Skip to main content
Log in

A “Turn-on” Fluorescent Probe Based on Phenothiazine for Selectively Recognizing ClO and its Practical Applications

  • RESEARCH
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Hypochlorous acid (HClO), a highly reactive oxygen species, has important effects on human health. High selectivity and sensitivity remain challenges of fluorescent probes for detection of ClO with a large Stokes shift. This work designed and synthesized a novel phenothiazine-based fluorescent probe TF which can detect ClO by colorimetric and fluorescent dual signals. TF displayed turn-on fluorescence effect toward ClO with high selectivity (≥ 28-folds) and sensitivity (LOD = 0.472 μM), fast response time (< 1 min) and large Stokes shift (150 nm) in PBS (pH = 7.4, 40% DMSO). Meanwhile, TF can visualize ClO on the mung bean sprouts model and apply as testing strips for portable and rapid detecting ClO by the naked eyes.

Graphical Abstract

A phenothiazine-based fluorescent probe with large Stokes shift was synthesized and its responding rapidly ability to detect ClO was studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Wang HS (2016) Development of fluorescent and luminescent probes for reactive oxygen species. TrAC Trends in Anal Chem 85:181–202. https://doi.org/10.1016/j.trac.2016.09.006

    Article  CAS  Google Scholar 

  2. Ma H, Chen KW, Song B, Tang ZX, Huang YD, Zhang T, Wang HN, Sun WP, Yuan JL (2020) A visible-light-excitable mitochondria-targeted europium complex probe for hypochlorous acid and its application to time-gated luminescence bioimaging. Biosens Bioelectron 168:112560. https://doi.org/10.1016/j.bios.2020.112560

    Article  PubMed  CAS  Google Scholar 

  3. Hou JT, Kwon N, Wang S, Wang BY, He XJ, Yoon J (2022) Sulfur-based fluorescent probes for HOCl: Mechanisms, design, and applications. Coordin Chem Rev 450:214232. https://doi.org/10.1016/j.ccr.2021.214232

    Article  CAS  Google Scholar 

  4. Winterbourn CC, Hampton MB, Livesey JH, Kettle AJ (2006) Modeling the reactions of superoxide and myeloperoxidase in the neutrophil phagosome: implications for microbial killing. J Biol Chem 281:39860–39883. https://doi.org/10.1074/jbc.M605898200

    Article  PubMed  CAS  Google Scholar 

  5. Feng H, Zhang ZQ, Meng QT, Jia HM, Wang Y, Zhang R (2018) Rapid Response Fluorescence Probe Enabled In Vivo Diagnosis and Assessing Treatment Response of Hypochlorous Acid-Mediated Rheumatoid Arthritis. Adv Sci 5:1800397–1800406. https://doi.org/10.1002/advs.201800397

    Article  CAS  Google Scholar 

  6. Yang J, Zhang XL, Yuan P, Ran CZ (2017) Oxalate-curcumin-based probe for micro- and macroimaging of reactive oxygen species in Alzheimer’s disease. Proc Natl Acad Sci 114:12384–12389. https://doi.org/10.1073/pnas.1706248114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Hoozemans JJ, Scheper W (2012) Endoplasmic reticulum: the unfolded protein response is tangled in neurodegeneration. Int J Biochem Cell Biol 44:1295–1298. https://doi.org/10.1016/j.biocel.2012.04.023

    Article  PubMed  CAS  Google Scholar 

  8. Jeitner TM, Xu H, Gibson GE, Neurochem J (2005) Inhibition of the alpha-ketoglutarate dehydrogenase complex by the myeloperoxidase products, hypochlorous acid and mono-N-chloramine. J Neurochem 92:302–310. https://doi.org/10.1111/j.1471-4159.2004.02868.x

    Article  PubMed  CAS  Google Scholar 

  9. Wu P, Zhu Y, Chen LL, Tian Y, Xiong H (2021) A Fast-Responsive OFF-ON Near-Infrared-II Fluorescent Probe for In Vivo Detection of Hypochlorous Acid in Rheumatoid Arthritis. Anal Chem 93:13014–13021. https://doi.org/10.1021/acs.analchem.1c02831

    Article  PubMed  CAS  Google Scholar 

  10. Zhou BX, Han YL, Liu JY, Cheng K, Dong MD, Tang X (2023) Design and Synthesis of Novel Fluorescent Probe Based on Cyanobiphenyl and its Application in Detection of Hypochlorite. J Fluoresc 33:575–586. https://doi.org/10.1007/s10895-022-03094-y

