Skip to main content
Log in

Effect of Stress State on Fracture Features

  • Communication
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Present article comprehensively explores the influence of specimen thickness on the quantitative estimates of different ductile fractographic features in two dimensions, correlating tensile properties of a reactor pressure vessel steel tested under ambient temperature where the initial crystallographic texture, inclusion content, and their distribution are kept unaltered. It has been investigated that the changes in tensile fracture morphology of these steels are directly attributable to the resulting stress–state history under tension for given specimen dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. G.E. Lucas and G.R. Odette: Nucl. Eng. Des. Fus., 1985, vol. 2, p. 145–73.

    Article  Google Scholar 

  2. J.F. Knott: The Royal Society and Royal Academy of Engineering Lecture, 1999.

  3. D.F.B. Sarzosa, R.F. Souza, and C. Ruggieri: Eng. Fract. Mech., 2015, vol. 147, p. 331–54.

    Article  Google Scholar 

  4. A.J. Horn, A.H. Sherry, and P.J. Budden: Int. J. Press. Vess. Pip., 2017, vol. 154, p. 29–40.

    Article  Google Scholar 

  5. A. Kruglova, M. Roland, S. Diebels, T. Dahmen, P. Slusallek, and F. Mucklich: Mater. Charact., vol. 131, p. 1–11.

  6. A. Das and S. Tarafder: Int. J. Plast., 2009, vol. 25, p. 2222–47.

    Article  Google Scholar 

  7. A. Das and S. Tarafder: Scripta Mater., 2008, vol. 59, p. 1014–17.

    Article  Google Scholar 

  8. A. Das, S.K. Das, and S. Tarafder: Metall. Mater. Trans. A, 2009, vol. 40A, p. 3138–45.

    Article  Google Scholar 

  9. A. Das: Philos. Mag., 2017, vol. 97, p. 3084–141.

    Article  Google Scholar 

  10. A. Das and J.K. Chakravartty: Surf. Topogr. Metrol. Prop., 2017, vol. 5, p. 045006.

    Article  Google Scholar 

  11. A.L. Gurson: J. Eng. Mater. Technol., 1977, vol. 99, p. 2–15.

    Article  Google Scholar 

  12. S.H. Goods and L.M. Brown: Acta Metall., 1979, vol. 27, p. 1–15.

    Article  Google Scholar 

  13. W.M. Garrison and N.R. Moody: J. Phys. Chem. Sol., 1987, vol. 48, p. 1035-74.

    Article  Google Scholar 

  14. A. Das, T. Chowdhury, and S. Tarafder: Mater. Des., 2014, vol. 54, p. 1002–09.

    Article  Google Scholar 

  15. A. Das, S. Sivaprasad, M. Tarafder, S.K. Das, and S. Tarafder: Appl. Soft Comp., 2013, vol. 13, p. 1033–41.

    Article  Google Scholar 

  16. A.W. Thompson: Metall. Trans. A, 1987, vol. 18A, p. 1877–86.

    Article  Google Scholar 

  17. A. Das: Mater. Sci. Eng. A, 2016, vol. 658, p. 484–89.

    Article  Google Scholar 

  18. A. Das: Mater. Res. Exp., 2016, vol. 3, p. 1066501.

    Google Scholar 

  19. Z.L. Zhang, J. Ødegård, and C. Thaulow: Proc. 19th Risø Int. Symp. Material Science: Modelling of Structure and Mechanics of Materials from Microscale to Product, Roskilde, Denmark, 1998.

  20. J.R. Rice and D.M. Tracey: J. Mech. Phys. Sol., 1969, vol. 17, p. 201–17.

    Article  Google Scholar 

  21. F.A. McClintock: J. Appl. Mech., 1968, vol. 35, p. 363–71.

    Article  Google Scholar 

  22. 22.A.W. Thompson: Acta Metall., 1983, vol. 31, p. 1517–23.

    Article  Google Scholar 

  23. M. Dunand and D. Mohr: Eng. Fract. Mech., 2011, vol. 78, p. 2919–34.

    Article  Google Scholar 

  24. C.C. Roth and D. Mohr: Int. J. Plast., 2016, vol. 79, p. 328–54.

    Article  Google Scholar 

  25. K. Kumar, A. Pooleery, K. Madhusoodanan, R.N. Singh, A. Chatterjee, B.K. Dutta, and R.K. Sinha: Mater. Sci. Eng. A, 2016, vol. 675, p. 32–43.

