Skip to main content
Log in

Finite-time spacecraft attitude control under input magnitude and rate saturation

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper addresses attitude-stabilizing control for rigid spacecraft with actuator magnitude and rate saturation (MRS). Firstly, a continuous dynamical system is introduced to model the actuator MRS. Rigorous analysis is given to demonstrate that the model’s output can always meet the MRS constraints if the control scheme applied to the model derived here is continuous. Then, by using the proposed MRS model and the homogeneity property, two attitude-stabilizing control laws are presented. The measurement of angular velocity is required in the implementation of the first control law, but this requirement is unnecessary in the second one. The local finite-time stability of the resulting closed-loop system is ensured by employing the Lyapunov approach. Finally, several simulation examples are presented to validate the efficiency of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Boskovic, J.D., Li, S.M., Mehra, R.K.: Robust adaptive variable structure control of spacecraft under control input saturation. AIAA J. Guidance Control Dyn. 24(1), 14–22 (2001)

    Google Scholar 

  2. Boskovic, J.D., Li, S.M., Mehra, R.K.: Robust tracking control design for spacecraft under control input saturation. AIAA J. Guidance Control Dyn. 27(4), 627–633 (2004)

    Google Scholar 

  3. de Ruiter, A.: Adaptive spacecraft attitude tracking control with actuator saturation. AIAA J. Guidance Control Dyn. 33(5), 1692–1696 (2010)

    Google Scholar 

  4. Xiao, B., Hu, Q., Zhang, Y.: Adaptive sliding mode fault tolerant attitude tracking control for flexible spacecraft under actuator saturation. IEEE Trans. Control Syst. Technol. 20(6), 1605–1612 (2012)

    Google Scholar 

  5. Zou, A.M., Kumar, K.D.: Neural network-based distributed attitude coordination control for spacecraft formation flying with input saturation. IEEE Trans. Neural Netw. Learn. Syst. 23(7), 1155–1162 (2012)

    Google Scholar 

  6. Zhu, Z., Xia, Y., Fu, M.: Adaptive sliding mode control for attitude stabilization with actuator saturation. IEEE Trans. Ind. Electron. 58(10), 4898–4907 (2011)

    Google Scholar 

  7. Cao, S., Zhao, Y.: Anti-disturbance fault-tolerant attitude control for satellites subject to multiple disturbances and actuator saturation. Nonlinear Dyn. 89(4), 2657–2667 (2017)

    Google Scholar 

  8. Huang, D., Wang, Q., Duan, Z.: Distributed attitude control for multiple flexible spacecraft under actuator failures and saturation. Nonlinear Dyn. 88(1), 529–546 (2017)

    Google Scholar 

  9. Egeland, O., Godhavn, J.M.: Passivity-based adaptive attitude control of a rigid spacecraft. IEEE Trans. Autom. Control 39(4), 842–846 (1994)

    Google Scholar 

  10. Xu, C., Wu, B., Cao, X., Zhang, Y.: Distributed adaptive event-triggered control for attitude synchronization of multiple spacecraft. Nonlinear Dyn. 95(4), 2625–2638 (2019)

    Google Scholar 

  11. Chen, T., Shan, J.: Distributed adaptive fault-tolerant attitude tracking of multiple flexible spacecraft on \(SO(3)\). Nonlinear Dyn. 95(3), 1827–1839 (2019)

    Google Scholar 

  12. Akella, M.R., Valdivia, A., Kotamraju, G.R.: Velocity-free attitude controllers subject to actuator magnitude and rate saturations. AIAA J. Guidance Control Dyn. 28(4), 659–666 (2005)

    Google Scholar 

  13. Forni, F., Galeani, S., Zaccarian, L.: Model recovery anti-windup for continuous-time rate and magnitude saturated linear plants. Automatica 48, 1502–1513 (2012)

    Google Scholar 

  14. Barbu, C., Reginatto, R., Teel, A. R., et al.: Anti-windup for exponentially unstable linear systems with inputs limited in magnitude and rate. In: Procceedings of American Control Conference, Chicago, IL, USA, pp. 1230–1234 (2000)

  15. Galeani, S., Onori, S., Teel, A.R., et al.: A magnitude and rate saturation model and its use in the solution of a static anti-windup problem. Syst. Control Lett. 57, 1–9 (2008)

    Google Scholar 

  16. Nguyen, T., Jabbari, F.: Output feedback controllers for disturbance attenuation with actuator amplitude and rate saturation. Automatica 36, 1339–1346 (2000)

    Google Scholar 

  17. Zou, A.M., Kumar, K.D., de Ruiter, A.: Robust attitude tracking control of spacecraft under control input magnitude and rate saturations. Int. J. Robust Nonlinear Control 26(4), 799–815 (2016)

    Google Scholar 

  18. Zou, A.M., de Ruiter, A., Kumar, K.D.: Disturbance observer-based attitude control for spacecraft with input MRS. IEEE Trans. Aerosp. Electron. Syst. 55(1), 384–396 (2019)

