Skip to main content
Log in

Effect of TiO2 Nanoparticles Addition on the Thermal, Microstructural and Room-Temperature Creep Behavior of Sn-Zn Based Solder

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The effect of adding TiO2 nanoparticles as well as aging time on the thermal, microstructural and creep properties of Sn-6.5Zn solder was studied. The Sn-6.5Zn composite solders were prepared by mechanically dispersing different weight percentages (0.0 wt.%, 0.25 wt.%, 0.50 wt.%, 0.75 wt.% and 1.0 wt.%) of TiO2 nanoparticles into Sn-6.5Zn solder. After being solution heat treated at 453 K for 4 h, specimens were cooled by water quenching at 273 K. Specimens were artificially aged at 393 K for durations ranging from 15 to 120 min, followed by water quenching at 273 K to cease further aging. The thermal behavior of the composite solders was investigated using differential scanning calorimetry (DSC). X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to observe the microstructure of the solders. The mechanical properties were characterized using tensile creep tests and correlated with microstructural features. The investigation revealed that the minimum creep rate of solders decreased with the increase in the content of TiO2, while it increased with increasing aging time. The data from microstructure-properties analysis showed that the nano-TiO2 particles had significantly refined the microstructure and improved the creep resistance in comparison with the Sn-Zn solder. The calculated stress exponent values were close to 7.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.A. El-Daly, A.E. Hammad, G.A. Al-Ganainy, and A.A. Ibrahiem, Mater. Des. 52, 966 (2013).

    Article  CAS  Google Scholar 

  2. A.F. Abd El-Rehim, H.Y. Zahran, and S. AlFaify, J. Mater. Eng. Perform. 27, 344 (2018).

    Article  CAS  Google Scholar 

  3. A.F. Abd El-Rehim and H.Y. Zahran, J. Alloys Compd. 695, 3666 (2017).

    Article  CAS  Google Scholar 

  4. A.F. Abd El-Rehim and H.Y. Zahran, Mater. Sci. Technol. 30, 434 (2014).

    Article  CAS  Google Scholar 

  5. P. Pandey, C.S. Tiwary, and K. Chattopadhyay, J. Electron. Mater. 45, 5468 (2016).

    Article  CAS  Google Scholar 

  6. X. Chen, M. Li, X.X. Ren, A.M. Hu, and D.L. Mao, J. Electron. Mater. 35, 1734 (2006).

    Article  CAS  Google Scholar 

  7. S.P. Yu, H.J. Lin, and M.H. Hon, J. Mater. Sci.: Mater. Electron. 11, 461 (2000).

    CAS  Google Scholar 

  8. H. Lee, and S. Park, Creep strain measurement of an actual lead free solder interconnect using digital image correlation. In: Proceedings of the ASME International Mechanical Engineering Congress and Exposition IMECE, Houston, Texas, pp. 9–15 (2012)

