Skip to main content

Advertisement

Log in

Proteasome inhibitor bortezomib promotes a rupture-prone plaque phenotype in ApoE-deficient mice

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

The ubiquitin–proteasome system is involved in the development and progression of atherosclerosis. The aim of this study was to investigate whether plaque composition is affected by proteasome function. In vitro, the potent and selective proteasome inhibitor bortezomib induced apoptosis in both cultured smooth muscle cells (SMCs) and activated macrophages. This effect was associated with increased expression of C/EBP homologous protein and cleavage of caspase-12, indicative of endoplasmic reticulum stress. The sensitivity to the proapoptotic effects of proteasome inhibition correlated with the protein synthesis rate. Proteasome inhibition in explanted atherosclerotic plaques of ApoE-deficient mice resulted in a significant decrease in SMCs and macrophages, indicating that both cell types in the atherosclerotic plaque were susceptible to the proapoptotic effects of proteasome inhibition. In vivo proteasome inhibition in ApoE-deficient mice did not affect plaque size or composition of early atherosclerotic plaques, but resulted in a significant decrease in collagen content as well as a significant enlargement of the necrotic core in advanced atherosclerotic plaques. In conclusion, our results indicate that an impaired proteasome function promotes features of a more rupture-prone plaque phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Adams J, Palombella VJ, Sausville EA, Johnson J, Destree A, Lazarus DD, Maas J, Pien CS, Prakash S, Elliott PJ (1999) Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res 59:2615–2622

    CAS  PubMed  Google Scholar 

  2. Arpinati M, Chirumbolo G, Nicolini B, Agostinelli C, Rondelli D (2009) Selective apoptosis of monocytes and monocyte-derived DCs induced by bortezomib (Velcade). Bone Marrow Transpl 43:253–259

    Article  CAS  Google Scholar 

  3. Chade AR, Herrmann J, Zhu X, Krier JD, Lerman A, Lerman LO (2005) Effects of proteasome inhibition on the kidney in experimental hypercholesterolemia. J Am Soc Nephrol 16:1005–1012

    Article  CAS  PubMed  Google Scholar 

  4. Chauhan D, Singh A, Brahmandam M, Podar K, Hideshima T, Richardson P, Munshi N, Palladino MA, Anderson KC (2008) Combination of proteasome inhibitors bortezomib and NPI-0052 trigger in vivo synergistic cytotoxicity in multiple myeloma. Blood 111:1654–1664

    Article  CAS  PubMed  Google Scholar 

  5. Clarke MC, Figg N, Maguire JJ, Davenport AP, Goddard M, Littlewood TD, Bennett MR (2006) Apoptosis of vascular smooth muscle cells induces features of plaque vulnerability in atherosclerosis. Nat Med 12:1075–1080

    Article  CAS  PubMed  Google Scholar 

  6. Croons V, Martinet W, Herman AG, De Meyer GRY (2008) Differential effect of the protein synthesis inhibitors puromycin and cycloheximide on vascular smooth muscle cell viability. J Pharmacol Exp Ther 325:824–832

    Article  CAS  PubMed  Google Scholar 

  7. Cusack JC Jr, Liu R, Houston M, Abendroth K, Elliott PJ, Adams J, Baldwin AS Jr (2001) Enhanced chemosensitivity to CPT-11 with proteasome inhibitor PS-341: implications for systemic nuclear factor-kappaB inhibition. Cancer Res 61:3535–3540

    CAS  PubMed  Google Scholar 

  8. Cusack JC Jr, Liu R, Houston M, Abendroth K, Elliott PJ, Adams J, Baldwin AS Jr (2001) Enhanced Chemosensitivity to CPT-11 with proteasome inhibitor PS-341: implications for systemic nuclear factor-{{kappa}}B Inhibition. Cancer Res 61:3535–3540

    CAS  PubMed  Google Scholar 

  9. De Meyer GRY, Van Put DJM, Kockx MM, Van Schil P, Bosmans R, Bult H, Buyssens N, Vanmaele R, Herman AG (1997) Possible mechanisms of collar-induced intimal thickening. Arterioscler Thromb Vasc Biol 17:1924–1930

    PubMed  Google Scholar 

  10. Di Filippo C, Marfella R, D’Amico M (2008) Possible dual role of ubiquitin–proteasome system in the atherosclerotic plaque progression. J Am Coll Cardiol 52:1350–1351