    Article  PubMed  CAS  Google Scholar 

  11. Liu SZ, Xu JH, Ma QJ, Wang BY, Li LK, Zhu NN, Liu SY, Wang GG (2023) A naphthalimide-based and Golgi-targetable fluorescence probe for quantifying hypochlorous acid. Spectrochim Acta A 286:121986. https://doi.org/10.1016/j.saa.2022.121986

    Article  CAS  Google Scholar 

  12. Xu ZC, Wang XF, Duan TT, He R, Wang FW, Zhou XJ (2021) Development of an ultrafast fluorescent probe for specific recognition of hypochlorous acid and its application in live cells. RSC Adv 11:24669–24672. https://doi.org/10.1039/d1ra04082k

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Zeng XD, Chen J, Yu SH, Liu ZG, Ma MS (2022) The Development of a 4-aminonaphthalimide-based Highly Selective Fluorescent Probe for Rapid Detection of HOCl. J Fluoresc 32:1843–1849. https://doi.org/10.1007/s10895-022-02996-1

    Article  PubMed  CAS  Google Scholar 

  14. Wang WX, Jiang WL, Mao GJ, Tan M, Fei JJ, Li YF, Li CY (2021) Monitoring the Fluctuation of Hydrogen Peroxide in Diabetes and Its Complications with a Novel Near-Infrared Fluorescent Probe. Anal Chem 93:3301–3307. https://doi.org/10.1021/acs.analchem.0c05364

    Article  PubMed  CAS  Google Scholar 

  15. Jiang WL, Wang WX, Liu J, Li Y, Li CY (2020) A novel hepatocyte-targeting ratiometric fluorescent probe for imaging hydrogen peroxide in zebrafish. Sens Actuators B 313:128054. https://doi.org/10.1016/j.snb.2020.128054

    Article  CAS  Google Scholar 

  16. Mu S, Jiang L, Gao H, Zhang JL, Sun HP, Shi XZ, Liu XY, Zhang HX (2022) A novel fluorescent probe with large Stokes shift for accurate detection of HOCl in mitochondria and its imaging application. Anal Chem Acta 1191:339287. https://doi.org/10.1016/j.aca.2021.339287

    Article  CAS  Google Scholar 

  17. Vedamalai M, Kedaria D, Vasita R, Gupta I (2018) Oxidation of phenothiazine based fluorescent probe for hypochlorite and its application to live cell imaging. Sens Actuators B 263:137–142. https://doi.org/10.1016/j.snb.2018.02.071

    Article  CAS  Google Scholar 

  18. Wu LQ, Qi SL, Liu Y, Wang XY, Zhu LB, Yang QB, Du JS, Xu H, Li YX (2021) A novel ratiometric fluorescent probe for differential detection of HSO3 and ClO and application in cell imaging and tumor recognition. Anal Bioanal Chem 413:1137–1148. https://doi.org/10.1007/s00216-020-03077-7

    Article  PubMed  CAS  Google Scholar 

  19. Li PP, Sun YT, Zhang XY, Wu XW, Li RS, Cao DX, Guan RF, Liu ZQ, Ma LL (2021) Photophysical properties of a coumarin amide derivative and its sensing for hypochlorite. J Photochem Photobiol A 411:113197. https://doi.org/10.1016/j.jphotochem.2021.113197

    Article  CAS  Google Scholar 

  20. Duan YM, Wang S, Cao F, Zhang Q, Chen SJ, Zhang YB, Wang KP, Hu ZQ (2019) Facile and Highly Selective Ratiometric Fluorescence Probe Based on Benzo[5]helicene for the Detection of Hypochlorous Acid. Ind Eng Chem Res 59:992–999. https://doi.org/10.1021/acs.iecr.9b05073

    Article  CAS  Google Scholar 

  21. Liu K, Fan L, Huang SJ, Sun J, Wang XF, Li HX, Si CD, Zhang W, Li TR, Yang ZY (2022) A benzocoumarin-based fluorescent probe for ultra-sensitive and fast detection of endogenous/exogenous hypochlorous acid and its applications. Analyst 147:1976–1985. https://doi.org/10.1039/d1an02178h

    Article  PubMed  CAS  Google Scholar 

  22. Lee KM, Choi MG, Yoo JH, Ahn S, Chang SK (2021) Fluorometric analysis of chlorite via oxidation of 9-anthracenecarboxaldehyde. J Photochem Photobiol A 415:113309. https://doi.org/10.1016/j.jphotochem.2021.113309

    Article  CAS  Google Scholar 

  23. An N, Wang D, Zhao H, Gao YL (2022) A spectroscopic probe for hypochlorous acid detection. Spectrochim Acta A 267:120529. https://doi.org/10.1016/j.saa.2021.120529