    Google Scholar 

  19. Zhu, Z., Xia, Y., Fu, M.: Attitude stabilization of rigid spacecraft with finite-time convergence. Int. J. Robust Nonlinear Control 21(6), 686–702 (2011)

    Google Scholar 

  20. Jin, E., Sun, Z.: Robust controllers design with finite time convergence for rigid spacecraft attitude tracking control. Aerosp. Sci. Technol. 12(4), 324–330 (2008)

    Google Scholar 

  21. Zou, A.M., Kumar, K.D., Hou, Z.G., et al.: Finite-time attitude tracking control for spacecraft using terminal sliding mode and Chebyshev neural network. IEEE Trans. Syst. Man Cybern. Part B Cybern. 41(4), 950–963 (2011)

    Google Scholar 

  22. Lu, K., Xia, Y.: Adaptive attitude tracking control for rigid spacecraft with finite-time convergence. Automatica 49(12), 3591–3599 (2013)

    Google Scholar 

  23. Hu, Q., Li, B., Zhang, A.: Robust finite-time control allocation in spacecraft attitude stabilization under actuator misalignment. Nonlinear Dyn. 73(1–2), 53–71 (2013)

    Google Scholar 

  24. Song, Z., Duan, C., Su, H.: Full-order sliding mode control for finite-time attitude tracking of rigid spacecraft. IET Control Theory Appl. 12(8), 1086–1094 (2018)

    Google Scholar 

  25. Zhao, L., Jia, Y.: Decentralized adaptive attitude synchronization control for spacecraft formation using nonsingular fast terminal sliding mode. Nonlinear Dyn. 78(4), 2779–2794 (2014)

    Google Scholar 

  26. Du, H., Li, S., Qian, C.: Finite-time attitude tracking control of spacecraft with application to attitude synchronization. IEEE Trans. Autom. Control 56(11), 2711–2717 (2011)

    Google Scholar 

  27. Du, H., Li, S.: Semi-global finite-time attitude stabilization by output feedback for a rigid spacecraft. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 227(12), 1881–1891 (2013)

    Google Scholar 

  28. Zou, A.M.: Finite-time output feedback attitude tracking control for rigid spacecraft. IEEE Trans. Control Syst. Technol. 22(1), 338–345 (2014)

    Google Scholar 

  29. Zou, A.M., de Ruiter, A., Kumar, K.D.: Distributed finite-time velocity-free attitude coordination control for spacecraft formations. Automatica 67, 46–53 (2016)

    Google Scholar 

  30. Huang, Y., Jia, Y.: Adaptive finite time distributed 6-DOF synchronization control for spacecraft formation without velocity measurement. Nonlinear Dyn. 95(3), 2275–2291 (2019)

    Google Scholar 

  31. Polyakov, A., Denis, E., Wilfrid, P.: Finite-time and fixed-time stabilization: implicit Lyapunov function approach. Automatica 51, 332–340 (2015)

    Google Scholar 

  32. Zou, A.M., Fan, Z.: Fixed-time attitude tracking control for rigid spacecraft without angular velocity measurements. IEEE Trans. Ind. Electron. https://doi.org/10.1109/TIE.2019.2937035, (2019)

  33. Zou, A.M., Fan, Z.: Distributed fixed-time attitude coordination control for multiple rigid spacecraft. Int. J. Robust Nonlinear Control. https://doi.org/10.1002/rnc.4763, (2019)

  34. Du, H., Cheng, Y., He, Y.: Finite-time attitude regulation control for a rigid spacecraft under input saturation. In: Proceeding of the 11th World Congress on Intelligent Control and Automation, pp. 1647–1651 (2014)

  35. Du, H., Li, S.: Finite-time attitude stabilization for a spacecraft using homogeneous method. AIAA J. Guidance Control Dyn. 35(3), 740–748 (2012)

    Google Scholar 

  36. Gui, H., Jin, L., Xu, S.: Simple finite-time attitude stabilization laws for rigid spacecraft with bounded inputs. Aerosp. Sci. Technol. 42, 176–186 (2015)

    Google Scholar 

  37. Gui, H., Vukovich, G.: Finite-time angular velocity observers for rigid-body attitude tracking with bounded inputs. Int. J. Robust Nonlinear Control 27(1), 15–38 (2017)

    Google Scholar 

  38. Guo, Y., Song, S., Li, X., et al.: Terminal sliding mode control for attitude tracking of spacecraft under input saturation. J. Aerosp. Eng. 30(3), 06016006 (2017)

    Google Scholar 

  39. Sun, S., Zhao, L., Jia, Y.: Finite-time output feedback attitude stabilisation for rigid spacecraft with input constraints. IET Control Theory Appl. 10(14), 1740–1750 (2016)

