Skip to main content
Log in

Endosulfan induces endothelial inflammation and dysfunction via IRE1α/NF-κB signaling pathway

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Cardiovascular diseases are related to vascular endothelial cell injury; our previous studies showed that endosulfan could cause hypercoagulation of blood by inducing endothelial cell injury. To clarify the mechanism of it, we treated human umbilical vein endothelial cells (HUVECs) with 0, 1, 5, and 10 μg/mL endosulfan, while in the inhibition groups, reactive oxygen species (ROS) inhibitor N-acetylcysteine (NAC, 3 mmol) and endoplasmic reticulum (ER) stress inhibitor (STF-083010, 10 μmol) were incubated prior to endosulfan. The results showed that endosulfan could induce inflammatory response and dysfunction by increasing the release of inflammatory cytokines such as interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), and adhesion molecules such as vascular cell adhesion molecule 1 (VCAM-1) and endothelin-1 (ET-1), and inducing ROS production in HUVECs. We also found that endosulfan could cause ER damage, remarkably increase the expressions of inositol-requiring enzyme 1α (IRE1α), phosphorylated IRE1α (p-IRE1α), GRP78, XBP1, nuclear factor-kappa B (NF-κB), and phosphorylated NF-κB (p-NF-κB) in HUVECs. The presence of NAC antagonized the ROS production, expressions of IRE1α and p-IRE1α; however, STF-083010 could decrease the expression levels of GRP78, XBP1, NF-κB, and p-NF-κB and attenuate IL-1β, IL-6, TNF-α, VCAM-1, and ET-1 release induced by endosulfan. These results demonstrated that endosulfan-induced endothelial inflammation and dysfunction through the IRE1α/NF-κB signaling pathway may be triggered by oxidative stress. The study provided experimental basis for the correlation between environmental pollutants (endosulfan) and cardiovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amen OM, Sarker SD, Ghildyal R, Arya A (2019) Endoplasmic reticulum stress activates unfolded protein response signaling and mediates inflammation, obesity, and cardiac dysfunction: therapeutic and molecular approach. Front Pharmacol 10:977

    CAS  Google Scholar 

  • Barton M, Yanagisawa M (2008) Endothelin: 20 years from discovery to therapy. Can J Physiol Pharmacol 86:485–498

    CAS  Google Scholar 

  • Baumann O, Walz B (2001) Endoplasmic reticulum of animal cells and its organization into structural and functional domains. Int Rev Cytol 205:149–214

    CAS  Google Scholar 

  • Böhm F, Pernow J (2007) The importance of endothelin-1 for vascular dysfunction in cardiovascular disease. Cardiovasc Res 76:8–18

    Google Scholar 

  • Canlet C, Tremblay-Franco M, Gautier R, Molina J, Metais B, Blas-Y EF et al (2013) Specific metabolic fingerprint of a dietary exposure to a very low dose of endosulfan. J Toxicol 2013:545802

    Google Scholar 

  • Cao SS, Luo KL, Shi L (2016) Endoplasmic reticulum stress interacts with inflammation in human diseases. J Cell Physiol 231:288–294

    CAS  Google Scholar 

  • Chauhan A, Pathak A, Ewida AY, Griffiths Z, Stothard P (2016) Whole genome sequence analysis of an alachlor and endosulfan degrading Pseudomonas strain W15Feb9B isolated from Ochlockonee River, Florida. Genom Data 8:134–138

    Google Scholar 

  • Cimellaro A, Perticone M, Fiorentino TV, Sciacqua A, Hribal ML (2016) Role of endoplasmic reticulum stress in endothelial dysfunction. Nutr Metab Cardiovasc Dis 26:863–871

    CAS  Google Scholar 

  • Dandekar A, Mendez R, Zhang K (2015) Cross talk between ER stress, oxidative stress, and inflammation in health and disease. Methods Mol Biol 1292:205–214

    CAS  Google Scholar 

  • Desalegn B, Takasuga T, Harada KH, Hitomi T, Fuji Y, Yang HR et al (2011) Historical trends in human dietary intakes of endosulfan and toxaphene in China, Korea and Japan. Chemosphere 83:1398–1405

