Skip to main content

Advertisement

Log in

IRE1α: from the function to the potential therapeutic target in atherosclerosis

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Inositol requiring enzyme 1 (IRE1) is generally thought to control the most conserved pathway in the unfolded protein response (UPR). Two isoforms of IRE1, IRE1α and IRE1β, have been reported in mammals. IRE1α is a ubiquitously expressed protein whose knockout shows marked lethality. In contrast, the expression of IRE1β is exclusively restricted in the epithelial cells of the respiratory and gastrointestinal tracts, and IRE1β-knockout mice are phenotypically normal. As research continues to deepen, IRE1α was showed to be tightly linked to inflammation, lipid metabolism regulation, cell death and so on. Growing evidence also suggests an important role for IRE1α in promoting atherosclerosis (AS) progression and acute cardiovascular events through disrupting lipid metabolism balance, facilitating cells apoptosis, accelerating inflammatory responses and promoting foam cell formation. In addition, IRE1α was recognized as novel potential therapeutic target in AS prevention. This review provides some clues about the relationship between IRE1α and AS, hoping to contribute to further understanding roles of IRE1α in atherogenesis and to be helpful for the design of novel efficacious therapeutics agents targeting IRE1α-related pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

Acacb:

Acetyl-coenzyme A carboxylase beta

ADPN:

Adiponectin

AMPK:

AMP-activated protein kinase

ANGII:

AngiotensinII

Angptl3:

Angiopoietin-like protein 3

AP1:

Activator protein 1

AS:

Atherosclerosis

ASK1:

Apoptosis signal-regulated kinase 1

ATF6:

Activating transcription factor 6

BAT:

Brown adipose tissue

BAX:

Bcl-2-associated X protein

Bcl:

B-cell lymphoma

BIP:

Binding immunoglobulin protein

CD36:

Cluster of differentiation 36

Ces1:

Carboxylesterase 1

CHOP:

C/EBP homologous protein

Dgat2:

Diacylglycerol O-acyltransferase 2

ER:

Endoplasmic reticulum

ERS:

Endoplasmic reticulum stress

FA:

Fatty acids

FABP4:

Fatty acid binding protein 4

FGF21:

Fibroblast growth factor 21

FMRP:

Fragile X mental retardation protein

Gipie:

GRP78 interacting protein induced by ERS

GRP78:

Glucose regulated protein 78

HFD:

High fat diet

ICAM-1:

Intercellular adhesion molecule-1

IFN-γ:

Interferon-γ

IL:

Interleukin

IKK:

Inhibitor of nuclear factor kappa-B kinase

IRE1:

Inositol requiring enzyme 1

IRE1α:

Inositol requiring enzyme 1α

IκB:

Inhibitor of nuclear factor kappa-B

INPPL1:

Inositol polyphosphate phosphatase like-1

JNK:

C-Jun N-terminal kinase

LC3:

Microtubule-associated protein light chain 3

LDL:

Low-density lipoprotein

MCP-1:

Monocyte chemotactic protein-1

miR:

MicroRNA

mm-LDL:

Minimally modified low-density lipoprotein

mTOR:

Mammalian target of rapamycin

NF-κB:

Nuclear factor kappa-B

ox-LDL:

Oxidized low-density lipoprotein

PBA:

4-Phenylbutyric acid

PERK:

Protein kinase RNA-like endoplasmic reticulum kinase

PIP3:

Phosphatidylinositol trisphosphate

PPAR-γ:

Peroxisome proliferator-activated receptor-γ

Ppargc1α:

PPAR-γ coactivator-1 alpha

RIDD:

Regulated inositol requiring enzyme 1-dependent decay

RNase:

Endoribonuclease

Scd1:

Stearoyl-CoA desaturase 1

TLR:

Toll-like receptors

TNF-α:

Tumor necrosis factor-α

TRAF:

Tumor necrosis factor receptor associated factor

TRAIL:

Tumor necrosis factor-related apoptosis-inducing ligand

UPR:

Unfolded protein response

VLDL:

Very low-density lipoprotein

WAT:

White adipose tissue

XBP1:

X-box binding protein 1

XBP1s:

X-box binding protein 1 spliced

References

  1. Mendis S, Davis S, Norrving B (2015) Organizational update: the world health organization global status report on noncommunicable diseases 2014; one more landmark step in the combat against stroke and vascular disease. Stroke 46:e121-122. https://doi.org/10.1161/STROKEAHA.115.008097

    Article  PubMed  Google Scholar 

  2. Murray CJ, Lopez AD (1997) Global mortality, disability, and the contribution of risk factors: global burden of disease study. Lancet 349:1436–1442. https://doi.org/10.1016/S0140-6736(96)07495-8

    Article  CAS  PubMed  Google Scholar 

  3. Shan R, Liu N, Yan Y, Liu B (2020) Apoptosis, autophagy and atherosclerosis: relationships and the role of Hsp27. Pharmacol Res 166:105169. https://doi.org/10.1016/j.phrs.2020.105169

    Article  CAS  PubMed  Google Scholar 

  4. Zhu Y, Xian X, Wang Z, Bi Y, Chen Q, Han X, Tang D, Chen R (2018) Research progress on the relationship between atherosclerosis and inflammation. Biomolecules 8(3):80. https://doi.org/10.3390/biom8030080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Xu H, Jiang J, Chen W, Li W, Chen Z (2019) Vascular macrophages in atherosclerosis. J Immunol Res 2019:4354786. https://doi.org/10.1155/2019/4354786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Harman JL, Jorgensen HF (2019) The role of smooth muscle cells in plaque stability: therapeutic targeting potential. Br J Pharmacol 176:3741–3753. https://doi.org/10.1111/bph.14779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gimbrone MA Jr, Garcia-Cardena G (2016) Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res 118:620–636. https://doi.org/10.1161/CIRCRESAHA.115.306301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bennett MR, Sinha S, Owens GK (2016) Vascular smooth muscle cells in atherosclerosis. Circ Res 118:692–702. https://doi.org/10.1161/CIRCRESAHA.115.306361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yang S, Wu M, Li X, Zhao R, Zhao Y, Liu L, Wang S (2020) Role of endoplasmic reticulum stress in atherosclerosis and its potential as a therapeutic target. Oxid Med Cell Longev 2020:9270107. https://doi.org/10.1155/2020/9270107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ren J, Bi Y, Sowers JR, Hetz C, Zhang Y (2021) Endoplasmic reticulum stress and unfolded protein response in cardiovascular diseases. Nat Rev Cardiol 18:499–521. https://doi.org/10.1038/s41569-021-00511-w

    Article  PubMed  Google Scholar 

  11. Wang M, Kaufman RJ (2016) Protein misfolding in the endoplasmic reticulum as a conduit to human disease. Nature 529:326–335. https://doi.org/10.1038/nature17041