    Google Scholar 

  40. Zou, A.M., de Ruiter, A., Kumar, K.D.: Finite-time output feedback attitude control for rigid spacecraft under control input saturation. J. Frankl. Inst. 353(17), 4442–4470 (2016)

    Google Scholar 

  41. Zou, A.M., de Ruiter, A., Kumar, K.D.: Finite-time attitude tracking control for rigid spacecraft with control input constraints. IET Control Theory Appl. 11(7), 931–940 (2017)

    Google Scholar 

  42. Zou, A.M., Kumar, K.D.: Finite-time attitude control for rigid spacecraft subject to actuator saturation. Nonlinear Dyn. 96(2), 1017–1035 (2019)

    Google Scholar 

  43. Bhat, S.P., Bernstein, D.S.: Continuous finite-time stabilization of the translational and rotational double integrators. IEEE Trans. Autom. Control 43(5), 678–682 (1998)

    Google Scholar 

  44. Hong, Y., Wang, J., Cheng, D.: Adaptive finite-time control of nonlinear systems with parametric uncertainty. IEEE Trans. Autom. Control 51(5), 858–862 (2006)

    Google Scholar 

  45. Hughes, P.C.: Spacecraft Attitude Dynamics. Wiley, New York (1986)

    Google Scholar 

  46. Shuster, M.D.: A survey of attitude representations. J. Astronaut. Sci. 41(4), 439–517 (1993)

    Google Scholar 

  47. Rosier, L.: Homogeneous Lyapunov function for homogeneous continuous vector field. Syst. Control Lett. 19(6), 467–473 (1992)

    Google Scholar 

  48. Menard, T., Moulay, E., Perruquetti, W.: Corrections to “A global high-gain finite-time observer”. IEEE Trans. Autom. Control 62(1), 509–510 (2017)

    Google Scholar 

  49. Swaroop, D., Hedrick, J.K., Yip, P.P., Gerdes, J.C.: Dynamic surface control for a class of nonlinear systems. IEEE Trans. Autom. Control 45(10), 1893–1899 (2000)

    Google Scholar 

  50. Munkres, J.: Topology, 2nd edn. Prentice Hall, Upper Saddle River (1999)

    Google Scholar 

Download references

Acknowledgements

This work was support by Shantou University (STU) Scientific Research Foundation for Talents (NTF18015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to An-Min Zou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendices

1.1 Proof of Theorem 1

By continuity of closed-loop solutions, \(q(t), \omega (t), u(t), v(t)\), and consequently U(t) must be finite over some interval [0, T), where \(T\in R_{>0} \cup \{+\infty \}\). Then, the proof is divided into two parts: (1) We show using Lyapunov analysis that while the states are finite, the states u and v must be uniformly bounded; (2) We show that the closed-loop system does not have finite escape time, such that from part (1), u and v are uniformly bounded for all \(t \ge 0\).

Part 1: We prove that u(t) and v(t) are uniformly bounded on [0, T) and \(|\tau _i(t)|\le \tau _M\), \(|{\dot{\tau }}_i(t)|\le \tau _{dM}\)\((i = 1, 2, 3)\), \(\forall t \in [0, T)\). Note that

$$\begin{aligned} {\dot{v}}_i=\left[ 1-\left( \frac{|v_i|}{(1-c_1)\tau _{dM}}\right) ^{m_2}\right] U_i-c_2{\bar{v}}_i, \end{aligned}$$

where \(i=1, 2, 3\). Then, we show that \(|v_i(t)|\le (1-c_1)\tau _{dM}\) for all \(t\in [0, T)\). To prove this, consider \(V=v_i^2/2\). The time derivative of V is

$$\begin{aligned} {\dot{V}}=\left[ 1-\left( \frac{|v_i|}{(1-c_1)\tau _{dM}}\right) ^{m_2}\right] U_iv_i-c_2{\bar{v}}_iv_i. \end{aligned}$$

When \(|v_i|=(1-c_1)\tau _{dM}\), we have \({\dot{v}}_i=-c_2{\bar{v}}_i\), and hence, \({\dot{V}}=-c_2{\bar{v}}_iv_i<0\). Since \(|v_i(0)|<(1-c_1)\tau _{dM}\) (i.e., \(V(0)\le (1-c_1)^2\tau _{dM}^2/2\)) and \({\dot{V}}=-c_2{\bar{v}}_iv_i<0\) on \(V=(1-c_1)^2\tau _{dM}^2/2\), we conclude that \(V\le (1-c_1)^2\tau _{dM}^2/2\) is an invariant set [49], that is, \(V(t)\le (1-c_1)^2\tau _{dM}^2/2\) for all \(t \in [0, T)\), which in turn indicates that \(|v_i(t)|\le (1-c_1)\tau _{dM}\) for all \(t \in [0, T)\) if \(|v_i(0)|<(1-c_1)\tau _{dM}\).

