Skip to main content
Log in

Microwave-Assisted Green Synthesis of Carbon Quantum Dots Derived from Calotropis Gigantea as a Fluorescent Probe for Bioimaging

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

An eco-friendly, cost-effective, and convenient approach for synthesizing biocompatible fluorescent carbon quantum dots (CQDs) from the leaf extract of the medicinal plant Calotropis gigantea, commonly known as crown flower, has been demonstrated in this work. Fluorescence quantum yields of up to 4.24 percent were observed in as-synthesized CQDs. The size distribution of the as-synthesized CQDs varied from 2.7 to 10.4 nm, with a significant proportion of sp2 and sp3 carbon groups verified by nuclear magnetic resonance analysis. The zeta potential of as-synthesized CQDs was measured to be –13.8 mV, indicating the existence of a negatively charged surface with incipient instability in aqueous suspension. Furthermore, as an alternative to organic or synthetic dyes, the development of simple, inexpensive, and non-destructive fluorescence-based staining agents are highly desired. In this regard, as-synthesized CQDs have shown remarkable fluorescent staining capabilities in this work and might be utilised as a suitable probe for optical and bio-imaging of bacteria, fungi, and plant cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Peixotode B, Monteiroda O (2021) Carbon quantum dots synthesis from waste and by-products: Perspectives and challenges. Mater Lett 282:128764

    Article  CAS  Google Scholar 

  2. Ghosh D, Sarkar K, Devi P et al (2021) Current and future perspectives of carbon and graphene quantum dots: From synthesis to strategy for building optoelectronic and energy devices. Renew Sust Energ Rev 135:110391

    Article  CAS  Google Scholar 

  3. Xu Q, Gao J, Wang S et al (2021) Quantum dots in cell imaging and their safety issues. J Mater Chem B 9:5765–5779

    Article  CAS  PubMed  Google Scholar 

  4. Wei Y, Chen L, Zhao S et al (2021) Green-emissive carbon quantum dots with high fluorescence quantum yield: Preparation and cell imaging. Front Mater Sci 15:253–265

    Article  Google Scholar 

  5. Pajewska-Szmyt M, Buszewski B, Gadzała-Kopciuch R (2020) Sulphur and nitrogen doped carbon dots synthesis by microwave assisted method as quantitative analytical nano-tool for mercury ion sensing. Mater Chem Phys 242:122484

    Article  CAS  Google Scholar 

  6. Raji K, Ramanan V, Ramamurthy P (2019) Facile and green synthesis of highly fluorescent nitrogen-doped carbon dots from jackfruit seeds and its applications towards the fluorimetric detection of Au3+ ions in aqueous medium and in in vitro multicolor cell imaging. New J Chem 43:11710–11719

    Article  CAS  Google Scholar 

  7. Xu XY, Ray R, Gu YL et al (2004) Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc 126:40

    Article  CAS  Google Scholar 

  8. Cheng C, Xing M, Wu Q (2019) Green synthesis of fluorescent carbon dots/hydrogel nanocomposite with stable Fe3+ sensing capability. J Alloy Compd 790:221–227

    Article  CAS  Google Scholar 

  9. Yadav PK, Singh VK, Chandra S et al (2019) Green synthesis of fluorescent carbon quantum dots from azadirachta indica leaves and their peroxidase-mimetic activity for the detection of H2O2 and ascorbic acid in common fresh fruits. ACS Biomater Sci Eng 5:623–632

    Article  CAS  PubMed  Google Scholar 

  10. Cheng C, Xing M, Wu Q (2019) Preparation of carbon dots with long-wavelength and photoluminescence-tunable emission to achieve multicolor imaging in cells. Opt Mater 88:353–358

    Article  CAS  Google Scholar 

  11. Cheng C, Xing M, Wu Q (2019) A universal facile synthesis of nitrogen and sulfur co doped carbon dots from cellulose-based biowaste for fluorescent detection of Fe3+ions and intracellular bio imaging. Mater Sci Eng C 99:611–619

    Article  CAS  Google Scholar 

  12. Chernyak S, Podgornova A, Dorofeev S et al (2020) Synthesis and modification of pristine and nitrogen-doped carbon dots by combining template pyrolysis and oxidation. Appl Surf Sci 507:145027

    Article  CAS  Google Scholar 

  13. Xu J, Dai L, Zhang C et al (2020) Ionic liquid-aided hydrothermal treatment of lignocellulose for the synergistic outputs of carbon dots and enhanced enzymatic hydrolysis. Bioresour Technol 305:123043