  9. R. Mahmudi, A.R. Geranmayeh, H. Noori, and M. Shahabi, Mater. Sci. Eng., A 491, 110 (2008).

    Article  Google Scholar 

  10. T. Shrestha, S. Gollapudi, I. Charit, and K.L. Murty, J. Mater. Sci. 49, 2127 (2014).

    Article  CAS  Google Scholar 

  11. H. Mavoori, T. Chin, S. Vaynman, B. Moran, L. Keer, and M. Fine, J. Electron. Mater. 26, 783 (1997).

    Article  CAS  Google Scholar 

  12. N. Hamada, M. Hamada, T. Uesugi, Y. Takigawa, and K. Higashi, Mater. Trans. 51, 1747 (2010).

    Article  CAS  Google Scholar 

  13. A.A. El-Daly, A.E. Hammad, G.A. Al-Ganainy, and A.A. Ibrahiem, Mater. Des. 56, 594 (2014).

    Article  CAS  Google Scholar 

  14. G. Saad, A. Fawzy, and E. Shawky, J. Alloys Compd. 479, 844 (2009).

    Article  CAS  Google Scholar 

  15. S.K. Das, A. Sharif, Y.C. Chan, N.B. Wong, and W.K.C. Yung, Microelectron. Eng. 86, 2086 (2009).

    Article  CAS  Google Scholar 

  16. F. Tai, F. Guo, J. Liu, Z. Xia, Y. Shi, Y. Lei, and X. Li, Solder. Surf. Mount Technol. 22, 50 (2010).

    Article  CAS  Google Scholar 

  17. W.Q. Xing, X.Y. Yu, H. Li, L. Ma, W. Zuo, P. Dong, W.X. Wang, and M. Ding, Mater. Sci. Eng., A 678, 252 (2016).

    Article  CAS  Google Scholar 

  18. A.K. Gain, Y.C. Chan, A. Sharif, N.B. Wong, and W.K.C. Yung, Microelectron. Reliab. 49, 746 (2009).

    Article  CAS  Google Scholar 

  19. T. Fouzder, A.K. Gain, Y.C. Chan, A. Sharif, and W.K.C. Yung, Microelectron. Reliab. 50, 2051 (2010).

    Article  CAS  Google Scholar 

  20. M. Ahmed, T. Fouzder, A. Sharif, A.K. Gain, and Y.C. Chan, Microelectron. Reliab. 50, 1134 (2010).

    Article  CAS  Google Scholar 

  21. X. Liu, M. Huang, C. Wu, M.L. Wu, and L. Wang, J. Mater. Sci.: Mater. Electron. 21, 1046 (2010).

    CAS  Google Scholar 

  22. A.F. Abd El-Rehim, J. Mater. Sci. 43, 1444 (2008).

    Article  CAS  Google Scholar 

  23. R.W. Evans and B. Wilshire, Introduction to Creep (London: The Institute of Materials, 1993), p. 43.

    Google Scholar 

  24. A. Yassin and E. Gomaa, Phys. J. 1, 163 (2015).

    Google Scholar 

  25. T.C. Chang, M.H. Hon, M.C. Wang, and D.Y. Lin, J. Electrochem. Soc. 151, C484 (2004).

    Article  CAS  Google Scholar 

  26. C. Zhang, W. Hu, C. Liu, Y. Zhao, J. Shang, and Z. Wen, Mater. Sci. Technol. 34, 1176 (2018).

    Article  CAS  Google Scholar 

  27. E.A. Eid, A.N. Fouda, and E.M. Duraia, Mater. Sci. Eng., A 657, 104 (2016).

    Article  CAS  Google Scholar 

  28. G. Malakondaiah and P.R. Rao, Def. Sci. J. 35, 201 (1985).

    Article  CAS  Google Scholar 

  29. H. Mavoori and S. Jin, J. Electron. Mater. 27, 1216 (1988).

    Article  Google Scholar 

  30. C. Rauta, A. Dasgupta, and C. Hillman, Solder phase coarsening, fundamentals, preparation, measurement and prediction. In: Proceedings of the World Congress on Engineering, Vol. III, July 3–5, 2013, London, U.K. ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

  31. X. Yu, X. Hu, Y. Li, and R. Zhang, J. Mater. Sci.: Mater. Electron. 26, 2782 (2015).

    CAS  Google Scholar 

  32. Y. Ding, C.Q. Wang, Y.H. Tian, and M.Y. Li, J. Alloys Compd. 428, 274 (2007).

    Article  CAS  Google Scholar 

  33. F. Abd El-Salam, H.Y. Zahran, and S.M. Abdelaziz, Int. J. New Technol. Res. 1, 1 (2015).

    Google Scholar 

  34. B.A. Nejand, S. Sanjabi, and V. Ahmadi, Trans. F: Nanotechnol. 17, 102 (2010).

    CAS  Google Scholar 

  35. S.G. Desmarest, Mater. Sci. Technol. 28, 257 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through research groups program under grant number R.G.P. 1/60/39.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Abd El-Rehim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yassin, A.M., Zahran, H.Y. & Abd El-Rehim, A.F. Effect of TiO2 Nanoparticles Addition on the Thermal, Microstructural and Room-Temperature Creep Behavior of Sn-Zn Based Solder. J. Electron. Mater. 47, 6984–6994 (2018). https://doi.org/10.1007/s11664-018-6624-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6624-8

Keywords

Navigation