Similarly, when \(|u_i|=\tau _M\), we have

$$\begin{aligned} {\dot{u}}_i=-c_1\frac{\tau _{dM}}{\tau _M^{m_1}}u_i^{m_1}, \end{aligned}$$

and we can verify that \(|u_i(t)|\le \tau _M\) for all \(t\in [0, T)\). Then, the upper bound of the rate \({\dot{\tau }}_i={\dot{u}}_i\) is given by

$$\begin{aligned} |{\dot{u}}_i|&=\left| v_i-g_{1i}v_i-\frac{c_1\tau _{dM}u_i^{m_1}}{\tau _M^{m_1}}\right| \\&\le |v_i|+\frac{c_1\tau _{dM}|u_i|^{m_1}}{\tau _M^{m_1}} \le \tau _{dM}. \end{aligned}$$

Therefore, we conclude that \(|\tau _i(t)|\le \tau _{M}\) and \(|{\dot{\tau }}_i(t)|\le \tau _{dM} (i=1, 2, 3), \forall t\in [0, T)\).

Part 2: It remains to show that \(T=+\infty \). Suppose on the contrary, that \(T>0\) is finite and that \(\lim _{t\rightarrow T^{-}}|U(t)|=+\infty \). Consider the kinetic energy \(V=\frac{1}{2}\omega ^\mathrm{T}J\omega \). For \(t \in [0,T)\), \({\dot{V}}\) can be obtained as

$$\begin{aligned} {\dot{V}}&= \omega ^\mathrm{T}\tau \le \sum _{i=1}^3|\omega _i|\tau _M \le \frac{\Vert \omega \Vert ^2}{2}+\frac{3\tau _M^2}{2} \\&\quad \le \frac{V}{\lambda _{\min }(J)}+\frac{3\tau _M^2}{2}, \end{aligned}$$

where Young’s inequality has been used. By the comparison principle, we obtain

$$\begin{aligned} V(\omega (t))&\le \exp \left( \frac{t}{\lambda _{\min }(J)}\right) \left[ V(0)+\frac{3}{2}\tau _M^2\lambda _{\min }(J)\right] \\&\quad -\frac{3}{2}\tau _M^2\lambda _{\min }(J), \end{aligned}$$

and in particular, since the right-hand side is monotonically increasing,

$$\begin{aligned} V(\omega (t))&\le \exp \left( \frac{T}{\lambda _{\min }(J)}\right) \left[ V(0)+\frac{3}{2}\tau _M^2\lambda _{\min }(J)\right] \\&\quad -\frac{3}{2}\tau _M^2\lambda _{\min }(J) \end{aligned}$$

for all \(t\in [0, T)\). Then, it follows that \(\omega (t)\) is contained in a compact set over the interval [0, T). Since q(t) maintains unit length, and as already established, u(t) and v(t) are also contained in compact sets over [0, T), by continuity of the control law f, U(t) also remains in a compact set over the interval [0, T). This contradicts the assertion that \(\lim _{t\rightarrow T^{-}}|U(t)|=+\infty \). Hence, \(T=+\infty \).

1.2 Proof of Proposition 1

Let \(\alpha \in (0, +\infty )\). Referring to [47], we can verify that the function \({\bar{V}}_{1}(x)\) is well defined, positive definite, radially unbounded, and of class \(C^1(R^{12}, R)\).

(a) If \(x=0\), we can obtain \({\bar{V}}_{1}(\delta _\lambda ^r(x))=\lambda ^2{\bar{V}}_{1}(x)=0\). For any \(x\ne 0\in R^{12}\), since \(V_{1}\) is continuous and \(V_{1}(0)=0\), we can verify that \(V_{1}(\delta _\rho ^{r}(x))\le 1\) for all \(\rho \in [0, l)\), where \(l>0\) is some constant. Thus, the integrand of \({\bar{V}}_{1}\) meets \(\beta \left( V_{1}(\delta _\rho ^{r}(x))\right) /\rho ^3=0\), \(\forall \rho \in (0, l)\). Then, because \(V_{1}\) is radially unbounded, we can show that there exists an \(L>0\) such that \(V_{1}(\delta _\rho ^{r}(x))\ge 2\), \(\forall \rho >L\). Hence, for this \(x\in R^{12}\), we choose \(0<l_m<l\) and \(L_M>L\) and we have

$$\begin{aligned}&\int _{l_m}^{L_M}\frac{1}{\rho ^3}\beta \left( V_{1}\left( \delta _\rho ^{r}(x)\right) \right) \hbox {d}\rho =\int _{l}^{L}\frac{1}{\rho ^3}\beta \left( V_{1}\left( \delta _\rho ^{r}(x)\right) \right) \hbox {d}\rho \nonumber \\&\quad \quad +\int _{L}^{L_M}\frac{1}{\rho ^3}\hbox {d}\rho \nonumber \\&\quad =\int _{l}^{L}\frac{1}{\rho ^3}\beta \left( V_{1}\left( \delta _\rho ^{r}(x)\right) \right) \hbox {d}\rho + \frac{1}{2L^2}-\frac{1}{2L_M^2}. \end{aligned}$$
(25)

