Skip to main content
Log in

Role of graphene oxide (GO) for enhancing the solidification rate and mechanical properties of Sn–6.5Zn–0.4 wt% Cu Pb-free solder alloy

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The role of incorporation of the 0.5 and 1.0 wt% GO with the Sn–6.5Zn–0.4 wt% Cu has been researched. The effect of GO additions on the nucleation rate Φ during the solidification process of examined alloys was investigated. The microstructure characteristics, thermal behavior, and tensile stress–strain variables were examined. FE-SEM examinations revealed the existence of Zn8Cu5 intermetallic compounds IMCs. The grain size of β-Sn and the α-Zn needles were remarkably refined after incorporating the GO nanosheets (GONs) in the solder alloys matrix. GONs have been sacrificed to serve as germinating seeds for nucleation embryos during the crystallization. The sophisticated microstructure caused the enhancement of the tensile parameters (i.e., Ys, UTS, and El%). Eventually, the activation energy (Q) and stress exponent (n) have been computed to estimate the deformation mechanism of the examined alloys. Based on the Q values of SZC-0.0GO and SZC-0.5GO solder alloys that equal 62.0 and 71.1 kJ/mol, respectively. The dislocations processes of the pipe diffusion mechanism were predominant. Moreover, increasing the GO content led to increasing the Q value of SZC-1.0GO to 84.8 kJ/mol, which led to converting the pipe diffusion mechanism into a lattice diffusion mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. M. Abtew, G. Selvaduray, Lead-free solders in microelectronics. Mater. Sci. Eng. R 27, 95–141 (2000). https://doi.org/10.1016/S0927-796X(00)00010-3

    Article  Google Scholar 

  2. P. Zhang, S. Xue, J. Wang, New challenges of miniaturization of electronic devices: electromigration and thermomigration in lead-free solder joints. Mater. Des. 192, 108726 (2020). https://doi.org/10.1016/j.matdes.2020.108726

    Article  CAS  Google Scholar 

  3. W. Fu, S.P. Hu, X.G. Song, J.X. Li, J. Cao, J.C. Feng, G.D. Wang, Wettability and bonding of graphite by Sn0.3Ag0.7Cu-Ti alloys. Carbon N. Y. 121, 536–543 (2017). https://doi.org/10.1016/j.carbon.2017.06.030

    Article  CAS  Google Scholar 

  4. A.B. El Basaty, A.M. Deghady, E.A. Eid, Influence of small addition of antimony (Sb) on thermal behavior, microstructural and tensile properties of Sn-9.0Zn-0.5Al Pb-free solder alloy. Mater. Sci. Eng. A 701, 245–253 (2017). https://doi.org/10.1016/j.msea.2017.06.092

    Article  CAS  Google Scholar 

  5. G. Ren, I.J. Wilding, M.N. Collins, Alloying influences on low melt temperature SnZn and SnBi solder alloys for electronic interconnections. J. Alloys Compd. 665, 251–260 (2016). https://doi.org/10.1016/j.jallcom.2016.01.006

    Article  CAS  Google Scholar 

  6. E.A. Eid, A.M. Deghady, A.N. Fouda, Enhanced microstructural, thermal and tensile characteristics of heat treated Sn-5.0Sb-0.3Cu (SSC-503) Pb-free solder alloy under high pressure. Mater. Sci. Eng. A 743, 726–723 (2019). https://doi.org/10.1016/j.msea.2018.11.137

    Article  CAS  Google Scholar 

  7. K.N. Subramanian, Lead-Free Electronic Solders, A Special Issue of the Journal of Materials Science: Materials in Electronics, Library of Congress Control Number: 2006935131, (2007). https://doi.org/10.1007/978-0-387-48433-4

  8. Y.W. Yen, W. Yu, C.H. Wang, C.M. Chen, Y.C. Li, P.Y. Chen, G. Da Chen, Study of interfacial reactions between lead-free solders and Cu-xZn alloys. J. Electron. Mater. 48, 170–181 (2019). https://doi.org/10.1007/s11664-018-6577-y

    Article  CAS  Google Scholar 

  9. P. Pandey, C.S. Tiwary, K. Chattopadhyay, Effects of Cu and In trace elements on microstructure and thermal and mechanical properties of Sn-Zn eutectic alloy. J. Electron. Mater. 48, 2660–2669 (2019). https://doi.org/10.1007/s11664-018-06869-x