    Article  CAS  PubMed  Google Scholar 

  12. Zhou AX, Tabas I (2013) The UPR in atherosclerosis. Semin Immunopathol 35:321–332. https://doi.org/10.1007/s00281-013-0372-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Acosta-Alvear D, Karagoz GE, Frohlich F, Li H, Walther TC, Walter P (2018) The unfolded protein response and endoplasmic reticulum protein targeting machineries converge on the stress sensor IRE1. Elife 7:e43036. https://doi.org/10.7554/eLife.43036

    Article  PubMed  PubMed Central  Google Scholar 

  14. Tabas I (2010) The role of endoplasmic reticulum stress in the progression of atherosclerosis. Circ Res 107:839–850. https://doi.org/10.1161/CIRCRESAHA.110.224766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chistiakov DA, Sobenin IA, Orekhov AN, Bobryshev YV (2014) Role of endoplasmic reticulum stress in atherosclerosis and diabetic macrovascular complications. Biomed Res Int 2014:610140. https://doi.org/10.1155/2014/610140

    Article  PubMed  PubMed Central  Google Scholar 

  16. Civelek M, Manduchi E, Riley RJ, Stoeckert CJ Jr, Davies PF (2009) Chronic endoplasmic reticulum stress activates unfolded protein response in arterial endothelium in regions of susceptibility to atherosclerosis. Circ Res 105:453–461. https://doi.org/10.1161/CIRCRESAHA.109.203711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Myoishi M, Hao H, Minamino T, Watanabe K, Nishihira K, Hatakeyama K, Asada Y, Okada K, Ishibashi-Ueda H, Gabbiani G, Bochaton-Piallat ML, Mochizuki N, Kitakaze M (2007) Increased endoplasmic reticulum stress in atherosclerotic plaques associated with acute coronary syndrome. Circulation 116:1226–1233. https://doi.org/10.1161/CIRCULATIONAHA.106.682054

    Article  PubMed  Google Scholar 

  18. Zeng L, Zampetaki A, Margariti A, Pepe AE, Alam S, Martin D, Xiao Q, Wang W, Jin ZG, Cockerill G, Mori K, Li YS, Hu Y, Chien S, Xu Q (2009) Sustained activation of XBP1 splicing leads to endothelial apoptosis and atherosclerosis development in response to disturbed flow. Proc Natl Acad Sci USA 106:8326–8331. https://doi.org/10.1073/pnas.0903197106

    Article  PubMed  PubMed Central  Google Scholar 

  19. Werstuck GH, Khan MI, Femia G, Kim AJ, Tedesco V, Trigatti B, Shi Y (2006) Glucosamine-induced endoplasmic reticulum dysfunction is associated with accelerated atherosclerosis in a hyperglycemic mouse model. Diabetes 55:93–101

    Article  CAS  PubMed  Google Scholar 

  20. Abdullah A, Ravanan P (2018) The unknown face of IRE1alpha—beyond ER stress. Eur J Cell Biol 97:359–368. https://doi.org/10.1016/j.ejcb.2018.05.002

    Article  CAS  PubMed  Google Scholar 

  21. Tufanli O, Telkoparan Akillilar P, Acosta-Alvear D, Kocaturk B, Onat UI, Hamid SM, Cimen I, Walter P, Weber C, Erbay E (2017) Targeting IRE1 with small molecules counteracts progression of atherosclerosis. Proc Natl Acad Sci USA 114:E1395–E1404. https://doi.org/10.1073/pnas.1621188114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cloots E, Simpson MS, De Nolf C, Lencer WI, Janssens S, Grey MJ (2021) Evolution and function of the epithelial cell-specific ER stress sensor IRE1beta. Mucosal Immunol 14:1235–1246. https://doi.org/10.1038/s41385-021-00412-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Moncan M, Mnich K, Blomme A, Almanza A, Samali A, Gorman AM (2021) Regulation of lipid metabolism by the unfolded protein response. J Cell Mol Med 25:1359–1370. https://doi.org/10.1111/jcmm.16255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Iwawaki T, Akai R, Yamanaka S, Kohno K (2009) Function of IRE1 alpha in the placenta is essential for placental development and embryonic viability. Proc Natl Acad Sci USA 106:16657–16662. https://doi.org/10.1073/pnas.0903775106

    Article  PubMed  PubMed Central  Google Scholar 

  25. Tsuru A, Fujimoto N, Takahashi S, Saito M, Nakamura D, Iwano M, Iwawaki T, Kadokura H, Ron D, Kohno K (2013) Negative feedback by IRE1β optimizes mucin production in goblet cells. Proc Natl Acad Sci USA 110:2864–2869. https://doi.org/10.1073/pnas.1212484110

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8:519–529. https://doi.org/10.1038/nrm2199

    Article  CAS  PubMed  Google Scholar 

  27. Bashir S, Banday M, Qadri O, Bashir A, Hilal N, Nida IF, Rader S, Fazili KM (2021) The molecular mechanism and functional diversity of UPR signaling sensor IRE1. Life Sci 265:118740. https://doi.org/10.1016/j.lfs.2020.118740

    Article  CAS  PubMed  Google Scholar 

  28. Halbleib K, Pesek K, Covino R, Hofbauer HF, Wunnicke D, Hanelt I, Hummer G, Ernst R (2017) Activation of the unfolded protein response by lipid bilayer stress. Mol Cell 67:673-684 e678. https://doi.org/10.1016/j.molcel.2017.06.012

    Article  CAS  PubMed  Google Scholar 

  29. Amin-Wetzel N, Saunders RA, Kamphuis MJ, Rato C, Preissler S, Harding HP, Ron D (2017) A J-protein Co-chaperone recruits BiP to monomerize IRE1 and repress the unfolded protein response. Cell 171:1625-1637.e13. https://doi.org/10.1016/j.cell.2017.10.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Siwecka N, Rozpedek-Kaminska W, Wawrzynkiewicz A, Pytel D, Diehl JA, Majsterek I (2021) The Structure, activation and signaling of IRE1 and its role in determining cell fate. Biomedicines 9(2):156. https://doi.org/10.3390/biomedicines9020156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kopp MC, Larburu N, Durairaj V, Adams CJ, Ali MMU (2019) UPR proteins IRE1 and PERK switch BiP from chaperone to ER stress sensor. Nat Struct Mol Biol 26:1053–1062. https://doi.org/10.1038/s41594-019-0324-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Korennykh AV, Egea PF, Korostelev AA, Finer-Moore J, Zhang C, Shokat KM, Stroud RM, Walter P (2009) The unfolded protein response signals through high-order assembly of Ire1. Nature 457:687–693. https://doi.org/10.1038/nature07661

    Article  CAS  PubMed  Google Scholar 

  33. Calfon M, Zeng H, Urano F, Till JH, Hubbard SR, Harding HP, Clark SG, Ron D (2002) IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415:92–96. https://doi.org/10.1038/415092a