    Article  CAS  PubMed  Google Scholar 

  14. Atchudan R, Edison TNJI, Aseer K et al (2018) Highly fluorescent nitrogen-doped carbon dots derived from Phyllanthus acidus utilized as a fluorescent probe for label-free selective detection of Fe3+ ions, live cell imaging and fluorescent ink. Biosens Bioelectron 99:303–311

    Article  CAS  PubMed  Google Scholar 

  15. Cui F, Ye Y, Ping J, Sun X (2020) Carbon dots: Current advances in pathogenic bacteria monitoring and prospect applications. Biosens Bioelectron 156:112085

    Article  CAS  PubMed  Google Scholar 

  16. Abbas A, Mariana LT, Phan AN (2018) Biomass-waste derived graphene quantum dots and their applications. Carbon N Y 140:77–99

    Article  CAS  Google Scholar 

  17. Mahat N, Shamsudin S (2020) Transformation of oil palm biomass to optical carbon quantum dots by carbonisation-activation and low temperature hydrothermal processes. Diam Relat Mater 102:107660

    Article  CAS  Google Scholar 

  18. Liu G, Li B, Liu Y et al (2019) Rapid and high yield synthesis of carbon dots with chelating ability derived from acrylamide/chitosan for selective detection of ferrous ions. Appl Surf Sci 487:1167–1175

    Article  CAS  Google Scholar 

  19. Li J, Tang K, Yu J et al (2019) Nitrogen and chlorine co-doped carbon dots as probe for sensing and imaging in biological samples. R Soc Open Sci 6:181557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xue S, Yang Y, Sun Y et al (2019) Photoluminescent lignin hybridized carbon quantum dots composites for bioimaging applications. Int J Biol Macromol 122:954–961

    Article  CAS  PubMed  Google Scholar 

  21. Atabaev TS (2018) Doped carbon dots for sensing and bioimaging applications: A minireview. Nanomater 8:342

    Article  CAS  Google Scholar 

  22. Raji A, Thomas E, Suguna P, Rajangam V (2019) Betel-derived nitrogen-doped multicolor carbon dots for environmental and biological applications. J Mol Liq 296:111817

    Article  CAS  Google Scholar 

  23. Mehta V, Jha S, Basu H et al (2015) One-step hydrothermal approach to fabricate carbon dots from apple juice for imaging of mycobacterium and fungal cells. Sensor Actuator B Chem 213:434–443

    Article  CAS  Google Scholar 

  24. Atchudan R, Edison T, Perumal S et al (2020) Eco-friendly synthesis of tunable fluorescent carbon nanodots from Malus floribunda for sensors and multicolor bioimaging. J Photochem Photobiol Chem 390:112–336

    Article  CAS  Google Scholar 

  25. Xinyue Z, Mingyue J, Na N et al (2018) Natural-product-derived carbon dots: From natural products to functional materials. Chem Sus Chem 11:11–24

    Article  CAS  Google Scholar 

  26. Sen L, Jingqi T, Lei W et al (2012) Hydrothermal treatment of grass: a lowcost, green route to nitrogen-doped, carbon-rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label-free detection of Cu (II) ions. Adv Mater 24:2037–2041

    Article  CAS  Google Scholar 

  27. Reza M, Samaneh B, Siavash I, Rajender V (2016) Plant-derived nanostructures: types and applications. Green Chem 18:20–52

    Article  Google Scholar 

  28. Swagatika S, Birendra B, Tapas M, Sasmita M (2012) Simple onestep synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents. Chem Commun 48:8835–8837

    Article  CAS  Google Scholar 

  29. Jumeng W, Bitao L, Peng Y (2014) Dual functional carbonaceous nanodots exist in a cup of tea. RSC Adv 4:63414–63419

    Article  CAS  Google Scholar 

  30. Jie S, Shaoming S, Xiuying C et al (2017) Facile synthesis of fluorescence carbon dots from sweet potato for Fe3+ sensing and cell imaging. Mater Sci Eng, C 76:856–864

    Article  CAS  Google Scholar 

  31. Jing W, Cai-Feng W, Su C (2012) Amphiphilic egg-derived carbon dots: Rapid plasma fabrication, pyrolysis process, and multicolor printing patterns. Angew Chem 51:9297–9301