    Article  PubMed  Google Scholar 

  11. Dwivedi A, Sala-Newby GB, George SJ (2008) Regulation of cell-matrix contacts and beta-catenin signaling in VSMC by integrin-linked kinase: implications for intimal thickening. Basic Res Cardiol 103:244–256

    Article  CAS  PubMed  Google Scholar 

  12. Gautier EL, Huby T, Witztum JL, Ouzilleau B, Miller ER, Saint-Charles F, Aucouturier P, Chapman MJ, Lesnik P (2009) Macrophage apoptosis exerts divergent effects on atherogenesis as a function of lesion stage. Circulation 119:1795–1804

    Article  CAS  PubMed  Google Scholar 

  13. Glickman MH, Ciechanover A (2002) The ubiquitin–proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82:373–428

    CAS  PubMed  Google Scholar 

  14. Herrmann J, Edwards WD, Holmes DR Jr, Shogren KL, Lerman LO, Ciechanover A, Lerman A (2002) Increased ubiquitin immunoreactivity in unstable atherosclerotic plaques associated with acute coronary syndromes. J Am Coll Cardiol 40:1919–1927

    Article  CAS  PubMed  Google Scholar 

  15. Herrmann J, Saguner AM, Versari D, Peterson TE, Chade A, Olson M, Lerman LO, Lerman A (2007) Chronic proteasome inhibition contributes to coronary atherosclerosis. Circ Res 101:865–874

    Article  CAS  PubMed  Google Scholar 

  16. Herrmann J, Soares SM, Lerman LO, Lerman A (2008) Potential role of the ubiquitin–proteasome system in atherosclerosis: aspects of a protein quality disease. J Am Coll Cardiol 51:2003–2010

    Article  CAS  PubMed  Google Scholar 

  17. Hideshima T, Chauhan D, Richardson P, Mitsiades C, Mitsiades N, Hayashi T, Munshi N, Dang L, Castro A, Palombella V, Adams J, Anderson KC (2002) NF-kappa B as a therapeutic target in multiple myeloma. J Biol Chem 277:16639–16647

    Article  CAS  PubMed  Google Scholar 

  18. Kamat AM, Karashima T, Davis DW, Lashinger L, Bar-Eli M, Millikan R, Shen Y, Dinney CP, McConkey DJ (2004) The proteasome inhibitor bortezomib synergizes with gemcitabine to block the growth of human 253JB-V bladder tumors in vivo. Mol Cancer Ther 3:279–290

    CAS  PubMed  Google Scholar 

  19. Kim SC, Rho MC, Lee HS, Kim YK, Kim K (2003) Caspase-3-dependent apoptosis in vascular smooth muscle cell by proteasome inhibition. J Cardiovasc Pharmacol 42:554–560

    Article  CAS  PubMed  Google Scholar 

  20. Laufer EM, Reutelingsperger CP, Narula J, Hofstra L (2008) Annexin A5: an imaging biomarker of cardiovascular risk. Basic Res Cardiol 103:95–104

    Article  CAS  PubMed  Google Scholar 

  21. LeBlanc R, Catley LP, Hideshima T, Lentzsch S, Mitsiades CS, Mitsiades N, Neuberg D, Goloubeva O, Pien CS, Adams J, Gupta D, Richardson PG, Munshi NC, Anderson KC (2002) Proteasome inhibitor PS-341 inhibits human myeloma cell growth in vivo and prolongs survival in a murine model. Cancer Res 62:4996–5000

    CAS  PubMed  Google Scholar 

  22. Lowik CW, Alblas MJ, van de Ruit M, Papapoulos SE, van der Pluijm G (1993) Quantification of adherent and nonadherent cells cultured in 96-well plates using the supravital stain neutral red. Anal Biochem 213:426–433

    Article  CAS  PubMed  Google Scholar 

  23. Marfella R, D’Amico M, Di Filippo C, Baldi A, Siniscalchi M, Sasso FC, Portoghese M, Carbonara O, Crescenzi B, Sangiuolo P, Nicoletti GF, Rossiello R, Ferraraccio F, Cacciapuoti F, Verza M, Coppola L, Rossi F, Paolisso G (2006) Increased activity of the ubiquitin–proteasome system in patients with symptomatic carotid disease is associated with enhanced inflammation and may destabilize the atherosclerotic plaque: effects of rosiglitazone treatment. J Am Coll Cardiol 47:2444–2455