Because \(0<l_m<l\) and \(L_M>L\) were chosen arbitrarily, taking the limit as \(l_m\rightarrow 0^+\) and \(L_M\rightarrow \infty \) leads to

$$\begin{aligned} {\bar{V}}_{1}(x)=\int _{l}^{L}\frac{1}{\rho ^3}\beta \left( V_{1}\left( \delta _\rho ^{r}(x)\right) \right) \hbox {d}\rho + \frac{1}{2L^2}. \end{aligned}$$
(26)

It follows from the definition that

$$\begin{aligned}&{\bar{V}}_{1}\left( \delta _{\lambda }^r(x)\right) \nonumber \\&\quad = \lim _{l_m\rightarrow 0^+, L_M\rightarrow \infty }\int _{l_m}^{L_M}\frac{1}{\rho ^3}\beta \left( V_{1} \left( \delta _\rho ^{r}\left( \delta _{\lambda }^r(x)\right) \right) \right) \hbox {d}\rho \nonumber \\&\quad =\lim _{l_m\rightarrow 0^+, L_M\rightarrow \infty }\int _{l_m}^{L_M}\frac{1}{\rho ^3}\beta \left( V_{1} \left( \delta _{\rho \lambda }^{r}(x)\right) \right) \hbox {d}\rho . \end{aligned}$$
(27)

Considering the change of variables \(s=\rho \lambda \) and noticing the fact that \(\hbox {d}\rho /\hbox {d}s=1/\lambda \), we can obtain that

$$\begin{aligned}&{\bar{V}}_{1}\left( \delta _{\lambda }^r(x)\right) \nonumber \\&\quad =\lim _{l_m\rightarrow 0^+, L_M\rightarrow \infty }\int _{l_m}^{L_M}\frac{\lambda ^2}{s^3}\beta \left( V_{1} \left( \delta _{s}^{r}(x)\right) \right) \hbox {d}s\nonumber \\&\quad =\lambda ^2{\bar{V}}_{1}(x). \end{aligned}$$
(28)

(b) Note that

$$\begin{aligned} L_{g_{1}}{\bar{V}}_{1}(x)&=\int _{0^+}^\infty \frac{1}{\rho ^{3+(\alpha -1)/4}} \beta '\left( V_{1}(\delta _\rho ^r(x))\right) \nonumber \\&\quad \times L_{g_{1}}V_{1}\left( \delta _\rho ^r(x)\right) \hbox {d}\rho \end{aligned}$$
(29)

and

$$\begin{aligned}&L_{g_{1}}{\bar{V}}_{1}(\delta _{\lambda }^r(x))=\int _{0^+}^\infty \frac{1}{\rho ^{3+(\alpha -1)/4}} \beta '\left( V_{1}(\delta _\rho ^r(\delta _{\lambda }^r(x)))\right) \nonumber \\&\qquad \times L_{g_{1}}V_{1} \left( \delta _\rho ^r(\delta _{\lambda }^r(x))\right) \hbox {d}\rho \nonumber \\&\quad =\int _{0^+}^\infty \frac{1}{\rho ^{3+(\alpha -1)/4}} \beta '\left( V_{1}(\delta _{\rho \lambda }^r(x))\right) L_{g_{1}}V_{1} \left( \delta _{\rho \lambda }^r(x)\right) \hbox {d}\rho . \end{aligned}$$
(30)

Letting \(s=\rho \lambda \) and noting that \(\hbox {d}\rho /\hbox {d}s=1/\lambda \), we have

$$\begin{aligned}&L_{g_{1}}{\bar{V}}_{1}(\delta _{\lambda }^r(x))=\int _{0^+}^\infty \frac{1}{\rho ^{3+(\alpha -1)/4}} \beta '\left( V_{1}(\delta _{\rho \lambda }^r(x))\right) \nonumber \\&\qquad \times L_{g_{1}}V_{1} \left( \delta _{\rho \lambda }^r(x)\right) \hbox {d}\rho \nonumber \\&\quad = \int _{0^+}^\infty \frac{\lambda ^{(\alpha +7)/4}}{s^{3+(\alpha -1)/4}} \beta '\left( V_{1}(\delta _{s}^r(x))\right) L_{g_{1}}V_{1} \left( \delta _{s}^r(x)\right) \hbox {d}s\nonumber \\&\quad =\lambda ^{\frac{\alpha +7}{4}}L_{g_{1}}{\bar{V}}_{1}(x). \end{aligned}$$
(31)