    Article  CAS  PubMed  Google Scholar 

  34. Walter P, Ron D (2011) The unfolded protein response: from stress pathway to homeostatic regulation. Science 334:1081–1086. https://doi.org/10.1126/science.1209038

    Article  CAS  PubMed  Google Scholar 

  35. Almanza A, Carlesso A, Chintha C, Creedican S, Doultsinos D, Leuzzi B, Luis A, McCarthy N, Montibeller L, More S, Papaioannou A, Puschel F, Sassano ML, Skoko J, Agostinis P, de Belleroche J, Eriksson LA, Fulda S, Gorman AM, Healy S, Kozlov A, Munoz-Pinedo C, Rehm M, Chevet E, Samali A (2019) Endoplasmic reticulum stress signaling—from basic mechanisms to clinical applications. FEBS J 286:241–278. https://doi.org/10.1111/febs.14608

    Article  CAS  PubMed  Google Scholar 

  36. Hollien J, Weissman JS (2006) Decay of endoplasmic reticulum-localized mRNAs during the unfolded protein response. Science 313:104–107. https://doi.org/10.1126/science.1129631

    Article  CAS  PubMed  Google Scholar 

  37. Hollien J, Lin JH, Li H, Stevens N, Walter P, Weissman JS (2009) Regulated Ire1-dependent decay of messenger RNAs in mammalian cells. J Cell Biol 186:323–331. https://doi.org/10.1083/jcb.200903014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Iurlaro R, Muñoz-Pinedo C (2016) Cell death induced by endoplasmic reticulum stress. Febs J 283:2640–2652. https://doi.org/10.1111/febs.13598

    Article  CAS  PubMed  Google Scholar 

  39. Maurel M, Chevet E, Tavernier J, Gerlo S (2014) Getting RIDD of RNA: IRE1 in cell fate regulation. Trends Biochem Sci 39:245–254. https://doi.org/10.1016/j.tibs.2014.02.008

    Article  CAS  PubMed  Google Scholar 

  40. Coelho DS, Domingos PM (2014) Physiological roles of regulated Ire1 dependent decay. Front Genet 5:76. https://doi.org/10.3389/fgene.2014.00076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. So JS (2018) Roles of endoplasmic reticulum stress in immune responses. Mol Cells 41:705–716. https://doi.org/10.14348/molcells.2018.0241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hu P, Han Z, Couvillon AD, Kaufman RJ, Exton JH (2006) Autocrine tumor necrosis factor alpha links endoplasmic reticulum stress to the membrane death receptor pathway through IRE1alpha-mediated NF-kappaB activation and down-regulation of TRAF2 expression. Mol Cell Biol 26:3071–3084. https://doi.org/10.1128/MCB.26.8.3071-3084.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Park SM, Kang TI, So JS (2021) Roles of XBP1s in transcriptional regulation of target genes. Biomedicines 9(7):791. https://doi.org/10.3390/biomedicines9070791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen Y, Wu Z, Huang S, Wang X, He S, Liu L, Hu Y, Chen L, Chen P, Liu S, He S, Shan B, Zheng L, Duan SZ, Song Z, Jiang L, Wang QA, Gan Z, Song BL, Liu J, Rui L, Shao M, Liu Y (2022) Adipocyte IRE1α promotes PGC1α mRNA decay and restrains adaptive thermogenesis. Nat Metab 4:1166–1184. https://doi.org/10.1038/s42255-022-00631-8

    Article  CAS  PubMed  Google Scholar 

  45. So JS, Hur KY, Tarrio M, Ruda V, Frank-Kamenetsky M, Fitzgerald K, Koteliansky V, Lichtman AH, Iwawaki T, Glimcher LH, Lee AH (2012) Silencing of lipid metabolism genes through IRE1alpha-mediated mRNA decay lowers plasma lipids in mice. Cell Metab 16:487–499. https://doi.org/10.1016/j.cmet.2012.09.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Steinberg D (2013) In celebration of the 100th anniversary of the lipid hypothesis of atherosclerosis. J Lipid Res 54:2946–2949. https://doi.org/10.1194/jlr.R043414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bays HE (2009) “Sick fat,” metabolic disease, and atherosclerosis. Am J Med 122:S26-37. https://doi.org/10.1016/j.amjmed.2008.10.015

    Article  CAS  PubMed  Google Scholar 

  48. Din-Dzietham R, Liu Y, Bielo MV, Shamsa F (2007) High blood pressure trends in children and adolescents in national surveys, 1963 to 2002. Circulation 116:1488–1496. https://doi.org/10.1161/circulationaha.106.683243

    Article  PubMed  Google Scholar 

  49. McGill HC Jr, McMahan CA, Herderick EE, Zieske AW, Malcom GT, Tracy RE, Strong JP (2002) Obesity accelerates the progression of coronary atherosclerosis in young men. Circulation 105:2712–2718. https://doi.org/10.1161/01.cir.0000018121.67607.ce

    Article  PubMed  Google Scholar 

  50. Henning RJ (2021) Obesity and obesity-induced inflammatory disease contribute to atherosclerosis: a review of the pathophysiology and treatment of obesity. Am J Cardiovasc Dis 11:504–529

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Csige I, Ujvarosy D, Szabo Z, Lorincz I, Paragh G, Harangi M, Somodi S (2018) The impact of obesity on the cardiovascular system. J Diabetes Res 2018:3407306. https://doi.org/10.1155/2018/3407306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gregor MF, Yang L, Fabbrini E, Mohammed BS, Eagon JC, Hotamisligil GS, Klein S (2009) Endoplasmic reticulum stress is reduced in tissues of obese subjects after weight loss. Diabetes 58:693–700. https://doi.org/10.2337/db08-1220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Boden G, Duan X, Homko C, Molina EJ, Song W, Perez O, Cheung P, Merali S (2008) Increase in endoplasmic reticulum stress-related proteins and genes in adipose tissue of obese, insulin-resistant individuals. Diabetes 57:2438–2444. https://doi.org/10.2337/db08-0604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Shan B, Wang X, Wu Y, Xu C, Xia Z, Dai J, Shao M, Zhao F, He S, Yang L, Zhang M, Nan F, Li J, Liu J, Liu J, Jia W, Qiu Y, Song B, Han JJ, Rui L, Duan SZ, Liu Y (2017) The metabolic ER stress sensor IRE1alpha suppresses alternative activation of macrophages and impairs energy expenditure in obesity. Nat Immunol 18:519–529. https://doi.org/10.1038/ni.3709

    Article  CAS  PubMed  Google Scholar 

  55. Oelkrug R, Polymeropoulos ET, Jastroch M (2015) Brown adipose tissue: physiological function and evolutionary significance. J Comp Physiol B 185:587–606. https://doi.org/10.1007/s00360-015-0907-7

