Skip to main content
Log in

A phthalimide-based ESIPT fluorescent probe for sensitive detection of Cu2+ in complete aqueous solution

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

A novel fluorescence-enhanced probe 2-butyl-1,3-dioxoisoindolin-4-yl picolinate (BDIP) has been developed for the detection of Cu2+ based on the excited-state intramolecular proton transfer (ESIPT) process. BDIP utilized a phthalimide derivative as the fluorophore and selected picolinate ester as the recognition site for Cu2+. The probe displayed high selectivity, strong anti-interference ability, and a significant fluorescence enhancement effect for Cu2+ in phosphate buffer saline (PBS, 10 mM, pH 7.4) with the detection limit of 31 nM. BDIP also possesses the advantages of simple synthesis steps, large Stokes shift, and good water solubility. Moreover, BDIP was used for Cu2+ detection in real water samples, with the result being satisfactory.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2

Similar content being viewed by others

References

  1. E.L. Que, D.W. Domaille, C.J. Chang, Chem. Rev. 5, 1517 (2008)

    Article  Google Scholar 

  2. G. Inesi, J. Cell Commun. Signal. 5, 227 (2011)

    Article  Google Scholar 

  3. L. Banci, I. Bertini, S. Ciofi-Baffoni, T. Kozyreva, K. Zovo, P. Palumaa, Nature 465, 645 (2010)

    Article  CAS  Google Scholar 

  4. S.G. Kaler, Nat. Rev. Neurol. 7, 15 (2011)

    Article  CAS  Google Scholar 

  5. M.E. Del Castillo-Busto, S. Cuello-Nunez, C. Ward-Deitrich, T. Morley, H. Goenaga-Infante, Anal. Bioanal. Chem. 414, 561 (2022)

    Article  Google Scholar 

  6. R. Squitti, M. Ventriglia, I. Simonelli, C. Bonvicini, A. Costa, G. Perini, G. Binetti, L. Benussi, R. Ghidoni, G. Koch, B. Borroni, A. Albanese, S.L. Sensi, M. Rongioletti, Biomolecules 11, 960 (2021)

    Article  CAS  Google Scholar 

  7. S. Montes, S. Rivera-Mancia, A. Diaz-Ruiz, L. Tristan-Lopez, C. Rios, Oxid. Med. Cell Longev. 2014, 147251 (2014)

    Article  Google Scholar 

  8. E.S. Ford, Am. J. Epidemiol. 151, 1182 (2000)

    Article  CAS  Google Scholar 

  9. J.S. Valentine, P.A. Doucette, S. Zittin-Potter, Annu. Rev. Biochem. 74, 563 (2005)

    Article  CAS  Google Scholar 

  10. S.R. Jaiser, G.P. Winston, J. Neurol. 257, 869 (2010)

    Article  CAS  Google Scholar 

  11. Y. Wang, J. Shi, H. Wang, Q. Lin, X. Chen, Y. Chen, Ecotoxicol. Environ. Saf. 67, 75 (2007)

    Article  CAS  Google Scholar 

  12. X.O. Xiong, Y.X. Li, W. Li, C.Y. Lin, W. Han, M. Yang, Resour. Conserv. Recy. 54, 985 (2010)

    Article  Google Scholar 

  13. Edition of the Drinking Water Standards and Health Advisories (EPA 822-S-12-001). US EPA Office of Science and Technology, Washington, (2012)

  14. D. Citak, M. Tuzen, Food Chem. Toxicol. 48, 1399 (2010)

    Article  CAS  Google Scholar 

  15. N. Ozbek, S. Akman, Food Chem. 200, 245 (2016)

    Article  CAS  Google Scholar 

  16. J.S. Becker, A. Matusch, C. Depboylu, J. Dobrowolska, M.V. Zoriy, Anal. Chem. 79, 6074 (2007)

    Article  CAS  Google Scholar 

  17. G.M. Alves, J.M. Magalhães, P. Salaün, C.M. van den Berg, H.M. Soares, Anal. Chim. Acta 703, 1 (2011)

    Article  CAS  Google Scholar 

  18. S. Chowdhury, B. Rooj, A. Dutta, U. Mandal, J. Fluoresc. 28, 999 (2018)

    Article  CAS  Google Scholar 

  19. S.H. Park, N. Kwon, J.H. Lee, J. Yoon, I. Shin, Chem. Soc. Rev. 49, 143 (2020)

    Article  CAS  Google Scholar 

  20. N. Duan, S. Yang, H. Tian, B. Sun, Food Chem. 358, 129839 (2021)

    Article  CAS  Google Scholar 

  21. G. Sivaraman, M. Iniya, T. Anand, N.G. Kotla, O. Sunnapu, S. Singaravadivel, A. Gulyani, D. Chellappa, Coordin Chem. Rev. 357, 50 (2018)