    CAS  Google Scholar 

  • Endemann DH, Schiffrin EL (2004) Endothelial dysfunction. J Am Soc Nephrol 15:1983–1992

    CAS  Google Scholar 

  • Enhui Z, Na C, MengYun L, Jia L, Dan L, Yongsheng Y (2016) Isomers and their metabolites of endosulfan induced cytotoxicity and oxidative damage in SH-SY5Y cells. Environ Toxicol 31:496–504

    Google Scholar 

  • Gardner BM, Pincus D, Gotthardt K, Gallagher CM, Walter P (2013) Endoplasmic reticulum stress sensing in the unfolded protein response. Cold Spring Harb Perspect Biol 5:a013169

    Google Scholar 

  • Henriquez-Hernandez LA, Luzardo OP, Zumbado M, Serra-Majem L, Valerón PF, Camacho M et al (2017) Determinants of increasing serum POPs in a population at high risk for cardiovascular disease. Environ Res 156:477–484

    CAS  Google Scholar 

  • Hotamisligil GS (2010) Endoplasmic reticulum stress and atherosclerosis. Nat Med 16:396–399

    CAS  Google Scholar 

  • James KL (2013) Linking endothelial dysfunction with endothelial cell activation. J Clin Invest 123:540–541

    Google Scholar 

  • Jensen HA, Mehta JL (2016) Endothelial cell dysfunction as a novel therapeutic target in atherosclerosis. Expert Rev Cardiovasc Ther 14:1021–1033

    CAS  Google Scholar 

  • Keestra-Gounder AM, Byndloss MX, Seyffert N, Young BM, Chavez-Arroyo A, Tsai AY et al (2016) NOD1 and NOD2 signalling links ER stress with inflammation. Nature 532:394–397

    CAS  Google Scholar 

  • Lee DH, Lind PM, Jacobs DR Jr, Salihovic S, van Bavel B, Lind L (2012) Background exposure to persistent organic pollutants predicts stroke in the elderly. Environ Int 47:115–120

    CAS  Google Scholar 

  • Li H, Liu S, Hu Y, Zhao B, Sun Y, Xu D (2020) Endosulfan promotes cell migration via PTP4A3-mediated signaling pathways in HUVECs. Ecotoxicol Environ Saf 192:110267

    CAS  Google Scholar 

  • Lino CM, da Silveira MI (2006) Evaluation of organochlorine pesticides in serum from students in Coimbra, Portugal: 1997-2001. Environ Res 102:339–351

    CAS  Google Scholar 

  • Ljunggren SA, Helmfrid I, Salihovic S, van Bavel B, Wingren G, Lindahl M, Karlsson H (2014) Persistent organic pollutants distribution in lipoprotein fractions in relation to cardiovascular disease and cancer. Environ Int 65:93–99

    CAS  Google Scholar 

  • Michiels C (2003) Endothelial cell functions. J Cell Physiol 196:430–443

    CAS  Google Scholar 

  • Moran AE, Roth GA, Narula J, Mensah GA (2014) 1990–2010 global cardiovascular disease atlas. Glob Heart 9:3–16

    Google Scholar 

  • Murphy MO, Petriello MC, Han SG, Sunkara M, Morris AJ, Esser K, Hennig B (2016) Exercise protects against PCB-induced inflammation and associated cardiovascular risk factors. Environ Sci Pollut Res Int 23:2201–2211

    CAS  Google Scholar 

  • Oesterling E, Toborek M, Hennig B (2008) Benzo [a] pyrene induces intercellular adhesion molecule-1 through a caveolae and aryl hydrocarbon receptor mediated pathway. Toxicol Appl Pharmacol 232:309–316

    CAS  Google Scholar 

  • Ozmen O (2013) Cardiotoxicity and apoptotic activity in subacute endosulfan toxicity and the protective effect of vitamin C in rabbits: a pathological study. J Environ Pathol Toxicol Oncol 32:53–58

    CAS  Google Scholar 

  • Park MA, Zhang G, Martin AP, Hamed H, Mitchell C, Hylemon PB, Graf M, Rahmani M, Ryan K, Liu X, Spiegel S, Norris J, Fisher PB, Grant S, Dent P (2008) Vorinostat and sorafenib increase ER stress, autophagy and apoptosis via ceramide-dependent CD95 and PERK activation. Cancer Biol Ther 7:1648–1662

