Skip to main content
Log in

Adaptive robust fault-tolerant control for nonlinear systems with prescribed performance

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Based on prescribed performance, backstepping, and \(H_{\infty }\) techniques, adaptive robust fault-tolerant control for strict-feedback nonlinear systems with prescribed performance is investigated in the paper. A prescribed performance function, which is characterized by the maximum overshoot, convergence rate, and steady-state error, is utilized for the output error transformation. Based on the error transformation model, an adaptive robust fault-tolerant controller is designed, which guarantees that the output tracking error is bounded by the prescribed performance function and the effect of external disturbances and approximation errors is attenuated by \(H_{\infty }\) tracking performance. The compensation control strategy is adopted in the fault-tolerant control system, where the fault functions are approximated by neural networks. It is shown by Lyapunov stability theory that the state trajectories of the closed-loop system are bounded, the prescribed dynamic performance for the output tracking error is achieved, and the \(H_{\infty }\) tracking performance is guaranteed whether the faults occur or not. Finally, comparative simulation results show the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Liu, G.G., Wang, D.J., Li, Y.C.: Active fault tolerant control with actuation reconfiguration. IEEE Trans. Aerosp. Electron. Syst. 40(3), 1110–1117 (2004)

    Article  MathSciNet  Google Scholar 

  2. Sadeghzadeh, I., Mehta, A., Chamseddine, A., Zhang, Y.M.: Active fault tolerant control of a quadrotor UAV based on gainscheduled PID control. In: 25th IEEE Canadian Conference on Electrical and Computer Engineering, pp. 1–4 (2012)

  3. Raisemche, A., Boukhnifer, M., Larouci, C., Diallo, D.: Two active fault-tolerant control schemes of induction-motor drive in EV or HEV. IEEE Trans. Veh. Technol. 63(1), 19–29 (2014)

    Article  Google Scholar 

  4. Meng, L.Y., Jiang, B.: Backstepping-based active fault-tolerant control for a class of uncertain SISO nonlinear systems. J. Syst. Eng. Electron. 20(6), 1263–1270 (2009)

    MATH  Google Scholar 

  5. Bechlioulis, C.P., Rovithakis, G.A.: Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance. IEEE Trans. Autom. Control 53(9), 2090–2099 (2008)

    Article  MathSciNet  Google Scholar 

  6. Bechlioulis, C.P., Rovithakis, G.A.: Prescribed performance adaptive control of SISO feedback linearizable systems with disturbances. In: 16th Mediterranean Conference on Control and Automation, pp. 1035–1040 (2008)

  7. Kostarigka, A.K., Rovithakis, G.A.: Prescribed performance output feedback control: an approximate passivation approach. In: 18th Mediterranean Conference on Control and Automation, pp. 11–16 (2010)

  8. Bechlioulis, C.P., Rovithakis, G.A.: Prescribed performance adaptive control for multi-input multi-output affine in the control nonlinear systems. IEEE Trans. Autom. Control 55(5), 1220–1226 (2010)

    Article  MathSciNet  Google Scholar 

  9. Bechlioulis, C.P., Rovithakis, G.A.: Robust approximation free prescribed performance control. In: 19th Mediterranean Conference on Control and Automation, pp. 521–526 (2011)

  10. Kostarigka, A.K., Rovithakis, G.A.: Adaptive dynamic output feedback neural network control of uncertain MIMO nonlinear systems with prescribed performance. IEEE Trans. Neural Netw. Learn. Syst. 23(1), 138–149 (2012)

    Article  Google Scholar 

  11. Han, S.I., Lee, J.M.: Improved prescribed performance constraint control for a strict feedback non-linear dynamic system. LET Control Theory Appl. 7(14), 1818–1827 (2013)

    Article  MathSciNet  Google Scholar 

  12. Karayiannidis, Y., Doulgeri, Z.: Regressor-free robot joint position tracking with prescribed performance guarantees. IEEE Int. Conf. Robot. Biomim. 2011, 2312–2317 (2011)

