Skip to main content
Log in

Fuzzy Adaptive Backstepping Trajectory Tracking Control of Quadrotor Suspension System with Input Saturation

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This paper introduces a novel control method for the quadrotor suspension system, addressing the challenges posed by a suspended load, external disturbances, input saturation and model dynamic uncertainty. The primary goal of this method is to achieve precise quadrotor trajectory tracking while minimizing oscillations in the suspended load. To model the system, the Udwadia-Kalaba equation is employed to handle the interaction between the quadrotor and the suspended load. Input saturation is mitigated using the hyperbolic tangent function, and a trapezoidal acceleration algorithm is utilized for trajectory design. To deal with composite disturbances, an adaptive fuzzy control method is developed and a double closed-loop nonlinear control method ensures system stability based on the Lyapunov stabilization criterion. Simulation results confirm the method’s effectiveness in accurately regulating the quadrotor system in the presence of external disturbances and model uncertainties, while also reducing suspended load oscillations under input saturation conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availibility

All data generated or analyzed during this study are included in this published article [and its supplementary information files].

References

  1. Yi, X., Luo, B., Zhao, Y.: Adaptive dynamic programming-based visual servoing control for quadrotor. Neurocomputing 504, 251–261 (2022)

    Article  Google Scholar 

  2. Yang, W., Cui, G., Li, Z., Tao, C.: Fuzzy approximation-based adaptive finite-time tracking control for a quadrotor uav with actuator faults. Int. J. Fuzzy Syst. 24(8), 3756–3769 (2022)

    Article  Google Scholar 

  3. Ye, P., Yu, Y., Wang, W.: Event-based adaptive fuzzy asymptotic tracking control of quadrotor unmanned aerial vehicle with obstacle avoidance. Int. J. Fuzzy Syst. 24(7), 3174–3188 (2022)

    Article  Google Scholar 

  4. Kuo, C.W., Tsai, C.C.: Quaternion-based adaptive backstepping rfwnn control of quadrotors subject to model uncertainties and disturbances. Int. J. Fuzzy Syst. 20, 1745–1755 (2018)

    Article  MathSciNet  Google Scholar 

  5. Zhang, W., Chen, H., Yao, X., Li, D.: Adaptive tracking of double pendulum crane with payload hoisting/lowering. Autom. Constr. 141, 104368 (2022)

    Article  Google Scholar 

  6. Bernard, M., Kondak, K.: Generic slung load transportation system using small size helicopters. In: IEEE International Conference on Robotics and Automation, pp. 3258–3264. IEEE, New York (2009)

    Google Scholar 

  7. Liu, L., Chen, M., Li, T.: Disturbance observer-based lqr tracking control for unmanned autonomous helicopter slung-load system. Int. J. Control Autom. Syst. 20(4), 1166–1178 (2022)

    Article  Google Scholar 

  8. Sun, Z., Ling, Y., Qu, H., Xiang, F., Sun, Z., Wu, F.: An adaptive de algorithm based fuzzy logic anti-swing controller for overhead crane systems. Int. J. Fuzzy Syst. 22, 1905–1921 (2020)

    Article  Google Scholar 

  9. Cabecinhas, D., Cunha, R., Silvestre, C.: A trajectory tracking control law for a quadrotor with slung load. Automatica 106, 384–389 (2019)

    Article  MathSciNet  Google Scholar 

  10. Pinto, J., Guerreiro, B.J., Cunha, R.: Planning parcel relay manoeuvres for quadrotors. In: 2021 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 137–145. IEEE, New York (2021)

    Chapter  Google Scholar 

  11. Klausen, K., Meissen, C., Fossen, T.I., Arcak, M., Johansen, T.A.: Cooperative control for multirotors transporting an unknown suspended load under environmental disturbances. IEEE Trans. Control Syst. Technol. 28(2), 653–660 (2018)

    Article  Google Scholar 

  12. O’Driscoll, D.: Uavs in humanitarian relief and wider development contexts. K4D Helpdesk Report Brighton (2017)

  13. Klausen, K., Fossen, T.I., Johansen, T.A.: Autonomous recovery of a fixed-wing uav using a net suspended by two multirotor uavs. J. Field Robot. 35(5), 717–731 (2018)

    Article  Google Scholar 

  14. Sreenath, K., Lee, T., Kumar, V.: Geometric control and differential flatness of a quadrotor uav with a cable-suspended load. In: 52nd IEEE Conference on Decision and Control, pp. 2269–2274. IEEE, New York (2013)

    Chapter  Google Scholar 

  15. Wang, J., Yuan, X., Zhu, B.: Geometric control for trajectory-tracking of a quadrotor uav with suspended load. IET Control Theory Appl. 16(12), 1271–1281 (2022)

    Article  MathSciNet  Google Scholar 

  16. Sun, H., Gu, X., Luo, S., Liang, Y., Bai, J.: Robust stabilization technique for a quadrotor slung-load system using sliding mode control. J Phys Conf Ser 2232, 012013 (2022)

    Article  Google Scholar 

  17. Omar, H.M., Mukras, S.M.: Integrating anti-swing controller with px4 autopilot for quadrotor with suspended load. J. Mech. Sci. Technol. 36(3), 1511–1519 (2022)

    Article  Google Scholar 

  18. Lv, Z., Wu, Y., Sun, X.M., Wang, Q.G.: Fixed-time control for a quadrotor with a cable-suspended load. IEEE Trans. Intell. Transp. Syst. 23(11), 21932–21943 (2022)