    Article  CAS  PubMed  Google Scholar 

  56. Cedikova M, Kripnerova M, Dvorakova J, Pitule P, Grundmanova M, Babuska V, Mullerova D, Kuncova J (2016) Mitochondria in white, brown, and beige adipocytes. Stem Cells Int 2016:6067349. https://doi.org/10.1155/2016/6067349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Qian S, Huang H, Tang Q (2015) Brown and beige fat: the metabolic function, induction, and therapeutic potential. Front Med 9:162–172. https://doi.org/10.1007/s11684-015-0382-2

    Article  PubMed  Google Scholar 

  58. Dushay J, Chui PC, Gopalakrishnan GS, Varela-Rey M, Crawley M, Fisher FM, Badman MK, Martinez-Chantar ML, Maratos-Flier E (2010) Increased fibroblast growth factor 21 in obesity and nonalcoholic fatty liver disease. Gastroenterology 139:456–463. https://doi.org/10.1053/j.gastro.2010.04.054

    Article  CAS  PubMed  Google Scholar 

  59. Ong KL, Campbell S, Wu BJ, McClelland RL, Kokkinos J, Szklo M, Polak JF, Allison MA, Rye KA (2019) Relationship of fibroblast growth factor 21 with subclinical atherosclerosis and cardiovascular events: multi-ethnic study of atherosclerosis. Atherosclerosis 287:46–53. https://doi.org/10.1016/j.atherosclerosis.2019.06.898

    Article  CAS  PubMed  Google Scholar 

  60. Lin XL, He XL, Zeng JF, Zhang H, Zhao Y, Tan JK, Wang Z (2014) FGF21 increases cholesterol efflux by upregulating ABCA1 through the ERK1/2-PPARgamma-LXRalpha pathway in THP1 macrophage-derived foam cells. DNA Cell Biol 33:514–521. https://doi.org/10.1089/dna.2013.2290

    Article  CAS  PubMed  Google Scholar 

  61. Lei Z, Yang L, Yang Y, Yang J, Niu Z, Zhang X, Song Q, Lei Y, Wu H, Guo J (2020) Activation of Wnt/beta-catenin pathway causes insulin resistance and increases lipogenesis in HepG2 cells via regulation of endoplasmic reticulum stress. Biochem Biophys Res Commun 526:764–771. https://doi.org/10.1016/j.bbrc.2020.03.147

    Article  CAS  PubMed  Google Scholar 

  62. Bosquet A, Guaita-Esteruelas S, Saavedra P, Rodríguez-Calvo R, Heras M, Girona J, Masana L (2016) Exogenous FABP4 induces endoplasmic reticulum stress in HepG2 liver cells. Atherosclerosis 249:191–199. https://doi.org/10.1016/j.atherosclerosis.2016.04.012

    Article  CAS  PubMed  Google Scholar 

  63. Cabre A, Lazaro I, Girona J, Manzanares JM, Marimon F, Plana N, Heras M, Masana L (2008) Plasma fatty acid binding protein 4 is associated with atherogenic dyslipidemia in diabetes. J Lipid Res 49:1746–1751. https://doi.org/10.1194/jlr.M800102-JLR200

    Article  CAS  PubMed  Google Scholar 

  64. Marsch E, Sluimer JC, Daemen MJ (2013) Hypoxia in atherosclerosis and inflammation. Curr Opin Lipidol 24:393–400. https://doi.org/10.1097/MOL.0b013e32836484a4

    Article  CAS  PubMed  Google Scholar 

  65. Okamoto Y, Kihara S, Funahashi T, Matsuzawa Y, Libby P (2006) Adiponectin: a key adipocytokine in metabolic syndrome. Clin Sci (Lond) 110:267–278. https://doi.org/10.1042/CS20050182

    Article  CAS  PubMed  Google Scholar 

  66. Wang X, Chen Q, Pu H, Wei Q, Duan M, Zhang C, Jiang T, Shou X, Zhang J, Yang Y (2016) Adiponectin improves NF-kappaB-mediated inflammation and abates atherosclerosis progression in apolipoprotein E-deficient mice. Lipids Health Dis 15:33. https://doi.org/10.1186/s12944-016-0202-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Fujishima Y, Maeda N, Matsuda K, Masuda S, Mori T, Fukuda S, Sekimoto R, Yamaoka M, Obata Y, Kita S, Nishizawa H, Funahashi T, Ranscht B, Shimomura I (2017) Adiponectin association with T-cadherin protects against neointima proliferation and atherosclerosis. FASEB J 31:1571–1583. https://doi.org/10.1096/fj.201601064R

    Article  CAS  PubMed  Google Scholar 

  68. Christou GA, Kiortsis DN (2013) Adiponectin and lipoprotein metabolism. Obes Rev 14:939–949. https://doi.org/10.1111/obr.12064

    Article  CAS  PubMed  Google Scholar 

  69. Katsiki N, Mantzoros C, Mikhailidis DP (2017) Adiponectin, lipids and atherosclerosis. Curr Opin Lipidol 28:347–354. https://doi.org/10.1097/mol.0000000000000431

    Article  CAS  PubMed  Google Scholar 

  70. Guo Q, Jin S, Hu H, Zhou Y, Yan Y, Zong H, Wang Y, He H, Oh Y, Liu C, Gu N (2017) Hypoxia in 3T3-L1 adipocytes suppresses adiponectin expression via the PERK and IRE1 unfolded protein response. Biochem Biophys Res Commun 493:346–351. https://doi.org/10.1016/j.bbrc.2017.09.020

    Article  CAS  PubMed  Google Scholar 

  71. Hosogai N, Fukuhara A, Oshima K, Miyata Y, Tanaka S, Segawa K, Furukawa S, Tochino Y, Komuro R, Matsuda M, Shimomura I (2007) Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation. Diabetes 56:901–911. https://doi.org/10.2337/db06-0911

    Article  CAS  PubMed  Google Scholar 

  72. Ding W, Zhang X, Huang H, Ding N, Zhang S, Hutchinson SZ, Zhang X (2014) Adiponectin protects rat myocardium against chronic intermittent hypoxia-induced injury via inhibition of endoplasmic reticulum stress. PLoS ONE 9:e94545. https://doi.org/10.1371/journal.pone.0094545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lee YS, Kim JW, Osborne O, Oh DY, Sasik R, Schenk S, Chen A, Chung H, Murphy A, Watkins SM, Quehenberger O, Johnson RS, Olefsky JM (2014) Increased adipocyte O2 consumption triggers HIF-1alpha, causing inflammation and insulin resistance in obesity. Cell 157:1339–1352. https://doi.org/10.1016/j.cell.2014.05.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Karaflou M, Lambrinoudaki I, Christodoulakos G (2008) Apoptosis in atherosclerosis: a mini-review. Mini Rev Med Chem 8:912–918. https://doi.org/10.2174/138955708785132765