    Google Scholar 

  13. Doulgeri, Z., Droukas, L.: On rolling contact motion by robotic fingers via prescribed performance control. IEEE Int. Conf. Robot. Autom. 2013, 3976–3981 (2013)

  14. Bechlioulis, C.P., Kyriakopoulos, K.J.: Robust prescribed performance tracking control for unknown underactuated Torpedo-like AUVs. In: European Control Conference (ECC), pp. 4388–4393 (2013)

  15. Han, S.I., Lee, J.M.: Dynamic surface control for prescribed performance of a nonlinear dynamic system. IEEE Trans. Ind. Electron. 61(2), 1099–1112 (2014)

    Article  MathSciNet  Google Scholar 

  16. Aion, A., Berman, N., Arogeti, S.: Robot controller design for achieving global asymptotic stability and local prescribed performance. IEEE Trans. Robot. 20(4), 790–795 (2004)

    Article  Google Scholar 

  17. Sung, J.Y.: Fault-tolerant control of strict-feedback non-linear time-delay systems with prescribed performance. IET Control Theory Appl. 7(11), 1553–1561 (2013)

    Article  MathSciNet  Google Scholar 

  18. Razavi, S., Tolson, B.A.: A new formulation for feedforward neural networks. IEEE Trans. Neural Netw. 22(10), 1588–1598 (2011)

  19. Yang, J., Zeng, X.Q., Zhou, S.M., Wu, S.L.: Effective neural network ensemble approach for improving generalization performance. IEEE Trans. Neural Netw. Learn. Syst. 24(6), 878–887 (2013)

    Article  Google Scholar 

  20. Wang, L.X.: Adaptive Fuzzy Systems and Control: Design and Stability Analysis. Prentice-Hall, New Jersey (1994)

    Google Scholar 

  21. Noori, K., Jenab, K.: Fuzzy reliability-based traction control model for intelligent transportation systems. IEEE Trans. Syst. Man Cybern. Syst. 43(1), 229–234 (2013)

    Article  MATH  Google Scholar 

  22. Na, J., Chen, Q., Ren, X.M., Guo, Y.: Adaptive prescribed performance motion control of servo mechanisms with friction compensation. IEEE Trans. Ind. Electron. 61(1), 486–494 (2014)

    Article  Google Scholar 

  23. Sun, L.Y., Tong, S.C., Liu, Y.: Adaptive backstepping sliding mode \(H_{\infty }\) control of static var compensator. IEEE Trans. Control Syst. Technol. 19(5), 1178–1185 (2011)

    Article  Google Scholar 

  24. Niu, Y.G., James, L., Wang, X.Y., Daniel, W.C.H.: Adaptive \( H_{\infty }\) control using backstepping design and neural networks. J. Dyn. Syst. Meas. Control 127(3), 478–485 (2005)

    Article  Google Scholar 

  25. Wei, L., Fang, F., Shi, Y.: Adaptive Backstepping-based composite nonlinear feedback water level control for the nuclear U-tube steam generator. IEEE Trans. Control Syst. Technol. 22(1), 369–377 (2014)

    Article  Google Scholar 

  26. Chen, W.S.: Adaptive backstepping dynamic surface control for systems with periodic disturbances using neural networks. IET Control Theory Appl. 3(10), 1383–1394 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wang, W.Y., Chan, M.L., Lee, T.T., Liu, C.H.: Adaptive fuzzy control for strict-feedback canonical nonlinear systems with \(H_{\infty }\) tracking performance. IEEE Trans. Syst. Man Cybern. Part B 30(6), 878–885 (2000)

    Article  Google Scholar 

  28. Chen, B.S., Lee, C.H., Chang, Y.C.: \(H_{\infty }\) tracking design of uncertain nonlinear SISO systems: adaptive fuzzy approach. IEEE Trans. Fuzzy Syst. 4(1), 32–43 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoping Liu.

Additional information

This work is supported by the Natural Science Foundation of China(61403177).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Liu, X. & Wang, H. Adaptive robust fault-tolerant control for nonlinear systems with prescribed performance. Nonlinear Dyn 81, 1727–1739 (2015). https://doi.org/10.1007/s11071-015-2102-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2102-5

Keywords

Navigation