By (a), we know that there exist \(l>0\) and \(L>0\) so that

$$\begin{aligned} L_{g_{1}}{\bar{V}}_{1}(x)&=\int _{l}^L\frac{1}{\rho ^{3+(\alpha -1)/4}} \beta '\left( V_{1}(\delta _\rho ^r(x))\right) \nonumber \\&\quad \times L_{g_{1}}V_{1}\left( \delta _\rho ^r(x)\right) \hbox {d}\rho \end{aligned}$$
(32)

for all \(x\in S^{12}\). Define \(h(x, \rho , \alpha )=L_{g_{1}}V_{1}\left( \delta _\rho ^r(x)\right) \), where \((x, \rho , \alpha )\in S^{12}\times \{\rho \in [l, L]\}\times (0, +\infty )\). Since h is a continuous function and \((x, \rho )\) belongs to a compact set, we can conclude that there exists \(\varphi _1>0\) such that the image of h is included in \((-\infty , -\varphi _1)\) for \((x, \rho )\in S^{12}\times \{\rho \in [l, L]\}\) and \(\alpha =1\). Using the tube lemma [50], it is concluded that there exists \(\epsilon >0\) such that for all \((x, \rho , \alpha )\in S^{12}\times \{\rho \in [l, L]\}\times (1-\epsilon , 1+\epsilon )\), \(h(x, \rho , \alpha )\le -\varphi _1\). Then, we can obtain

$$\begin{aligned} L_{g_{1}}{\bar{V}}_{1}(x)&\le -\varphi _1\int _{l}^L\frac{1}{\rho ^{3+(\alpha -1)/4}} \beta '\left( V_{1}(\delta _\rho ^r(x))\right) \hbox {d}\rho \nonumber \\&\le -\varphi \left( {\bar{V}}_1(x)\right) ^{\frac{\alpha +7}{8}} \end{aligned}$$
(33)

with \(\varphi =\varphi _2/\varphi _3>0\), where \(\varphi _2>0\) is the lower bound of \(\varphi _1\int _{l}^L\frac{1}{\rho ^{3+(\alpha -1)/4}} \)\(\beta '\left( V_{1}(\delta _\rho ^r(x))\right) \hbox {d}\rho \) and \(\varphi _3>0\) is the upper bound of \(\left( {\bar{V}}_1(x)\right) ^{(\alpha +7)/8}\) for \((x, \alpha )\in S^{12}\times (1-\epsilon , 1+\epsilon )\).

When \(x=0\), we have \(L_{g_{1}}{\bar{V}}_{1}(x)\le -\varphi {\bar{V}}_{1}^{(\alpha +7)/8}(x)\). For any \(x\in R^{12}\setminus \{0\}\), by Lemma 3, we can obtain that \(x=\phi (\lambda , {\bar{x}})=\delta _\lambda ^r({\bar{x}})\), where \({\bar{x}}\in S^{12}\). Then, we have

$$\begin{aligned} L_{g_{1}}{\bar{V}}_{1}(x)&=L_{g_{1}}{\bar{V}}_{1}\left( \delta _\lambda ^r({\bar{x}})\right) =\lambda ^{\frac{\alpha +7}{4}}L_{g_{1}}{\bar{V}}_{1}({\bar{x}})\nonumber \\&\le -\varphi \lambda ^{\frac{\alpha +7}{4}}\left( {\bar{V}}_1({\bar{x}})\right) ^{\frac{\alpha +7}{8}}\nonumber \\&=-\varphi \left( {\bar{V}}_1(x)\right) ^{\frac{\alpha +7}{8}}. \end{aligned}$$
(34)

Therefore, \(L_{g_{1}}{\bar{V}}_{1}(x)\le -\varphi {\bar{V}}_{1}^{(\alpha +7)/8}(x)\), \(\forall x\in R^{12}\).

1.3 Proof of Theorem 3

Define \(y=\hbox {col}(\bar{\tilde{q}}, {\tilde{\omega }})\), the dilation \(\delta _\lambda ^r(y)=\hbox {col}(\lambda \bar{\tilde{q}}, \lambda ^{\alpha _1} {\tilde{\omega }})\), and \(M_2=[-\gamma _1I_3/2, \; I_3/2; \; -\gamma _2I_3, \; 0]\). As \(M_2\) is Hurwitz, there exists \(N_2=N_2^\mathrm{T}>0\) so that \(M_2^\mathrm{T}N_2+N_2M_2=-I_6\).

First of all, we show that the origin of the nominal system of (19), i.e., \({\dot{y}}=g_{2}(y)\), is finite-time stable, where \(g_{2}(y)=\hbox {col}({\tilde{\omega }}/2-\gamma _1\hbox {sig}^{\alpha _1}(\bar{\tilde{q}})/2, -\gamma _2\hbox {sig}^{\alpha _2}(\bar{\tilde{q}}))\) is homogeneous of degree \((\alpha -1)/4<0\) in regard to the dilation \(\delta _\lambda ^r(y)\).