    Article  CAS  PubMed  Google Scholar 

  75. Duan H, Zhang Q, Liu J, Li R, Wang D, Peng W, Wu C (2021) Suppression of apoptosis in vascular endothelial cell, the promising way for natural medicines to treat atherosclerosis. Pharmacol Res 168:105599. https://doi.org/10.1016/j.phrs.2021.105599

    Article  CAS  PubMed  Google Scholar 

  76. Tabas I (2007) Apoptosis and efferocytosis in mouse models of atherosclerosis. Curr Drug Targets 8:1288–1296. https://doi.org/10.2174/138945007783220623

    Article  CAS  PubMed  Google Scholar 

  77. Van Herck JL, De Meyer GR, Martinet W, Bult H, Vrints CJ, Herman AG (2010) Proteasome inhibitor bortezomib promotes a rupture-prone plaque phenotype in ApoE-deficient mice. Basic Res Cardiol 105:39–50. https://doi.org/10.1007/s00395-009-0054-y

    Article  CAS  PubMed  Google Scholar 

  78. Guarnier LP, Romao PVM, Palozi RAC, Silva AO, Lorencone BR, Marques AAM, Dos Santos AC, Souza RIC, Souza KD, Lourenco ELB, Gasparotto Junior A (2019) Development of a predictive model to induce atherogenesis and hepato-renal impairment in female rats. Biomolecules 9(11):664. https://doi.org/10.3390/biom9110664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Paone S, Baxter AA, Hulett MD, Poon IKH (2019) Endothelial cell apoptosis and the role of endothelial cell-derived extracellular vesicles in the progression of atherosclerosis. Cell Mol Life Sci 76:1093–1106. https://doi.org/10.1007/s00018-018-2983-9

    Article  CAS  PubMed  Google Scholar 

  80. Logue SE, Cleary P, Saveljeva S, Samali A (2013) New directions in ER stress-induced cell death. Apoptosis 18:537–546. https://doi.org/10.1007/s10495-013-0818-6

    Article  PubMed  Google Scholar 

  81. Urano F, Wang X, Bertolotti A, Zhang Y, Chung P, Harding HP, Ron D (2000) Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287:664–666. https://doi.org/10.1126/science.287.5453.664

    Article  CAS  PubMed  Google Scholar 

  82. Thorp E, Li Y, Bao L, Yao PM, Kuriakose G, Rong J, Fisher EA, Tabas I (2009) Brief report: increased apoptosis in advanced atherosclerotic lesions of Apoe-/- mice lacking macrophage Bcl-2. Arterioscler Thromb Vasc Biol 29:169–172. https://doi.org/10.1161/ATVBAHA.108.176495

    Article  CAS  PubMed  Google Scholar 

  83. Arulananda S, Lee EF, Fairlie WD, John T (2021) The role of BCL-2 family proteins and therapeutic potential of BH3-mimetics in malignant pleural mesothelioma. Expert Rev Anticancer Ther 21:413–424. https://doi.org/10.1080/14737140.2021.1856660

    Article  CAS  PubMed  Google Scholar 

  84. Yamamoto K, Ichijo H, Korsmeyer SJ (1999) BCL-2 is phosphorylated and inactivated by an ASK1/Jun N-terminal protein kinase pathway normally activated at G(2)/M. Mol Cell Biol 19:8469–8478. https://doi.org/10.1128/MCB.19.12.8469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Maundrell K, Antonsson B, Magnenat E, Camps M, Muda M, Chabert C, Gillieron C, Boschert U, Vial-Knecht E, Martinou JC, Arkinstall S (1997) Bcl-2 undergoes phosphorylation by c-Jun N-terminal kinase/stress-activated protein kinases in the presence of the constitutively active GTP-binding protein Rac1. J Biol Chem 272:25238–25242. https://doi.org/10.1074/jbc.272.40.25238

    Article  CAS  PubMed  Google Scholar 

  86. Donovan N, Becker EB, Konishi Y, Bonni A (2002) JNK phosphorylation and activation of BAD couples the stress-activated signaling pathway to the cell death machinery. J Biol Chem 277:40944–40949. https://doi.org/10.1074/jbc.M206113200

    Article  CAS  PubMed  Google Scholar 

  87. Lei K, Davis RJ (2003) JNK phosphorylation of Bim-related members of the Bcl2 family induces Bax-dependent apoptosis. Proc Natl Acad Sci USA 100:2432–2437. https://doi.org/10.1073/pnas.0438011100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Noda T, Maeda K, Hayano S, Asai N, Enomoto A, Takahashi M, Murohara T (2015) New endoplasmic reticulum stress regulator, Gipie, regulates the survival of vascular smooth muscle cells and the neointima formation after vascular injury. Arterioscler Thromb Vasc Biol 35:1246–1253. https://doi.org/10.1161/ATVBAHA.114.304923

    Article  CAS  PubMed  Google Scholar 

  89. Matsushita E, Asai N, Enomoto A, Kawamoto Y, Kato T, Mii S, Maeda K, Shibata R, Hattori S, Hagikura M, Takahashi K, Sokabe M, Murakumo Y, Murohara T, Takahashi M (2011) Protective role of Gipie, a Girdin family protein, in endoplasmic reticulum stress responses in endothelial cells. Mol Biol Cell 22:736–747. https://doi.org/10.1091/mbc.E10-08-0724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Pedruzzi E, Guichard C, Ollivier V, Driss F, Fay M, Prunet C, Marie JC, Pouzet C, Samadi M, Elbim C, O’Dowd Y, Bens M, Vandewalle A, Gougerot-Pocidalo MA, Lizard G, Ogier-Denis E (2004) NAD(P)H oxidase Nox-4 mediates 7-ketocholesterol-induced endoplasmic reticulum stress and apoptosis in human aortic smooth muscle cells. Mol Cell Biol 24:10703–10717. https://doi.org/10.1128/MCB.24.24.10703-10717.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Sanson M, Auge N, Vindis C, Muller C, Bando Y, Thiers JC, Marachet MA, Zarkovic K, Sawa Y, Salvayre R, Negre-Salvayre A (2009) Oxidized low-density lipoproteins trigger endoplasmic reticulum stress in vascular cells: prevention by oxygen-regulated protein 150 expression. Circ Res 104:328–336. https://doi.org/10.1161/CIRCRESAHA.108.183749

    Article  CAS  PubMed  Google Scholar 

  92. Girona J, Rodríguez-Borjabad C, Ibarretxe D, Vallvé JC, Ferré R, Heras M, Rodríguez-Calvo R, Guaita-Esteruelas S, Martínez-Micaelo N, Plana N, Masana L (2019) The circulating GRP78/BiP is a marker of metabolic diseases and atherosclerosis: bringing endoplasmic reticulum stress into the clinical scenario. J Clin Med 8(11):1793. https://doi.org/10.3390/jcm8111793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Cao SS, Kaufman RJ (2014) Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease. Antioxid Redox Signal 21:396–413. https://doi.org/10.1089/ars.2014.5851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Gorman AM, Healy SJ, Jager R, Samali A (2012) Stress management at the ER: regulators of ER stress-induced apoptosis. Pharmacol Ther 134:306–316. https://doi.org/10.1016/j.pharmthera.2012.02.003