    Article  Google Scholar 

  19. Raffo, G.V., de Almeida, M.M.: Nonlinear robust control of a quadrotor uav for load transportation with swing improvement. In: 2016 American Control Conference (ACC), pp. 3156–3162. IEEE, New York (2016)

    Chapter  Google Scholar 

  20. Dalwadi, N., Deb, D., Muyeen, S.: Observer based rotor failure compensation for biplane quadrotor with slung load. Ain Shams Eng. J. 13(6), 101748 (2022)

    Article  Google Scholar 

  21. Yi, K., Liang, X., He, Y., Yang, L., Han, J.: Active-model-based control for the quadrotor carrying a changed slung load. Electronics 8(4), 461 (2019)

    Article  Google Scholar 

  22. Vahdanipour, M., Khodabandeh, M.: Adaptive fractional order sliding mode control for a quadrotor with a varying load. Aerosp. Sci. Technol. 86, 737–747 (2019)

    Article  Google Scholar 

  23. Udwadia, F.E., Kalaba, R.E.: A new perspective on constrained motion. Proc. Royal Soc. London Ser. A Math. Phys. Sci. 439(1906), 407–410 (1992)

    MathSciNet  Google Scholar 

  24. Udwadia, F.E., Kalaba, R.E.: An alternate proof for the equation of motion for constrained mechanical systems. Appl. Math. Comput. 70(2–3), 339–342 (1995)

    MathSciNet  Google Scholar 

  25. Baumgarte, J.: Stabilization of constraints and integrals of motion in dynamical systems. Comput. Methods Appl. Mech. Eng. 1(1), 1–16 (1972)

    Article  MathSciNet  Google Scholar 

  26. Shirani, B., Najafi, M., Izadi, I.: Cooperative load transportation using multiple uavs. Aerosp. Sci. Technol. 84, 158–169 (2019)

    Article  Google Scholar 

  27. Liu, X., Wu, Q., Zhen, S., Zhao, H., Li, C., Chen, Y.H.: Robust constraint-following control for permanent magnet linear motor with optimal design: a fuzzy approach. Info. Sci. 600, 362–376 (2022)

    Article  Google Scholar 

  28. Zhao, R., Yu, J., Yang, H., Chen, Y.H.: Contact constraints-based dynamic manipulation control of the multi-fingered hand robot: a force sensorless approach. Nonlinear Dyn. 2021, 1–25 (2021)

    Google Scholar 

  29. Han, J., Wang, P., Dong, F., Zhao, X., Chen, S.: Optimal design of adaptive robust control for a planar two-dof redundantly actuated parallel robot. Nonlinear Dyn. 105, 2341–2362 (2021)

    Article  Google Scholar 

  30. Bisgaard, M., Bendtsen, J.D., la Cour-Harbo, A.: Modeling of generic slung load system. J. Guid. Control Dyn. 32(2), 573–585 (2009)

    Article  Google Scholar 

  31. Arab, F., Shirazi, F.A., Yazdi, M.R.H.: Cooperative parameter estimation of a nonuniform payload by multiple quadrotors. Robotica 40(5), 1587–1606 (2022)

    Article  Google Scholar 

  32. Arab, F., Shirazi, F.A., Yazdi, M.R.H.: Planning and distributed control for cooperative transportation of a non-uniform slung-load by multiple quadrotors. Aerosp. Sci. Technol. 117, 106917 (2021)

    Article  Google Scholar 

  33. Lee, B.Y., Lee, H.I., Yoo, D.-W., Moon, G.H., Lee, D.Y., Young Kim, Y., Tahk, M.J.: Study on payload stabilization method with the slung-load transportation system using a quad-rotor. In: 2015 European Control Conference (ECC), pp. 2097–2102. IEEE, New York (2015)

    Google Scholar 

  34. Lee, B.Y., Hong, S.M., Yoo, D.W., Lee, H.I., Moon, G.H., Tahk, M.J.: Design of a neural network controller for a slung-load system lifted by 1 quad-rotor. J. Autom. Control Eng. 3(1), 10 (2015)

    Google Scholar 

Download references

Acknowledgements

This research was supported by National Key Research and Development Program of China(Grant number 2022YFB4301401), National Natural Science Foundation of China (Grant number 61976033), Pilot Base Construction and Pilot Verification Plan Program of Liaoning Province of China (Grant number 2022JH24/10200029), Key Development Guidance Program of Liaoning Province of China(Grant number 2019JH8/10100100), China Postdoctoral Science Foundation(Grant number 2022M710569).

Funding

This work was supported by National Key Research and Development Program of China(Grant number 2022YFB4301401), National Natural Science Foundation of China (Grant number 61976033), Pilot Base Construction and Pilot Verification Plan Program of Liaoning Province of China (Grant number 2022JH24/10200029), Key Development Guidance Program of Liaoning Province of China(Grant number 2019JH8/10100100), China Postdoctoral Science Foundation(Grant number 2022M710569).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation was performed by [Yunsheng Fan], [Guofeng Wang] and [Dongdong Mu], data collection and analysis were performed by [Xinyu Chen]. The first draft of the manuscript was written by [Xinyu Chen] and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.”

Corresponding author

Correspondence to Yunsheng Fan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Fan, Y., Wang, G. et al. Fuzzy Adaptive Backstepping Trajectory Tracking Control of Quadrotor Suspension System with Input Saturation. Int. J. Fuzzy Syst. (2024). https://doi.org/10.1007/s40815-023-01655-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40815-023-01655-2

Keywords

Navigation