    Article  CAS  Google Scholar 

  24. Zhang JL, Zhang DB, Xiao L, Pu SZ (2021) Development of an ultrasensitive Ru(II) complex-based fluorescent probe with phenothiazine unit for selective detection HOCl and its application in water samples. Dyes Pigm 188:109179. https://doi.org/10.1016/j.dyepig.2021.109179

    Article  CAS  Google Scholar 

  25. Zhu ZF, Ding HC, Wang YS, Fan CB, Tu YY, Liu G, Pu SZ (2020) Rational design of a FRET-based ratiometric fluorescent chemosensor for detecting ClO with large Stokes based on rhodamine and naphthalimide fluorophores. Tetrahedron 76:131291. https://doi.org/10.1016/j.tet.2020.131291

    Article  CAS  Google Scholar 

  26. Ai Y, Zhu ZF, Ding HC, Fan CB, Liu G, Pu SZ (2022) Development of dual-fluorophore and dual-site multifunctional fluorescent probe for detecting HClO and H2S based on rhodamine-coumarin units. J Photochem Photobiol A 433:114144. https://doi.org/10.1016/j.jphotochem.2022.114144

    Article  CAS  Google Scholar 

  27. Tian T, Xu S, Ru YL, Zhang DB, Pu SZ (2022) A red-emission iridium (III) complex-based fluorescent probe with Schiff base structure for selection detection HOCl and its application in water sample. J Organomet Chem 976:122351. https://doi.org/10.1016/j.jorganchem.2022.122351

    Article  CAS  Google Scholar 

  28. Wang QQ, Wang YY, Li Y, Zhang SY, Guo XY, Zha WK, Li WJ, Mao GJ (2022) A lysosome-targetable fluorescent probe based on HClO-mediated cyclization reaction for imaging of hypochlorous acid. Anal Sci 38:175–182. https://doi.org/10.2116/analsci.21P264

    Article  PubMed  CAS  Google Scholar 

  29. Feng H, Wang Y, Liu JP, Zhang ZQ, Yang XY, Chen R, Meng QT, Zhang R (2019) A highly specific fluorescent probe for rapid detection of hypochlorous acid in vivo and in water samples. J Mater Chem B 7:3909–3916. https://doi.org/10.1039/c9tb00551j

    Article  CAS  Google Scholar 

  30. Liu K, Huang SJ, Li TR, Sun J, Fan L, Wang XF, Li HX, Li YJ, Zhang W, Yang ZY (2022) A benzocoumarin-based fluorescent probe for highly specific ultra-sensitive fast detecting endogenous/exogenous hypochlorous acid and its applications. J Photochem Photobiol A 427:113843. https://doi.org/10.1016/j.jphotochem.2022.113843

    Article  CAS  Google Scholar 

  31. He L, Zhang Y, Xiong HQ, Wang JP, Geng YN, Wang BH, Wang YG, Yang ZG, Song XZ (2019) A ratiometric flavone-based fluorescent probe for hypochlorous acid detection with large Stokes shift and long-wavelength emission. Dyes Pigm 166:390–394. https://doi.org/10.1016/j.dyepig.2019.03.029

    Article  CAS  Google Scholar 

  32. Hou JT, Wang BY, Fan PW, Duan R, Cao XH, Zhu L (2020) A novel benzothiazine-fused coumarin derivative for sensing hypochlorite with high performance. Dyes Pigm 182:108675. https://doi.org/10.1016/j.dyepig.2020.108675

    Article  CAS  Google Scholar 

  33. Cui HX, Hou P, Li Y, Sun JW, Zhang HY, Zheng Y, Liu Q, Chen S (2021) Ratiometric fluorescence imaging of hypochlorous acid in living cells and zebrafish using a novel phenothiazine-fused HPQ probe. J Photochem Photobiol A 417:113343. https://doi.org/10.1016/j.jphotochem.2021.113343

    Article  CAS  Google Scholar 

  34. Ren HX, Huo FJ, Yin CX (2021) An ESIPT-based colorimetric and fluorescent probe with large Stokes shift for the sensitive detection of hypochlorous acid and its bioimaging in cells. New J Chem 45:4724–4728. https://doi.org/10.1039/d0nj05807f

    Article  CAS  Google Scholar 

  35. Wang YL, Ding F, Sun XS, Chen SJ, Huang HR, Chen H (2021) A reaction-based colorimetric and ratiometric chemosensor for imaging identification of HClO in live cells, mung bean sprouts, and paper strips. Talanta 234:122655. https://doi.org/10.1016/j.talanta.2021.122655