    Article  CAS  PubMed  Google Scholar 

  24. Marfella R, D’Amico M, Esposito K, Baldi A, Di Filippo C, Siniscalchi M, Sasso FC, Portoghese M, Cirillo F, Cacciapuoti F, Carbonara O, Crescenzi B, Baldi F, Ceriello A, Nicoletti GF, D’Andrea F, Verza M, Coppola L, Rossi F, Giugliano D (2006) The ubiquitin–proteasome system and inflammatory activity in diabetic atherosclerotic plaques: effects of rosiglitazone treatment. Diabetes 55:622–632

    Article  CAS  PubMed  Google Scholar 

  25. Martinet W, De Bie M, Schrijvers DM, De Meyer GRY, Herman AG, Kockx MM (2004) 7-Ketocholesterol induces protein ubiquitination, myelin figure formation, and light chain 3 processing in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 24:2296–2301

    Article  CAS  PubMed  Google Scholar 

  26. Meiners S, Laule M, Rother W, Guenther C, Prauka I, Muschick P, Baumann G, Kloetzel PM, Stangl K (2002) Ubiquitin–proteasome pathway as a new target for the prevention of restenosis. Circulation 105:483–489

    Article  CAS  PubMed  Google Scholar 

  27. Meiners S, Ludwig A, Lorenz M, Dreger H, Baumann G, Stangl V, Stangl K (2006) Nontoxic proteasome inhibition activates a protective antioxidant defense response in endothelial cells. Free Radic Biol Med 40:2232–2241

    Article  CAS  PubMed  Google Scholar 

  28. Meister S, Schubert U, Neubert K, Herrmann K, Burger R, Gramatzki M, Hahn S, Schreiber S, Wilhelm S, Herrmann M, Jack HM, Voll RE (2007) Extensive immunoglobulin production sensitizes myeloma cells for proteasome inhibition. Cancer Res 67:1783–1792

    Article  CAS  PubMed  Google Scholar 

  29. Myoishi M, Hao H, Minamino T, Watanabe K, Nishihira K, Hatakeyama K, Asada Y, Okada K-i, Ishibashi-Ueda H, Gabbiani G, Bochaton-Piallat M-L, Mochizuki N, Kitakaze M (2007) Increased endoplasmic reticulum stress in atherosclerotic plaques associated with acute coronary syndrome. Circulation 116:1226–1233

    Article  PubMed  Google Scholar 

  30. Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA, Yuan J (2000) Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403:98–103

    Article  CAS  PubMed  Google Scholar 

  31. Nathans D (1964) Puromycin inhibition of protein synthesis: incorporation of puromycin into peptide chains. Proc Natl Acad Sci USA 51:585–592

    Article  CAS  PubMed  Google Scholar 

  32. Nawrocki ST, Bruns CJ, Harbison MT, Bold RJ, Gotsch BS, Abbruzzese JL, Elliott P, Adams J, McConkey DJ (2002) Effects of the proteasome inhibitor PS-341 on apoptosis and angiogenesis in orthotopic human pancreatic tumor xenografts. Mol Cancer Ther 1:1243–1253

    CAS  PubMed  Google Scholar 

  33. Neubert K, Meister S, Moser K, Weisel F, Maseda D, Amann K, Wiethe C, Winkler TH, Kalden JR, Manz RA, Voll RE (2008) The proteasome inhibitor bortezomib depletes plasma cells and protects mice with lupus-like disease from nephritis. Nat Med 14:748–755

    Article  CAS  PubMed  Google Scholar 

  34. Obeng EA, Carlson LM, Gutman DM, Harrington WJ Jr, Lee KP, Boise LH (2006) Proteasome inhibitors induce a terminal unfolded protein response in multiple myeloma cells. Blood 107:4907–4916

    Article  CAS  PubMed  Google Scholar 

  35. Palombella VJ, Rando OJ, Goldberg AL, Maniatis T (1994) The ubiquitin–proteasome pathway is required for processing the NF-kappa B1 precursor protein and the activation of NF-kappa B. Cell 78:773–785

    Article  CAS  PubMed  Google Scholar 

  36. Schrijvers DM, De Meyer GRY, Kockx MM, Herman AG, Martinet W (2005) Phagocytosis of apoptotic cells by macrophages is impaired in atherosclerosis. Arterioscler Thromb Vasc Biol 25:1256–1261