Define the candidate Lyapunov function as:

$$\begin{aligned} {\bar{V}}_2(y)=\int _{0^+}^{+\infty }\frac{1}{\rho ^3}\beta (V_2(\delta _\rho ^r(y)))\hbox {d}\rho \end{aligned}$$
(35)

if \(y\in R^{6}\setminus \{0\}\) and \({\bar{V}}_2(0)=0\), where \(V_2(y)=y^\mathrm{T}N_2y\). Following the same steps of the proof of Proposition 1, we can obtain that \({\bar{V}}_2(y)\) is homogeneous of degree 2 in regard to the dilation \(\delta _\lambda ^r(y)\), \(L_{g_2}{\bar{V}}_2(y)\) is homogeneous of degree \((\alpha +7)/4\) in regard to the dilation \(\delta _\lambda ^r(y)\), and

$$\begin{aligned} L_{g_2}{\bar{V}}_2(y)\le -\varphi {\bar{V}}_2^{\frac{\alpha +7}{8}}(y) \end{aligned}$$
(36)

for all \(\alpha \in (1-\epsilon , 1)\) and for all \(y\in R^{6}\), where \(\varphi \) and \(\epsilon \) are some positive constants. By noticing that \(0<(7+\alpha )/8<1\), we conclude that the origin of the nominal system \({\dot{y}}=g_{2}(y)\) is finite-time stable. Furthermore, by noting that \(\tilde{q}_4=\sqrt{1-\bar{\tilde{q}}^\mathrm{T}\bar{\tilde{q}}}\), it follows that \(\lim _{\lambda \rightarrow 0}\frac{f_5(\lambda \bar{\tilde{q}}, \lambda ^{\alpha _1}{\tilde{\omega }})}{\lambda ^{\alpha _1}}=0\), \(\lim _{\lambda \rightarrow 0}\frac{f_6(\lambda \bar{\tilde{q}}, \lambda ^{\alpha _1}{\tilde{\omega }})}{\lambda ^{\alpha _2}}=0\). By Lemma 2 in [27], we can obtain that the origin of system (19) is locally finite-time stable.

1.4 Proof of Theorem 4

Define \(z=\hbox {col}({\bar{q}}, {\hat{\omega }}, u, v)\), \(\eta =\hbox {col}(\bar{\tilde{q}}, {\tilde{\omega }}, {\bar{q}}, {\hat{\omega }}, u, v)\), and the dilations \(\delta _\lambda ^r(z)=\hbox {col}(\lambda {\bar{q}}, \lambda ^{\alpha _1} {\hat{\omega }}, \lambda ^{\alpha _2} u, \lambda ^{\alpha _3} v)\) and \(\delta _\lambda ^r(\eta )=\hbox {col}(\lambda \bar{\tilde{q}}, \lambda ^{\alpha _1} {\tilde{\omega }}, \lambda {\bar{q}}, \lambda ^{\alpha _1} {\hat{\omega }}, \lambda ^{\alpha _2} u, \lambda ^{\alpha _3} v)\).

Firstly, we prove that the nominal system of (21), i.e., \({\dot{\eta }}=g_{3}(\eta )\), is asymptotically stable, where

$$\begin{aligned}&g_{3}= \left( \begin{array}{l} \frac{{\tilde{\omega }}}{2}-\frac{1}{2}\gamma _1\hbox {sig}^{\alpha _1}(\bar{\tilde{q}})\\ -\gamma _2\hbox {sig}^{\alpha _2}(\bar{\tilde{q}}) \\ \frac{{\hat{\omega }}}{2}+\frac{1}{2}q_4{\tilde{\omega }}\\ J^{-1}u+\gamma _2\hbox {sig}^{\alpha _2}(\bar{\tilde{q}})\\ v\\ -k_1\hbox {sig}^{\alpha }({\bar{q}})-k_2\hbox {sig}^{\frac{\alpha }{\alpha _1}}({\hat{\omega }}) -k_3\hbox {sig}^{\frac{\alpha }{\alpha _2}}(u)-{\bar{k}}_4\hbox {sig}^{\frac{\alpha }{\alpha _3}}(v)\\ \end{array} \right) \end{aligned}$$

is homogeneous of degree \((\alpha -1)/4<0\) in regard to the dilation \(\delta _\lambda ^r(\eta )\).

Consider the Lyapunov function candidate:

$$\begin{aligned} {\bar{V}}(\eta )={\bar{V}}_3(z)+K{\bar{V}}_2(y), \end{aligned}$$
(37)

where \(K>0\) is a sufficiently large constant, \({\bar{V}}_2(y)\) is given by (35), and \({\bar{V}}_3(z)\) is defined by

$$\begin{aligned} {\bar{V}}_3(z)=\int _{0^+}^{+\infty }\frac{1}{\rho ^3}\beta (V_3(\delta _\rho ^r(z)))\hbox {d}\rho \end{aligned}$$
(38)

if \(z\in R^{12}\setminus \{0\}\) and \({\bar{V}}_3(0)=0\), where \(V_3(z)=z^\mathrm{T}N_1z\).