    Article  CAS  Google Scholar 

  22. S. Sharma, K.S. Ghosh, Spectrochim. Acta A Mol. Biomol. Spectrosc. 254, 119610 (2021)

    Article  CAS  Google Scholar 

  23. S. Chakraborty, V. Ravindran, P.V. Nidheesh, S. Rayalu, ChemistrySelect 5, 10432 (2020)

    Article  CAS  Google Scholar 

  24. N.R. Chereddy, S. Janakipriya, P.S. Korrapati, S. Thennarasu, A.B. Mandal, Analyst 138, 1130 (2013)

    Article  CAS  Google Scholar 

  25. B. Fang, Y. Liang, F. Chen, Talanta 119, 601 (2014)

    Article  CAS  Google Scholar 

  26. B. Tabakci, A. Yilmaz, J. Mol. Struct. 1075, 96 (2014)

    Article  CAS  Google Scholar 

  27. C. Baslak, A.N. Kursunlu, Photochem. Photobiol. Sci. 17, 1091 (2018)

    Article  CAS  Google Scholar 

  28. Q. Dai, H. Liu, C. Gao, W. Li, C. Zhu, C. Lin, Y. Tan, Z. Yuan, Y. Jiang, New J. Chem. 42, 613 (2018)

    Article  CAS  Google Scholar 

  29. J. Pan, J.M. Yu, S.Y. Qiu, A.Y. Zhu, Y. Liu, X.X. Ban, W. Li, H. Yu, L.T. Li, J. Photoch. Photobio. A 406, 113018 (2021)

    Article  CAS  Google Scholar 

  30. A.C. Sedgwick, L. Wu, H.H. Han, S.D. Bull, X.P. He, T.D. James, J.L. Sessler, B.Z. Tang, H. Tian, J. Yoon, Chem. Soc. Rev. 47, 8842 (2018)

    Article  CAS  Google Scholar 

  31. Y. Wu, Z. Li, Y. Shen, ACS Omega 4, 16242 (2019)

    Article  CAS  Google Scholar 

  32. X.T. Pan, Q. Li, Y.Y. Xu, S.L. Hu, J. Chem. Res. 44, 349 (2020)

    Article  CAS  Google Scholar 

  33. J. Tang, H. Wu, S. Yin, Y. Han, Tetrahedron Lett. 60, 541 (2019)

    Article  CAS  Google Scholar 

  34. X. Liu, L. Yang, L. Gao, W. Chen, F. Qi, F. Song, Tetrahedron 71, 8285 (2015)

    Article  CAS  Google Scholar 

  35. D.J. Zhu, A.S. Ren, X.C. He, Y.H. Luo, Z.H. Duan, X.W. Yan, Y.H. Xiong, X. Zhong, Sensor. Actuat. B-chem. 252, 134 (2017)

    Article  CAS  Google Scholar 

  36. J. Xu, Z. Wang, C. Liu, Z. Xu, B. Zhu, N. Wang, K. Wang, J. Wang, Anal. Sci. 34, 453 (2018)

    Article  CAS  Google Scholar 

  37. T.H. Fife, T.J. Przystas, J. Am. Chem. Soc. 107, 1041 (1985)

    Article  CAS  Google Scholar 

  38. R.M. Kierat, R. Kraemer, Bioorg. Med. Chem. Lett. 15, 4824 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the Shandong Provincial Natural Science Foundation (ZR2020MB107), the State Key Laboratory of Natural and Biomimetic Drugs (K20180201), the NSFC cultivation project of Jining Medical University (JYP2019KJ11), and the Supporting Fund for Teachers' research of Jining Medical University (JYFC2019KJ042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shouxin Wang.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 475 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheng, X., Kong, L., Wang, J. et al. A phthalimide-based ESIPT fluorescent probe for sensitive detection of Cu2+ in complete aqueous solution. ANAL. SCI. 38, 689–694 (2022). https://doi.org/10.1007/s44211-022-00084-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-022-00084-9

Keywords

Navigation