    Article  PubMed  CAS  Google Scholar 

  36. Han ZX, Dong LH, Sun F, Long LL, Jiang S, Dai XT, Zhang M (2020) A novel fluorescent probe with extremely low background fluorescence for sensing hypochlorite in zebrafish. Anal Biochem 602:113795. https://doi.org/10.1016/j.ab.2020.113795

    Article  PubMed  CAS  Google Scholar 

  37. Sheng X, Kong LD, Wang J, Ding L, Liu ZM, Wang SX (2022) A phthalimide-based ESIPT fluorescent probe for sensitive detection of Cu2+ in complete aqueous solution. Anal Sci 38:689–694. https://doi.org/10.1007/s44211-022-00084-9

    Article  PubMed  CAS  Google Scholar 

  38. Wang SC, Zhang BY, Wang WJ, Feng G, Yuan DQ, Zhang XJ (2018) Elucidating the Structure-Reactivity Correlations of Phenothiazine-Based Fluorescent Probes toward ClO. Chemistry 24:8157–8166. https://doi.org/10.1002/chem.201800356

    Article  PubMed  CAS  Google Scholar 

  39. Lu XL, Zhan Y, He W (2022) Recent development of small-molecule fluorescent probes based on phenothiazine and its derivates. J Photochem Photobiol B 234:112528. https://doi.org/10.1016/j.jphotobiol.2022.112528

    Article  PubMed  CAS  Google Scholar 

  40. Yan LJ, Li D, Le Y, Dong P, Liu L (2022) Phenothiazine-based fluorescent probe for fluoride ions and its applications in rapid detection of endemic disease. Dyes Pigm 201:110200. https://doi.org/10.1016/j.dyepig.2022.110200

    Article  CAS  Google Scholar 

  41. Revoju S, Matuhina A, Canil L, Salonen H, Hiltunen A, Abate A, Vivo P (2020) Structure-induced optoelectronic properties of phenothiazine-based materials. J Mater Chem B 8:15486–15506. https://doi.org/10.1039/d0tc03421e

    Article  CAS  Google Scholar 

  42. Chen WQ, Yue XX, Li WX, Hao YQ, Zhang LL, Zhu LL, Sheng JR, Song XZ (2017) A phenothiazine coumarin-based red emitting fluorescent probe for nanomolar detection of thiophenol with a large Stokes shift. Sens Actuators B 245:702–710. https://doi.org/10.1016/j.snb.2017.01.167

    Article  CAS  Google Scholar 

  43. Zhang TG, Zhu LL, Ma YY, Lin WY (2020) A near-infrared ratiometric fluorescent probe based on the C[double bond, length as m-dash]N double bond for monitoring SO2 and its application in biological imaging. Analyst 145:1910–1914. https://doi.org/10.1039/c9an02322d

    Article  PubMed  CAS  Google Scholar 

  44. Tang X, Zhu Z, Liu RJ, Tang Y (2019) A novel ratiometric and colorimetric fluorescent probe for hypochlorite based on cyanobiphenyl and its applications. Spectrochim Acta A 219:576–581. https://doi.org/10.1016/j.saa.2019.04.042

    Article  CAS  Google Scholar 

  45. Liang LJ, Sun YM, Liu C, Zeng XS, Zhao JL (2021) A phenothiazine-based turn-on fluorescent probe for selective quantification of HClO in living cells. Dyes Pigm 190:109344. https://doi.org/10.1016/j.dyepig.2021.109344

    Article  CAS  Google Scholar 

Download references

Funding

The authors are grateful for the financial support from the National Natural Science Foundation of China (41867052, 41867053, 22263005) and the Project of the Science Funds of Jiangxi Education Office (GJJ190613, GJJ211135).

Author information

Authors and Affiliations

Authors

Contributions

Qianling Liu. Writing-original draft, Editing. Xue Li. Writing-original draft, Editing. Ming Xiao. Investigation. Yin Ai. Investigation. Gang Liu. Supervision, Review. Haichang Ding. Editing, Review. Shouzhi Pu. Resources, Supervision.

Corresponding authors

Correspondence to Haichang Ding or Shouzhi Pu.

Ethics declarations

Ethical Approval

Not applicable.

Competing Interests

No conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 463 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Li, X., Xiao, M. et al. A “Turn-on” Fluorescent Probe Based on Phenothiazine for Selectively Recognizing ClO and its Practical Applications. J Fluoresc 33, 2451–2459 (2023). https://doi.org/10.1007/s10895-023-03215-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-023-03215-1

Keywords

Navigation