    Article  CAS  PubMed  Google Scholar 

  95. Liu M, Yu T, Li M, Fang X, Hou B, Liu G, Wang J (2020) Apoptosis repressor with caspase recruitment domain promotes cell proliferation and phenotypic modulation through 14–3-3epsilon/YAP signaling in vascular smooth muscle cells. J Mol Cell Cardiol 147:35–48. https://doi.org/10.1016/j.yjmcc.2020.08.003

    Article  CAS  PubMed  Google Scholar 

  96. Kolodgie FD, Narula J, Burke AP, Haider N, Farb A, Hui-Liang Y, Smialek J, Virmani R (2000) Localization of apoptotic macrophages at the site of plaque rupture in sudden coronary death. Am J Pathol 157:1259–1268. https://doi.org/10.1016/S0002-9440(10)64641-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sarai M, Hartung D, Petrov A, Zhou J, Narula N, Hofstra L, Kolodgie F, Isobe S, Fujimoto S, Vanderheyden JL, Virmani R, Reutelingsperger C, Wong ND, Gupta S, Narula J (2007) Broad and specific caspase inhibitor-induced acute repression of apoptosis in atherosclerotic lesions evaluated by radiolabeled annexin A5 imaging. J Am Coll Cardiol 50:2305–2312. https://doi.org/10.1016/j.jacc.2007.08.044

    Article  CAS  PubMed  Google Scholar 

  98. Upton JP, Wang L, Han D, Wang ES, Huskey NE, Lim L, Truitt M, McManus MT, Ruggero D, Goga A, Papa FR, Oakes SA (2012) IRE1alpha cleaves select microRNAs during ER stress to derepress translation of proapoptotic Caspase-2. Science 338:818–822. https://doi.org/10.1126/science.1226191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wei MC, Zong WX, Cheng EH, Lindsten T, Panoutsakopoulou V, Ross AJ, Roth KA, MacGregor GR, Thompson CB, Korsmeyer SJ (2001) Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292:727–730. https://doi.org/10.1126/science.1059108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Tsukano H, Gotoh T, Endo M, Miyata K, Tazume H, Kadomatsu T, Yano M, Iwawaki T, Kohno K, Araki K, Mizuta H, Oike Y (2010) The endoplasmic reticulum stress-C/EBP homologous protein pathway-mediated apoptosis in macrophages contributes to the instability of atherosclerotic plaques. Arterioscler Thromb Vasc Biol 30:1925–1932. https://doi.org/10.1161/atvbaha.110.206094

    Article  CAS  PubMed  Google Scholar 

  101. Tian PG, Jiang ZX, Li JH, Zhou Z, Zhang QH (2015) Spliced XBP1 promotes macrophage survival and autophagy by interacting with Beclin-1. Biochem Biophys Res Commun 463:518–523. https://doi.org/10.1016/j.bbrc.2015.05.061

    Article  CAS  PubMed  Google Scholar 

  102. Bi X, He X, Xu M, Zhao M, Yu X, Lu X, Zang W (2015) Acetylcholine ameliorates endoplasmic reticulum stress in endothelial cells after hypoxia/reoxygenation via M3 AChR-AMPK signaling. Cell Cycle 14:2461–2472. https://doi.org/10.1080/15384101.2015.1060383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Heidary Moghaddam R, Samimi Z, Asgary S, Mohammadi P, Hozeifi S, Hoseinzadeh-Chahkandak F, Xu S, Farzaei MH (2021) Natural AMPK activators in cardiovascular disease prevention. Front Pharmacol 12:738420. https://doi.org/10.3389/fphar.2021.738420

    Article  CAS  PubMed  Google Scholar 

  104. Libby P (2021) Inflammation in atherosclerosis-no longer a theory. Clin Chem 67:131–142. https://doi.org/10.1093/clinchem/hvaa275

    Article  PubMed  Google Scholar 

  105. Kong P, Cui ZY, Huang XF, Zhang DD, Guo RJ, Han M (2022) Inflammation and atherosclerosis: signaling pathways and therapeutic intervention. Signal Transduct Target Ther 7:131. https://doi.org/10.1038/s41392-022-00955-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Mohan S, Brown L, Ayyappan P (2019) Endoplasmic reticulum stress: a master regulator of metabolic syndrome. Eur J Pharmacol 860:172553. https://doi.org/10.1016/j.ejphar.2019.172553

    Article  CAS  PubMed  Google Scholar 

  107. Gargalovic PS, Gharavi NM, Clark MJ, Pagnon J, Yang WP, He A, Truong A, Baruch-Oren T, Berliner JA, Kirchgessner TG, Lusis AJ (2006) The unfolded protein response is an important regulator of inflammatory genes in endothelial cells. Arterioscler Thromb Vasc Biol 26:2490–2496. https://doi.org/10.1161/01.ATV.0000242903.41158.a1

    Article  CAS  PubMed  Google Scholar 

  108. Gargalovic PS, Imura M, Zhang B, Gharavi NM, Clark MJ, Pagnon J, Yang WP, He A, Truong A, Patel S, Nelson SF, Horvath S, Berliner JA, Kirchgessner TG, Lusis AJ (2006) Identification of inflammatory gene modules based on variations of human endothelial cell responses to oxidized lipids. Proc Natl Acad Sci USA 103:12741–12746. https://doi.org/10.1073/pnas.0605457103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Deng J, Lu PD, Zhang Y, Scheuner D, Kaufman RJ, Sonenberg N, Harding HP, Ron D (2004) Translational repression mediates activation of nuclear factor kappa B by phosphorylated translation initiation factor 2. Mol Cell Biol 24:10161–10168. https://doi.org/10.1128/MCB.24.23.10161-10168.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Sun S, Ji Z, Fu J, Wang XF, Zhang LS (2020) Endosulfan induces endothelial inflammation and dysfunction via IRE1alpha/NF-kappaB signaling pathway. Environ Sci Pollut Res Int 27:26163–26171. https://doi.org/10.1007/s11356-020-09023-5

    Article  CAS  PubMed  Google Scholar 

  111. Hotamisligil GS, Erbay E (2008) Nutrient sensing and inflammation in metabolic diseases. Nat Rev Immunol 8:923–934. https://doi.org/10.1038/nri2449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Yu J, Ming H, Li HY, Yu B, Chu M, Zhu H, Zhu X (2019) IMM-H007, a novel small molecule inhibitor for atherosclerosis, represses endothelium inflammation by regulating the activity of NF-kappaB and JNK/AP1 signaling. Toxicol Appl Pharmacol 381:114732. https://doi.org/10.1016/j.taap.2019.114732