    CAS  Google Scholar 

  • Perkins JT, Petriello MC, Newsome BJ, Henning B (2016) Polychlorinated biphenyls and links to cardiovascular disease. Environ Sci Pollut Res Int 23:2160–2172

    CAS  Google Scholar 

  • Reimold AM, Iwakoshi NN, Manis J, Vallabhajosyula P, Szomolanyi-Tsuda E, Gravallese EM, Friend D, Grusby MJ, Alt F, Glimcher LH (2001) Plasma cell differentiation requires the transcription factor XBP-1. Nature 412:300–307

    CAS  Google Scholar 

  • Salameh PR, Baldi I, Brochard P, Raherison C, Abi Saleh B, Salamon R (2003) Respiratory symptoms in children and exposure to pesticides. Eur Respir J 22:507–512

    CAS  Google Scholar 

  • Seals DR, Jablonski KL, Donato AJ (2011) Aging and vascular endothelial function in humans. Clin Sci 120:357–375

    CAS  Google Scholar 

  • Tam AB, Mercado EL, Hoffmann A, Niwa M (2012) ER stress activates NF-κB by integrating functions of basal IKK activity, IRE1 and PERK. PLoS One 7:e45078

    CAS  Google Scholar 

  • Walter P, Ron D (2011) The unfolded protein response: from stress pathway to homeostatic regulation. Science 334:1081–1086

    CAS  Google Scholar 

  • Xu J, Sun Y, Lu J (2020) Knockdown of long noncoding RNA (lncRNA) AK094457 relieved angiotensin II induced vascular endothelial cell injury. Med Sci Monit 26:e919854

    Google Scholar 

  • Yamagata K, Hashiguchi K, Yamamoto H, Tagami M (2019) Dietary apigenin reduces induction of LOX-1 and NLRP3 expression, leukocyte adhesion, and acetylated low-density lipoprotein uptake in human endothelial cells exposed to trimethylamine-N-oxide. J Cardiovasc Pharmacol 74:558–565

    CAS  Google Scholar 

  • Yin J, Wang Y, Gu L, Fan N, Ma Y, Peng Y (2015) Palmitate induces endoplasmic reticulum stress and autophagy in mature adipocytes: implications for apoptosis and inflammation. Int J Mol Med 35:932–940

    CAS  Google Scholar 

  • Zhang L, Wei J, Guo F, Duan J, Li Y, Shi Z, Yang Y, Zhou X, Sun Z (2015) Endosulfan activates the extrinsic coagulation pathway by inducing endothelial cell injury in rats. Environ Sci Pollut Res Int 22:15722–15730

    CAS  Google Scholar 

  • Zhang L, Wei J, Ren L, Zhang J, Yang M, Jing L, Wang J, Sun Z, Zhou X (2017a) Endosulfan inducing apoptosis and necroptosis through activation RIPK signaling pathway in human umbilical vascular endothelial cells. Environ Sci Pollut Res Int 24:215–225

    CAS  Google Scholar 

  • Zhang L, Wei J, Ren L, Zhang J, Wang J, Jing L, Yang M, Yu Y, Sun Z, Zhou X (2017b) Endosulfan induces autophagy and endothelial dysfunction via the AMPK/mTOR signaling pathway triggered by oxidative stress. Environ Pollut 220:843–852

    CAS  Google Scholar 

  • Zhao YZ, Jia J, Li YB, Guo CX, Zhou XQ, Sun ZW (2014) Effects of endosulfan on the immune function of erythrocytes, and potential protection by testosterone propionate. J Toxicol Sci 39:701–710

    Google Scholar 

Download references

Funding

This study was supported by the Nature Science Foundation from Shandong Province (No. ZR2016HL24).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xi-Feng Wang or Lian-Shuang Zhang.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, S., Ji, Z., Fu, J. et al. Endosulfan induces endothelial inflammation and dysfunction via IRE1α/NF-κB signaling pathway. Environ Sci Pollut Res 27, 26163–26171 (2020). https://doi.org/10.1007/s11356-020-09023-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-09023-5

Keywords

Navigation