    Article  CAS  PubMed  Google Scholar 

  37. Seimon T, Tabas I (2009) Mechanisms and consequences of macrophage apoptosis in atherosclerosis. J Lipid Res 50:S382–387

    Article  PubMed  Google Scholar 

  38. Seimon TA, Obstfeld A, Moore KJ, Golenbock DT, Tabas I (2006) Combinatorial pattern recognition receptor signaling alters the balance of life and death in macrophages. Proc Natl Acad Sci USA 103:19794–19799

    Article  CAS  PubMed  Google Scholar 

  39. Stangl V, Lorenz M, Meiners S, Ludwig A, Bartsch C, Moobed M, Vietzke A, Kinkel H-T, Baumann G, Stangl K (2004) Long-term up-regulation of eNOS and improvement of endothelial function by inhibition of the ubiquitin–proteasome pathway. FASEB J 18:272–279

    Article  CAS  PubMed  Google Scholar 

  40. Sunwoo JB, Chen Z, Dong G, Yeh N, Bancroft CC, Sausville E, Adams J, Elliott P, Van Waes C (2001) Novel proteasome inhibitor PS-341 inhibits activation of nuclear factor-kappaB, cell survival, tumor growth, and angiogenesis in squamous cell carcinoma. Clin Cancer Res 7:1419–1428

    CAS  PubMed  Google Scholar 

  41. Sweetman SC (2007) Martindale: the complete drug reference. Pharmaceutical Press, London

    Google Scholar 

  42. Tan C, Li Y, Tan X, Pan H, Huang W (2006) Inhibition of the ubiquitin–proteasome system: a new avenue for atherosclerosis. Clin Chem Lab Med 44:1218–1225

    Article  CAS  PubMed  Google Scholar 

  43. Thyberg J, Blomgren K (1999) Effects of proteasome and calpain inhibitors on the structural reorganization and proliferation of vascular smooth muscle cells in primary culture. Lab Invest 79:1077–1088

    CAS  PubMed  Google Scholar 

  44. Versari D, Herrmann J, Gossl M, Mannheim D, Sattler K, Meyer FB, Lerman LO, Lerman A (2006) Dysregulation of the ubiquitin–proteasome system in human carotid atherosclerosis. Arterioscler Thromb Vasc Biol 26:2132–2139

    Article  CAS  PubMed  Google Scholar 

  45. von der Thusen JH, van Berkel TJ, Biessen EA (2001) Induction of rapid atherogenesis by perivascular carotid collar placement in apolipoprotein E-deficient and low-density lipoprotein receptor-deficient mice. Circulation 103:1164–1170

    Google Scholar 

  46. Wojcik C, Di Napoli M (2004) Ubiquitin–proteasome system and proteasome inhibition: new strategies in stroke therapy. Stroke 35:1506–1518

    Article  CAS  PubMed  Google Scholar 

  47. Zhang C (2008) The role of inflammatory cytokines in endothelial dysfunction. Basic Res Cardiol 103:398–406

    Article  CAS  PubMed  Google Scholar 

  48. Zhou J, Lhotak S, Hilditch BA, Austin RC (2005) Activation of the unfolded protein response occurs at all stages of atherosclerotic lesion development in apolipoprotein E-deficient mice. Circulation 111:1814–1821

    Article  CAS  PubMed  Google Scholar 

  49. Zou P, Kawada J, Pesnicak L, Cohen JI (2007) Bortezomib induces apoptosis of Epstein-Barr Virus (EBV)-transformed B cells and prolongs survival of mice inoculated with EBV-transformed B cells. J Virol 81:10029–10036

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are indebted to Rita Van den Bossche and Hermine Fret for their excellent technical assistance. This work was financially supported by the Fund for Scientific Research (FWO)-Flanders (projects G.0112.08 and G.0113.06), the Bekales Foundation and the University of Antwerp (NOI-BOF). Jozef Van Herck is a research assistant of the FWO-Flanders. Wim Martinet is a postdoctoral fellow of the FWO-Flanders.

Conflict of interest statement

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jozef Leo Van Herck.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 4,851 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Herck, J.L., De Meyer, G.R.Y., Martinet, W. et al. Proteasome inhibitor bortezomib promotes a rupture-prone plaque phenotype in ApoE-deficient mice. Basic Res Cardiol 105, 39–50 (2010). https://doi.org/10.1007/s00395-009-0054-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-009-0054-y

Keywords

Navigation