    Article  CAS  PubMed  Google Scholar 

  113. Foley KP, Chen Y, Barra NG, Heal M, Kwok K, Tamrakar AK, Chi W, Duggan BM, Henriksbo BD, Liu Y, Schertzer JD (2021) Inflammation promotes adipocyte lipolysis via IRE1 kinase. J Biol Chem 296:100440. https://doi.org/10.1016/j.jbc.2021.100440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Barrett TJ (2020) Macrophages in atherosclerosis regression. Arterioscler Thromb Vasc Biol 40:20–33. https://doi.org/10.1161/ATVBAHA.119.312802

    Article  CAS  PubMed  Google Scholar 

  115. Menegaut L, Jalil A, Thomas C, Masson D (2019) Macrophage fatty acid metabolism and atherosclerosis: the rise of PUFAs. Atherosclerosis 291:52–61. https://doi.org/10.1016/j.atherosclerosis.2019.10.002

    Article  CAS  PubMed  Google Scholar 

  116. Feingold KR, Shigenaga JK, Kazemi MR, McDonald CM, Patzek SM, Cross AS, Moser A, Grunfeld C (2012) Mechanisms of triglyceride accumulation in activated macrophages. J Leukoc Biol 92:829–839. https://doi.org/10.1189/jlb.1111537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Leitinger N, Schulman IG (2013) Phenotypic polarization of macrophages in atherosclerosis. Arterioscler Thromb Vasc Biol 33:1120–1126. https://doi.org/10.1161/ATVBAHA.112.300173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Sharma N, Lu Y, Zhou G, Liao X, Kapil P, Anand P, Mahabeleshwar GH, Stamler JS, Jain MK (2012) Myeloid Kruppel-like factor 4 deficiency augments atherogenesis in ApoE-/- mice–brief report. Arterioscler Thromb Vasc Biol 32:2836–2838. https://doi.org/10.1161/ATVBAHA.112.300471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Xu X, Liu S, Aodengqimuge WH, Hu M, Xing C, Song L (2017) Arsenite induces vascular endothelial cell dysfunction by activating IRE1alpha/XBP1s/HIF1alpha-dependent ANGII signaling. Toxicol Sci 160:315–328. https://doi.org/10.1093/toxsci/kfx184

    Article  CAS  PubMed  Google Scholar 

  120. Zhang L, Wei J, Ren L, Zhang J, Wang J, Jing L, Yang M, Yu Y, Sun Z, Zhou X (2017) Endosulfan induces autophagy and endothelial dysfunction via the AMPK/mTOR signaling pathway triggered by oxidative stress. Environ Pollut 220:843–852. https://doi.org/10.1016/j.envpol.2016.10.067

    Article  CAS  PubMed  Google Scholar 

  121. Ellinsworth DC (2015) Arsenic, reactive oxygen, and endothelial dysfunction. J Pharmacol Exp Ther 353:458–464. https://doi.org/10.1124/jpet.115.223289

    Article  CAS  PubMed  Google Scholar 

  122. Henriquez-Hernandez LA, Luzardo OP, Zumbado M, Serra-Majem L, Valeron PF, Camacho M, Alvarez-Perez J, Salas-Salvado J, Boada LD (2017) Determinants of increasing serum POPs in a population at high risk for cardiovascular disease. Results from the PREDIMED-CANARIAS study. Environ Res 156:477–484. https://doi.org/10.1016/j.envres.2017.03.053

    Article  CAS  PubMed  Google Scholar 

  123. Lusis AJ (2000) Atherosclerosis. Nature 407:233–241. https://doi.org/10.1038/35025203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Li H, Liu S, Hu Y, Zhao B, Sun Y, Xu D (2020) Endosulfan promotes cell migration via PTP4A3-mediated signaling pathways in HUVECs. Ecotoxicol Environ Saf 192:110267. https://doi.org/10.1016/j.ecoenv.2020.110267

    Article  CAS  PubMed  Google Scholar 

  125. Meares GP, Hughes KJ, Naatz A, Papa FR, Urano F, Hansen PA, Benveniste EN, Corbett JA (2011) IRE1-dependent activation of AMPK in response to nitric oxide. Mol Cell Biol 31:4286–4297. https://doi.org/10.1128/mcb.05668-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Chistiakov DA, Melnichenko AA, Myasoedova VA, Grechko AV, Orekhov AN (2017) Mechanisms of foam cell formation in atherosclerosis. J Mol Med (Berl) 95:1153–1165. https://doi.org/10.1007/s00109-017-1575-8

    Article  CAS  PubMed  Google Scholar 

  127. Chistiakov DA, Orekhov AN, Bobryshev YV (2015) Endothelial barrier and its abnormalities in cardiovascular disease. Front Physiol 6:365. https://doi.org/10.3389/fphys.2015.00365

    Article  PubMed  PubMed Central  Google Scholar 

  128. Lao KH, Zeng L, Xu Q (2015) Endothelial and smooth muscle cell transformation in atherosclerosis. Curr Opin Lipidol 26:449–456. https://doi.org/10.1097/MOL.0000000000000219

    Article  CAS  PubMed  Google Scholar 

  129. Cho YM, Kim DH, Lee KH, Jeong SW, Kwon OJ (2018) The IRE1alpha-XBP1s pathway promotes insulin-stimulated glucose uptake in adipocytes by increasing PPARgamma activity. Exp Mol Med 50:1–15. https://doi.org/10.1038/s12276-018-0131-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Miller YI, Choi SH, Fang L, Tsimikas S (2010) Lipoprotein modification and macrophage uptake: role of pathologic cholesterol transport in atherogenesis. Subcell Biochem 51:229–251. https://doi.org/10.1007/978-90-481-8622-8_8

    Article  CAS  PubMed  Google Scholar 

  131. Yao S, Yang N, Song G, Sang H, Tian H, Miao C, Zhang Y, Qin S (2012) Minimally modified low-density lipoprotein induces macrophage endoplasmic reticulum stress via toll-like receptor 4. Biochim Biophys Acta 1821:954–963. https://doi.org/10.1016/j.bbalip.2012.03.003

    Article  CAS  PubMed  Google Scholar 

  132. Yao S, Miao C, Tian H, Sang H, Yang N, Jiao P, Han J, Zong C, Qin S (2014) Endoplasmic reticulum stress promotes macrophage-derived foam cell formation by up-regulating cluster of differentiation 36 (CD36) expression. J Biol Chem 289:4032–4042. https://doi.org/10.1074/jbc.M113.524512