    Article  Google Scholar 

  26. Y.H. Zhang, B.F. Bai, J.Q. Li, J.B. Chen, and C.Y. Shen: Appl. Surf. Sci., 2011, vol. 257, p. 2984–89.

    Article  Google Scholar 

  27. V. Kerlins and A. Phillips: ASM Handbook, 1987, vol. 12, p. 12–71.

    Google Scholar 

  28. A.A. Benzerga, J. Besson, and A. Pineau: Acta Mater., 2004, vol. 52, p. 4623–38.

    Article  Google Scholar 

  29. R.E. Kovarik, J.W. Ergle, and C.W. Fairhurst: Dental Mater., 1991, vol. 7, p. 166–69.

    Article  Google Scholar 

  30. A.H. Cottrell: in Fracture, B.L. Averbach, D.R. Felbeck, G.T. Hahn, and D.A. Thomas, eds., The Technological Press of MIT, Cambridge, MA, 1959, p. 20.

    Google Scholar 

  31. F.A. McClintock: in Fracture, vol. III, H. Liebowitz, ed., Academic Press, Cambridge, MA, 1971, pp. 47–218.

    Google Scholar 

  32. K. Decamp, L. Bauvineau, J. Besson, and A. Pineau: Int. J. Fract., 1997, vol. 88, p. 1–08.

    Article  Google Scholar 

  33. A. Saxena: Nonlinear Fracture Mechanics for Engineers, CRC Press, Boca Raton, FL, 1988.

    Google Scholar 

  34. D. Matthieu and D. Mohr: Eng. Fract. Mech., 2011, vol. 78, p. 2919–34.

    Article  Google Scholar 

  35. N.K. Arakere, S. Siddiqui, and F. Ebrahimi: Int. J. Sol. Str., 2009, vol. 46, p. 3027–44.

    Article  Google Scholar 

  36. D.P. Harvey II: Mater. Sci. Technol., 2003, vol. 19, p. 1635–40.

    Article  Google Scholar 

  37. D.P. Harvey II and M.I. Jolles: in Quantitative Methods in Fractography, B.M. Strauss and S.K. Putatunda, eds., ASTM STP 1085, ASTM, Philadelphia, PA, 1990, pp. 26–38.

    Google Scholar 

  38. A.S. Argon, J. Im, and R. Safoglu: Metall. Trans. A, 1975, vol. 6A, p. 825–37.

    Article  Google Scholar 

  39. E. Hara, T. Yokozeki, H. Hatta, T. Ishikawa, and Y. Iwahori: Composites: Part A, 2010, vol. 41, p. 1425–33.

    Article  Google Scholar 

  40. F. Ebnoether and D. Mohr: Int. J. Sol. Str., 2013, vol. 50, p. 1055–66.

    Article  Google Scholar 

  41. J.S. Olsen, Z.L. Zhang, H. Lu, and C. van der Eijk: Eng. Fract. Mech., 2012, vol. 84, p. 1–14.

    Article  Google Scholar 

  42. J. Arndt, H. Majedi, and W. Dahl: J. Phys. IV, 1996, vol. 6, pp. 23–32.

    Google Scholar 

  43. T.B. Cox and J.R. Low, Jr.: Metall. Trans., 1974, vol. 5, p. 1457–70.

    Article  Google Scholar 

  44. I. E. French and P.F. Weinrich: Scripta Metall. Mater., 1974, vol. 8, p. 87–90.

    Article  Google Scholar 

  45. A. Pineau, and P. Joly: Mechanical Engineering Publications, London, 1991, pp. 381–414.

  46. Y. Takeda, C. Kiattisaksri, M. Aramaki, S. Munetoh, and O. Furukimi: ISIJ Int., 2017, vol. 57, p. 1129–37.

    Article  Google Scholar 

  47. B. Younise, M. Rakin, B. Medjo, and A. Sedmak: FME Trans., 2010, vol. 38, p. 197–202.

    Google Scholar 

  48. G.E. Dieter: Mechanical Metallurgy, 2005, SI Metric Edition, 1988.

  49. T. Pardoen and J.W. Hutchinson: Acta Mater., 2003, vol. 51, p. 133–48.

    Article  Google Scholar 

  50. L. Devillers Guerville, J. Besson, and A. Pineau: Nucl. Eng. Des., 1997, vol. 168, p. 211–25.

    Article  Google Scholar 

Download references

The insightful suggestions, comments, and strong recommendations about the manuscript by the anonymous reviewers are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arpan Das.

Additional information

Manuscript submitted August 24, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, A. Effect of Stress State on Fracture Features. Metall Mater Trans A 49, 1425–1432 (2018). https://doi.org/10.1007/s11661-018-4516-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4516-4

Navigation