scattolini, R.: Sliding mode control of a large flexible space structure. Control Eng. Pract. 8, 861–871 (2000)

    Article  Google Scholar 

  14. Kida, T., Yamaguchi, I., Chida, Y.: On-orbit robust control experiment of flexible spacecraft ETS-VI. J. Guid. Control Dyn. 20, 865–872 (1997)

    Article  MATH  Google Scholar 

  15. Le Ballois, S., Duc, G.: H-infinity control of an Earth observation satellite. J. Guid. Control Dyn. 19, 628–635 (1996)

    Article  MATH  Google Scholar 

  16. Meng, F.W., He, Z., Wang, G., et al.: Control design of flexible systems and H-infinity loop-shaping method. Control Theory Appl. 30, 1014–1020 (2013)

    Google Scholar 

  17. Wu, Y., Li, J., Zeng, H.: Robust H-infinity control design for spacecrafts with large flexible netted antennas. Control Theory Appl. 30, 365–371 (2013)

    Google Scholar 

  18. Kida, T., Yamaguchi, I., Chida, Y., Sekiguchi, T.: On-orbit robust control experiment of flexible spacecraft ETS-VI. J. Guid. Control Dyn. 7, 69–76 (1984)

    Article  MATH  Google Scholar 

  19. Ikeda, M.: Optimality for direct velocity and displacement feedback for large space structures with collocated sensors and actuators, Preprint of 12th IFAC World Congress, Sydney, 91–94 (1993)

  20. Gahinet, P., Apkarian, P.: A linear matrix inequality approach to \(H_{\infty }\) control. Int. J. Robust Nonlinear Control 4, 421–448 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. Apkarian, P., Gahinet, P., Becker, G.: Self-scheduled \(H_{\infty }\) control of linear parameter-varying systems: a design example. Automatica 31, 1251–1261 (1995)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunan Wu.

Additional information

This work is supported by the National Natural Science Foundation of China (11502040), the Education Department of Liaoning Province (L2014030) and the Fundamental Research Funds for the Central Universities (DUT15LK31).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, S., Wen, S. Robust \(H_\infty \) output feedback control for attitude stabilization of a flexible spacecraft. Nonlinear Dyn 84, 405–412 (2016). https://doi.org/10.1007/s11071-016-2624-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2624-5

Keywords

Navigation