    Article  CAS  Google Scholar 

  32. Bangda Y, Jianhui D, Xue P et al (2013) Green synthesis of carbon dots with down-and up-conversion fluorescent properties for sensitive detection of hypochlorite with a dual-readout assay. Analyst 138:6551–6557

    Article  CAS  Google Scholar 

  33. Sachdev A, Gopinath P (2015) Green synthesis of multifunctional carbon dots from coriander leaves and their potential application as antioxidants, sensors and bioimaging agents. Analyst 140:4260–4269. https://doi.org/10.1039/C5AN00454C

    Article  CAS  PubMed  Google Scholar 

  34. Dan G, Shanoming S, Qin Y, Shen J (2016) Green synthesis of nitrogendoped carbon dots from lotus root for Hg (II) ions detection and cell imaging. Appl Surf Sci 390:38–42

    Article  CAS  Google Scholar 

  35. Chatterjee A, Pakrashi S (2003) The treatise on Indian medicinal plants. V-IV. New Delhi. V-IV. New Delhi Natl Inst Sci Commun Inf Resour 128–129

  36. Alhede M, Stavnsbjerg C, Bjarnsholt T (2018) The use of fluorescent staining techniques for microscopic investigation of polymorphonuclear leukocytes and bacteria. J Pathol Microbiol Immunol 126:779–794

    CAS  Google Scholar 

  37. Ao H, Pan HF, Bao Z et al (2018) Synthesis and functionalization of stable and bright copper nanoclusters by in situ generation of silica shells for bioimaging and biosensing. ACS Appl Nano Mater 1:5673–5681

    Article  CAS  Google Scholar 

  38. Hutter E, Maysinger D (2010) Gold nanoparticles and quantum dots for bioimaging. Nano-Bio-Imaging Anal 74:592–604

    Google Scholar 

  39. Thangudu S, Kalluru P, Vankayala R (2020) Preparation, cytotoxicity, and in vitro bioimaging of water soluble and highly fluorescent palladium nanoclusters. Bioengineering 7:20

    Article  CAS  PubMed Central  Google Scholar 

  40. Ying L, Warren D, Olli H (2004) Tuovinen Fluorescence microscopy for visualization of soil microorganisms—a review. BiolFertil Soils 39:301–311

    Google Scholar 

  41. Romero M, Alves F, Stringasci MD et al (2021) One-pot microwave-assisted synthesis of carbon dots and in vivo and in vitro antimicrobial photodynamic applications. Front Microbiol 12:662149

    Article  PubMed  PubMed Central  Google Scholar 

  42. Peter A, Julio P, James K (2018) Atkins’ physical chemistry. Oxford University Press

    Google Scholar 

  43. Yadav PK, Singh VK, Chandra S et al (2019) Green synthesis of fluorescent carbon quantum ots from Azadirachta indica leaves and their peroxidase-mimetic activity for the detection of H 2 O 2 and ascorbic acid in common fresh fruits. ACS Biomater Sci Eng 5:623–632. https://doi.org/10.1021/acsbiomaterials.8b01528

    Article  CAS  PubMed  Google Scholar 

  44. Pal T, Mohiyuddin S, Packirisamy G (2018) Facile and green synthesis of multicolor fluorescence carbon dots from curcumin. In vitro and in vivo bioimaging and other applications. ACS Omega 3:831–843. https://doi.org/10.1021/acsomega.7b01323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Arul V, Sethuraman MG (2019) Hydrothermally green synthesized nitrogen-doped carbon dots from Phyllanthus emblica and their catalytic ability in the detoxification of textile effluents. ACS Omega 4:3449–3457. https://doi.org/10.1021/acsomega.8b03674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang M, Zhao Y, Cheng J et al (2017) Novel carbon dots derived from Schizonepetae Herba Carbonisata and investigation of their haemostatic efficacy. Artif Cells Nanomedicine Biotechnol. https://doi.org/10.1080/21691401.2017.1379015

    Article  Google Scholar 

  47. Wang N, Wang Y, Guo T et al (2016) Green preparation of carbon dots with papaya as carbon source for effective fluorescent sensing of Iron (III) and Escherichia coli. Biosens Bioelectron 85:68–75. https://doi.org/10.1016/j.bios.2016.04.089

    Article  CAS  PubMed  Google Scholar 

  48. Li C-L, Ou C-M, Huang C-C et al (2014) Carbon dots prepared from ginger exhibiting efficient inhibition of human hepatocellular carcinoma cells. J Mater Chem B 2:4564. https://doi.org/10.1039/c4tb00216d