    Article  CAS  Google Scholar 

  10. A.A. El-Daly, H.A. Hashem, N. Radwan, F. El-Tantawy, T.R. Dalloul, N.A. Mansour, H.M. Abd-Elmoniem, E.H. Lotfy, Robust effects of Bi doping on microstructure development and mechanical properties of hypoeutectic Sn–6.5Zn solder alloy. J. Mater. Sci. Mater. Electron. 27, 2950–2962 (2016). https://doi.org/10.1007/s10854-015-4115-8

    Article  CAS  Google Scholar 

  11. E.A. Eid, E.H. El-Khawas, A.S. Abd-Elrahman, Impact of Sb additives on solidification performance, microstructure enhancement and tensile characteristics of Sn-6.5Zn-0.3Cu Pb-free solder alloy. J. Mater. Sci. Mater. Electron. 30, 6507–6518 (2019). https://doi.org/10.1007/s10854-019-00956-3

    Article  CAS  Google Scholar 

  12. A.A. El-Daly, W.M. Desoky, A.F. Saad, N.A. Mansor, E.H. Lotfy, H.M. Abd-Elmoniem, H. Hashem, The effect of undercooling on the microstructure and tensile properties of hypoeutectic Sn-6.5Zn-xCu Pb-free solders. Mater. Des. 80, 152–162 (2015). https://doi.org/10.1016/j.matdes.2015.05.016

    Article  CAS  Google Scholar 

  13. I. Shafiq, Y.C. Chan, N.B. Wong, W.K.C. Yung, Influence of small Sb nanoparticles additions on the microstructure, hardness and tensile properties of Sn-9Zn binary eutectic solder alloy. J. Mater. Sci. Mater. Electron. 23, 1427–1434 (2012). https://doi.org/10.1007/s10854-011-0608-2

    Article  CAS  Google Scholar 

  14. A.A. El-Daly, A.E. Hammad, G.A. Al-Ganainy, A.A. Ibrahiem, Enhancing mechanical response of hypoeutectic Sn-6.5Zn solder alloy using Ni and Sb additions. Mater. Des. 52, 966–973 (2013). https://doi.org/10.1016/j.matdes.2013.06.023

    Article  CAS  Google Scholar 

  15. T.T. Dele-Afolabi, M.A. Azmah Hanim, M. Norkhairunnisa, H.M. Yusoff, M.T. Suraya, Investigating the effect of isothermal aging on the morphology and shear strength of Sn-5Sb solder reinforced with carbon nanotubes. J. Alloys Compd. 649, 368–374 (2015). https://doi.org/10.1016/j.jallcom.2015.07.036

    Article  CAS  Google Scholar 

  16. E.A. Eid, A.B. El-Basaty, A.M. Deghady, S. Kaytbay, A. Nassar, Influence of nano-metric Al2 O3 particles addition on thermal behavior, microstructural and tensile characteristics of hypoeutectic Sn-5.0Zn-0.3Cu Pb-free solder alloy. J. Mater. Sci. Mater. Electron. 30, 4326–4335 (2019). https://doi.org/10.1007/s10854-019-00726-1

    Article  CAS  Google Scholar 

  17. G.S. Al-Ganainy, A.A. El-Daly, A. Fawzy, N. Hussein, Effect of adding nanometric ZnO particles on thermal, microstructure and tensile creep properties of Sn–6.5 wt%Zn–3 wt%In solder alloy. J. Mater. Sci. Mater. Electron. 28, 13303–13312 (2017). https://doi.org/10.1007/s10854-017-7166-1

    Article  CAS  Google Scholar 

  18. A.M. Yassin, H.Y. Zahran, A.F. Abd El-Rehim, Effect of TiO2 nanoparticles addition on the thermal, microstructural and room-temperature creep behavior of Sn-Zn based solder. J. Electron. Mater. 47, 6984–6994 (2018). https://doi.org/10.1007/s11664-018-6624-8

    Article  CAS  Google Scholar 

  19. K. Mehrabi, F. Khodabakhshi, E. Zareh, A. Shahbazkhan, A. Simchi, Effect of alumina nanoparticles on the microstructure and mechanical durability of meltspun lead-free solders based on tin alloys. J. Alloys Compd. 688, 143–155 (2016). https://doi.org/10.1016/j.jallcom.2016.06.296