    Article  CAS  PubMed  Google Scholar 

  133. Westerterp M, Fotakis P, Ouimet M, Bochem AE, Zhang H, Molusky MM, Wang W, Abramowicz S, la Bastide-van GS, Wang N, Welch CL, Reilly MP, Stroes ES, Moore KJ, Tall AR (2018) Cholesterol efflux pathways suppress inflammasome activation, NETosis, and atherogenesis. Circulation 138:898–912. https://doi.org/10.1161/CIRCULATIONAHA.117.032636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Yvan-Charvet L, Ranalletta M, Wang N, Han S, Terasaka N, Li R, Welch C, Tall AR (2007) Combined deficiency of ABCA1 and ABCG1 promotes foam cell accumulation and accelerates atherosclerosis in mice. J Clin Invest 117:3900–3908. https://doi.org/10.1172/JCI33372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Hansmeier N, Buttigieg J, Kumar P, Pelle S, Choi KY, Kopriva D, Chao TC (2018) Identification of mature atherosclerotic plaque proteome signatures using data-independent acquisition mass spectrometry. J Proteome Res 17:164–176. https://doi.org/10.1021/acs.jproteome.7b00487

    Article  CAS  PubMed  Google Scholar 

  136. Yildirim Z, Baboo S, Hamid SM, Dogan AE, Tufanli O, Robichaud S, Emerton C, Diedrich JK, Vatandaslar H, Nikolos F, Gu Y, Iwawaki T, Tarling E, Ouimet M, Nelson DL, Yates JR 3rd, Walter P, Erbay E (2022) Intercepting IRE1 kinase-FMRP signaling prevents atherosclerosis progression. EMBO Mol Med 14:e15344. https://doi.org/10.15252/emmm.202115344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Najafi-Shoushtari SH (2011) MicroRNAs in cardiometabolic disease. Curr Atheroscler Rep 13:202–207. https://doi.org/10.1007/s11883-011-0179-y

    Article  CAS  PubMed  Google Scholar 

  138. Cakmak HA, Demir M (2020) MicroRNA and cardiovascular diseases. Balkan Med J 37:60–71. https://doi.org/10.4274/balkanmedj.galenos.2020.2020.1.94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Silva D, Carneiro FD, Almeida KC, Fernandes-Santos C (2018) Role of miRNAs on the pathophysiology of cardiovascular diseases. Arq Bras Cardiol 111:738–746. https://doi.org/10.5935/abc.20180215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Chen KC, Juo SH (2012) MicroRNAs in atherosclerosis. Kaohsiung J Med Sci 28:631–640. https://doi.org/10.1016/j.kjms.2012.04.001

    Article  CAS  PubMed  Google Scholar 

  141. Qiu Y, Xu J, Yang L, Zhao G, Ding J, Chen Q, Zhang N, Yang R, Wang J, Li S, Zhang L (2021) MiR-375 silencing attenuates pro-inflammatory macrophage response and foam cell formation by targeting KLF4. Exp Cell Res 400:112507. https://doi.org/10.1016/j.yexcr.2021.112507

    Article  CAS  PubMed  Google Scholar 

  142. Lu Y, Thavarajah T, Gu W, Cai J, Xu Q (2018) Impact of miRNA in atherosclerosis. Arterioscler Thromb Vasc Biol 38:e159–e170. https://doi.org/10.1161/ATVBAHA.118.310227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Hamid SM, Citir M, Terzi EM, Cimen I, Yildirim Z, Dogan AE, Kocaturk B, Onat UI, Arditi M, Weber C, Traynor-Kaplan A, Schultz C, Erbay E (2020) Inositol-requiring enzyme-1 regulates phosphoinositide signaling lipids and macrophage growth. EMBO Rep 21:e51462. https://doi.org/10.15252/embr.202051462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Hong D, Bai YP, Gao HC, Wang X, Li LF, Zhang GG, Hu CP (2014) Ox-LDL induces endothelial cell apoptosis via the LOX-1-dependent endoplasmic reticulum stress pathway. Atherosclerosis 235:310–317. https://doi.org/10.1016/j.atherosclerosis.2014.04.028

    Article  CAS  PubMed  Google Scholar 

  145. Cimen I, Kocaturk B, Koyuncu S, Tufanli O, Onat UI, Yildirim AD, Apaydin O, Demirsoy S, Aykut ZG, Nguyen UT, Watkins SM, Hotamisligil GS, Erbay E (2016) Prevention of atherosclerosis by bioactive palmitoleate through suppression of organelle stress and inflammasome activation. Sci Transl Med 8:358ra126. https://doi.org/10.1126/scitranslmed.aaf9087

    Article  CAS  PubMed  Google Scholar 

  146. Choi SK, Lim M, Yeon SI, Lee YH (2016) Inhibition of endoplasmic reticulum stress improves coronary artery function in type 2 diabetic mice. Exp Physiol 101:768–777. https://doi.org/10.1113/EP085508

    Article  CAS  PubMed  Google Scholar 

  147. Sonoki H, Sato T, Endo S, Matsunaga T, Yamaguchi M, Yamazaki Y, Sugatani J, Ikari A (2015) Quercetin decreases Claudin-2 expression mediated by up-regulation of microRNA miR-16 in lung adenocarcinoma A549 Cells. Nutrients 7:4578–4592. https://doi.org/10.3390/nu7064578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Yao S, Sang H, Song G, Yang N, Liu Q, Zhang Y, Jiao P, Zong C, Qin S (2012) Quercetin protects macrophages from oxidized low-density lipoprotein-induced apoptosis by inhibiting the endoplasmic reticulum stress-C/EBP homologous protein pathway. Exp Biol Med (Maywood) 237:822–831. https://doi.org/10.1258/ebm.2012.012027

    Article  PubMed  Google Scholar 

  149. Bouchecareilh M, Higa A, Fribourg S, Moenner M, Chevet E (2011) Peptides derived from the bifunctional kinase/RNase enzyme IRE1alpha modulate IRE1alpha activity and protect cells from endoplasmic reticulum stress. FASEB J 25:3115–3129. https://doi.org/10.1096/fj.11-182931

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Hunan Provincial Natural Science Foundation of China (2021JJ30602), A Project Supported by Scientific Research Fund of Hunan Provincial Education Department (21A0283, 19B478), and Hunan Provincial College Students Research Study and Innovative Experiment Project (2022-3039, 2022-3042, 2022-3205, 2022-3206).

Author information

Authors and Affiliations

Authors

Contributions

LH, Z-YZ and LW conceived the theme. Z-YZ, Y-FL wrote original manuscript draft and performed the literature search. Z-YZ and LH involved in preparation of figures. M-YT, J-YT, LL, B-BN and Z-KZ supervised manuscript critically and gave some good suggestions. Z-YZ, LH and Y-QD revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Liang Huang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Human and animal rights statements

This article does not contain description of studies with the involvement of humans or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, ZY., Wu, L., Liu, YF. et al. IRE1α: from the function to the potential therapeutic target in atherosclerosis. Mol Cell Biochem 479, 1079–1092 (2024). https://doi.org/10.1007/s11010-023-04780-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-023-04780-6

Keywords

Navigation