    Article  CAS  PubMed  Google Scholar 

  49. Dai J (2019) Nitrogen-doped carbon quantum dots with pinellia ternata as carbon source for high sensitive determination of chromium (vi). Appl Ecol Environ Res 17. https://doi.org/10.15666/aeer/1705_1213912153

  50. Chandra S, Singh VK, Yadav PK et al (2019) Mustard seeds derived fluorescent carbon quantum dots and their peroxidase-like activity for colorimetric detection of H2O2 and ascorbic acid in a real sample. Anal Chim Acta 1054:145–156. https://doi.org/10.1016/j.aca.2018.12.024

    Article  CAS  PubMed  Google Scholar 

  51. Zhao X, Liao S, Wang L et al (2019) Facile green and one-pot synthesis of purple perilla derived carbon quantum dot as a fluorescent sensor for silver ion. Talanta 201:1–8. https://doi.org/10.1016/j.talanta.2019.03.095

    Article  CAS  PubMed  Google Scholar 

  52. Zhang M, Cheng J, Zhang Y et al (2020) Green synthesis of Zingiberis rhizoma -based carbon dots attenuates chemical and thermal stimulus pain in mice. Nanomedicine 15:851–869. https://doi.org/10.2217/nnm-2019-0369

    Article  CAS  PubMed  Google Scholar 

  53. Zhenxiang L, Weina G, Chang L (2018) Isolation, identification and characterization of novel Bacillus subtilis. J Vet Med Sci 80:427–433

    Article  CAS  Google Scholar 

  54. Deng H, Yin-Huan LX, Ke-Lin L et al (2017) Chitosan-stabilized platinum nanoparticles as effective oxidase mimics for colorimetric detection of acid phosphatase. Nanoscale 9(29):10292–10300

    Article  CAS  PubMed  Google Scholar 

  55. Cullity D (2001) Elements of X-ray Diffraction. Pearson

  56. Weiping W, Ya-Chun L, Hong H et al (2014) Facile synthesis of water-soluble and biocompatible fluorescent nitrogen-doped carbon dots for cell imaging. Analyst 139:1692–1696

    Article  Google Scholar 

  57. Pin-Che H, Zih-Yu S, Chia-Hsin L, Huan-Tsung C (2012) Synthesis and analytical applications of photoluminescent carbon nanodots. Green Chem 14:917–920

    Article  CAS  Google Scholar 

  58. Hanjun S, Andong Z, Nan G et al (2015) Deciphering a nanocarbon-based artificial peroxidase: Chemical identification of the catalytically active and substrate-binding sites on graphene quantum dots. Angew Chem 54:7176–7180

    Article  CAS  Google Scholar 

  59. Mária K, Zoran M, Petr H et al (2018) Carbon quantum dots modified polyurethane nanocomposite as effective photocatalytic and antibacterial agents. ACS Biomater Sci Eng 4:3983–3993

    Article  CAS  Google Scholar 

  60. Hoffman RA, Forsén S, Gestblom B (1971) Analysis of NMR spectra. Springer, Berlin Heidelberg, Berlin, Heidelberg

    Book  Google Scholar 

  61. Jia X, Li J, Wang E (2012) One-pot green synthesis of optically pH-sensitive carbon dots with upconversion luminescence. Nanoscale 4:5572–5575

    Article  CAS  PubMed  Google Scholar 

  62. Siavash I, Rajender V (2020) Green synthesis, biomedical and biotechnological applications of carbon and graphene quantum dots. A review. Environ Chem Lett 18:1–25

    CAS  Google Scholar 

  63. Bányai L, Koch SW (1993) Semiconductor quantum dots. World Scientific

  64. Fuller ME, Streger SH, Rothmel RK et al (2000) Development of a vital fluorescent staining method for monitoring bacterial transport in subsurface environments. Appl Environ Microbiol 66:4486–4496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Dr. M. K. Bera contributed to the study conception and design. Material preparation, data collection and analysis were performed by Mrs. N. Sharma and Dr. I. Sharma. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Milan Kumar Bera.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflicts of Interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, N., Sharma, I. & Bera, M.K. Microwave-Assisted Green Synthesis of Carbon Quantum Dots Derived from Calotropis Gigantea as a Fluorescent Probe for Bioimaging. J Fluoresc 32, 1039–1049 (2022). https://doi.org/10.1007/s10895-022-02923-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-022-02923-4

Keywords

Navigation