    Article  CAS  Google Scholar 

  20. R. Sun, Y. Sui, J. Qi, F. Wei, Y. He, X. Chen, Q. Meng, Z. Sun, Influence of SnO2 nanoparticles addition on microstructure, thermal analysis, and interfacial IMC growth of Sn1.0Ag0.7Cu solder. J. Electron. Mater. 46, 4197–4205 (2017). https://doi.org/10.1007/s11664-017-5374-3

    Article  CAS  Google Scholar 

  21. R. Sayyadi, F. Khodabakhshi, N.S. Javid, G. Khatibi, Influence of graphene content and nickel decoration on the microstructural and mechanical characteristics of the Cu/Sn–Ag–Cu/Cu soldered joint. J. Mater. Res. Technol. 9, 8953–8970 (2020). https://doi.org/10.1016/j.jmrt.2020.06.026

    Article  CAS  Google Scholar 

  22. Z. Zhao, P. Bai, W. Du, B. Liu, D. Pan, R. Das, C. Liu, Z. Guo, An overview of graphene and its derivatives reinforced metal matrix composites: preparation, properties and applications. Carbon N. Y. 170, 302–326 (2020). https://doi.org/10.1016/j.carbon.2020.08.040

    Article  CAS  Google Scholar 

  23. A.N. Fouda, M.K.A. Assy, G. El Enany, N. Yousf, Enhanced capacitance of thermally reduced hexagonal graphene oxide for high performance supercapacitor. Fuller. Nanotub. Carbon Nanostruct. 23, 618–622 (2015). https://doi.org/10.1080/1536383X.2014.943889

    Article  CAS  Google Scholar 

  24. E.A. Eid, M.M. Sadawy, Role of effective strain during cold rolling deformation on mechanical characteristics of AISI 304 steel. Met. Mater. Int. 27, 4536–4549 (2021). https://doi.org/10.1007/s12540-020-00722-9

    Article  CAS  Google Scholar 

  25. M. Hedayatian, K. Vahedi, A. Nezamabadi, A. Momeni, Microstructural and mechanical behavior of Al6061-graphene oxide nanocomposites. Met. Mater. Int. 26, 760–772 (2020). https://doi.org/10.1007/s12540-019-00361-9

    Article  CAS  Google Scholar 

  26. D. Wu, T.G. Nieh, Incipient plasticity and dislocation nucleation in body-centered cubic chromium. Mater. Sci. Eng. A. 609, 110–115 (2014). https://doi.org/10.1016/j.msea.2014.04.107

    Article  CAS  Google Scholar 

  27. D.A. Porter, A. Kenneth, K.E. Easterling, M.Y. Sherif, Phase Transformations in Metals and Alloys, 3rd edn. (CRC Press Taylor & Francis Group, Boca Raton, 2009)

    Google Scholar 

  28. E.A. Eid, A.N. Fouda, E.S.M. Duraia, Effect of adding 0.5wt% ZnO nanoparticles, temperature and strain rate on tensile properties of Sn-5.0wt% Sb-0.5wt% Cu (SSC505) lead free solder alloy. Mater. Sci. Eng. A 657, 104–114 (2016). https://doi.org/10.1016/j.msea.2016.01.081

    Article  CAS  Google Scholar 

  29. Y. Ma, X. Li, W. Zhou, L. Yang, P. Wu, Reinforcement of graphene nanosheets on the microstructure and properties of Sn58Bi lead-free solder. Mater. Des. 113, 264–272 (2017). https://doi.org/10.1016/j.matdes.2016.10.034

    Article  CAS  Google Scholar 

  30. A. Das, Effect of stress state on fracture features. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 49, 1425–1432 (2018). https://doi.org/10.1007/s11661-018-4516-4

    Article  CAS  Google Scholar 

  31. A. Gupta, C. Srivastava, Correlation between microstructure and corrosion behaviour of SnBi-graphene oxide composite coatings. Surf. Coat. Technol. 375, 573–588 (2019). https://doi.org/10.1016/j.surfcoat.2019.07.060

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under Grant No. (D-390-662-1441). The authors, therefore, gratefully acknowledge the DSR technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. N. Fouda or E. A. Eid.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fouda, A.N., Eid, E.A. Role of graphene oxide (GO) for enhancing the solidification rate and mechanical properties of Sn–6.5Zn–0.4 wt% Cu Pb-free solder alloy. J Mater Sci: Mater Electron 33, 522–540 (2022). https://doi.org/10.1007/s10854-021-07324-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07324-0

Navigation