Following the same procedure of the proof of Proposition 1, it is concluded that there exists an \(\epsilon _1>0\) such that the time derivative of \({\bar{V}}_3(z)\) along with the system \({\dot{z}}=g_{4}(z)=\hbox {col}({\hat{\omega }}/2, J^{-1}u, v, -k_1\hbox {sig}^{\alpha }({\bar{q}})-k_2\hbox {sig}^{\alpha /\alpha _1}({\hat{\omega }}) -k_3\hbox {sig}^{\alpha /\alpha _2}(u)-{\bar{k}}_4\hbox {sig}^{\alpha /\alpha _3}(v))\) is given by

$$\begin{aligned} L_{g_4}{\bar{V}}_3(z)\le -\varphi _1{\bar{V}}^{\frac{\alpha +7}{8}}_3(z) \end{aligned}$$
(39)

for all \(\alpha \in (1-\epsilon _1, 1)\) and for all \(z\in R^{12}\), where \(\varphi _1>0\). Then, there exists an \(\epsilon >0\) so that for all \(\alpha \in (1-\epsilon , 1)\) and for all \(\eta \in S^{18}\),

$$\begin{aligned}&L_{g_3}{\bar{V}}(\eta )\le -\varphi _1{\bar{V}}^{\frac{\alpha +7}{8}}_3(z)-K\varphi _2{\bar{V}}^{\frac{\alpha +7}{8}}_2(y)\nonumber \\&\qquad +\left( \frac{\partial {\bar{V}}_3(z)}{\partial z}\right) ^\mathrm{T}g_5(\eta )\nonumber \\&\quad \le -\frac{\varphi _1}{2}{\bar{V}}^{\frac{\alpha +7}{8}}_3(z) -\varphi _2\left( K-\frac{\varphi _3}{\varphi _2}\right) {\bar{V}}^{\frac{\alpha +7}{8}}_2(y), \end{aligned}$$
(40)

where \(g_5(\eta )=\hbox {col}(q_4{\tilde{\omega }}/2, \gamma _2\hbox {sig}^{\alpha _2}(\bar{\tilde{q}}), 0, 0)\), and \(\varphi _2\) and \(\varphi _3\) are some positive constants. Since \({\bar{V}}(\eta )\) is homogeneous of degree of 2 in regard to the dilation \(\delta _\lambda ^r(\eta )\), the above inequality holds for all \(\eta \in R^{18}\). If we choose \(K>\varphi _3/\varphi _2\), then we have \(L_{g_3}{\bar{V}}(\eta )\le 0\). Thus, we conclude that the origin of the system \({\dot{\eta }}=g_{3}(\eta )\) is asymptotically stable. Because

$$\begin{aligned}&\lim _{\lambda \rightarrow 0}\frac{f_5(\lambda \bar{\tilde{q}}, \lambda ^{\alpha _1}{\tilde{\omega }})}{\lambda ^{\alpha _1}}=0,\\&\lim _{\lambda \rightarrow 0}\frac{f_6(\lambda \bar{\tilde{q}}, \lambda ^{\alpha _1}{\tilde{\omega }})}{\lambda ^{\alpha _2}}=0,\\&\lim _{\lambda \rightarrow 0}\frac{f_7(\lambda {\bar{q}}, \lambda ^{\alpha _1}{\hat{\omega }}, \lambda ^{\alpha _1}{\tilde{\omega }})}{\lambda ^{\alpha _1}}=0,\\&\lim _{\lambda \rightarrow 0}\frac{f_8(\lambda ^{\alpha _1}{\hat{\omega }})}{\lambda ^{\alpha _2}}=0,\\&\lim _{\lambda \rightarrow 0}\frac{f_9(\lambda ^{\alpha _2}u, \lambda ^{\alpha _3}v)}{\lambda ^{\alpha _3}}=0,\\&\lim _{\lambda \rightarrow 0}\frac{f_{10}(\lambda {\bar{q}}, \lambda ^{\alpha _1}{\hat{\omega }}, \lambda ^{\alpha _2}u, \lambda ^{\alpha _3}v)}{\lambda ^{\alpha }}=0, \end{aligned}$$

it follows from Lemma 2 in [27] that the local finite-time stability of the origin of system (21) is obtained. By noting that \({\tilde{\omega }}=\omega -{\hat{\omega }}\), we conclude that the angular velocity \(\omega ={\tilde{\omega }}+{\hat{\omega }}\) converges to the origin in finite time.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, AM., Kumar, K.D. & de Ruiter, A.H.J. Finite-time spacecraft attitude control under input magnitude and rate saturation. Nonlinear Dyn 99, 2201–2217 (2020). https://doi.org/10.1007/s11071-019-05388-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05388-6

Keywords

Navigation