Skip to main content
Log in

Enrichment of piezoelectric properties in Nb5+doped (0.94) (Na0.5Bi0.5)TiO3–(0.06) BaTiO3 ceramics across morphotropic phase boundary region

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Lead-free piezoelectric compounds (0.94)(Na0.5Bi0.5)TiO3–(0.06) BaTiO3 [NBBT (94/06)] + x wt.% Nb5+ (x = 0%, 1%, 1.5%, 2%, and 2.5%) were synthesized by the solid-state reaction route and these powders were pelletized and sintered for dielectric and piezoelectric characterization. The phase coexistence Monoclinic (Cc) + Rhombohedral (R3c) was affirmed using X-ray Powder diffraction analysis. The structural properties like cell parameters and space group of the synthesized ceramics were investigated by the Rietveld refinement analysis. The surface morphology and grain size of the fractured ceramics were explored using SEM imaging technique. The dielectric properties for all the ratios of NBBT (94/06) ceramics were examined using LCR meter. The piezoelectric coefficients such as d33 and g33 of Nb-doped NBBT (94/06) ceramics were investigated. The saturation polarization (Ps) and remanent polarization (Pr) were exhibited from the P–E hysteresis loop analysis at room temperature. The appropriate addition of Nb5+ (x = 1.5%) in NBBT (94/06) material demonstrates eminent dielectric constant and piezoelectric coefficient d33 than other wt.% of Nb. The replacement of Ti4+ with higher radius cations Nb5+ in B-site of ABO3 composes tilting of polar BO6 octahedra resulting in rhombohedra distortion (RD) (90° − α), in addition, the polarizability of ions and various valance states of B-site cations could be responsible for RD (90° − α) ensuing relatively high dielectric constant and piezoelectricity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. L. Zheng, X. Yi, S. Zhang, W. Jiang, B. Yang, R. Zhang, W. Cao, Appl. Phys. Lett. 103, 122905–122908 (2013)

    Article  CAS  Google Scholar 

  2. K. Madhan, R. Thiyagarajan, C. Jagadeeshwaran, A. Paul Blessington Selvadurai, V. Pazhanivelu, K. Aravinth, W. Yang, R. Murugaraj, J. Sol–Gel Sci. Technol. 88(3), 584–592 (2018)

    Article  CAS  Google Scholar 

  3. K. Madhan, R. Murugaraj, J. Sol–Gel Sci. Technol. (2020). https://doi.org/10.1007/s10971-020-05311-1

    Article  Google Scholar 

  4. K. Madhan, R. Murugaraj, Appl. Phys. A 126, 97 (2020)

    Article  CAS  Google Scholar 

  5. K. Madhan, C. Jagadeeshwaran, R. Murugaraj, J. Mater. Sci. Mater. Electron. 30, 2953–29653 (2019)

    Article  CAS  Google Scholar 

  6. A.K. Kalyani, K. Brajesh, A. Senyshyn, R. Ranjan, Appl. Phys. Lett. 104, 252906 (2014)

    Article  CAS  Google Scholar 

  7. A.R. Paterson, H. Nagata, X. Tan, J.E. Daniels, M. Hinterstein, R. Ranjan, P.B. Groszewicz, W. Jo, J.L. Jones, MRS Bull. 43, 600 (2018)

    Article  CAS  Google Scholar 

  8. Y.-M. Chiang, G.W. Farrey, A.N. Soukhojak, Appl. Phys. Lett. 73(25), 3683–3685 (1998)

    Article  CAS  Google Scholar 

  9. T. Takenaka, K.-I. Maruyama, K. Sakata, Jpn. J. Appl. Phys. 30(9B), 2236–2239 (1991)

    Article  CAS  Google Scholar 

  10. B.-J. Chu, D.-R. Chen, G.-R. Li, Q.-R. Yin, J. Eur. Ceram. Soc. 22(13), 2115–2121 (2002)

    Article  CAS  Google Scholar 

  11. W. Jo, J.E. Daniels, J.L. Jones, X. Tan, P.A. Thomas, D. Damjanovic, J. Rodel, J. Appl. Phys. 109(1), 014110–014117 (2011)

    Article  CAS  Google Scholar 

  12. J. Rodel, W. Jo, K.T.P. Seifert, E.-M. Anton, T. Granzow, D. Damjanovic, J. Am. Ceram. Soc. 92(6), 1153–1177 (2009)

    Article  CAS  Google Scholar 

  13. V. Dorcet, G. Trolliard, P. Boullay, Chem. Mater. 20(15), 5061–5073 (2008)

    Article  CAS  Google Scholar 

  14. W. Jo, S. Schaab, E. Sapper, L.A. Schmitt, H.-J. Kleebe, A.J. Bell, J. Rodel, J. Appl. Phys. 110(7), 074106–074109 (2011)

    Article  CAS  Google Scholar 

  15. V. Dorcet, G. Trolliard, P. Boullay, J. Magn. Magn. Mater. 321(11), 1758–1761 (2009)

    Article  CAS  Google Scholar 

  16. Y. Slimani, B. Unal, E. Hannachi, A. Selmi, M.A. Almessiere, M. Nawaz, A. Baykal, I. Ercan, M. Yildiz, Ceram. Int. 45(2019), 11989–11991 (2000)

    Google Scholar 

  17. Y. Slimani, A. Selmi, E. Hannachi, M.A. Almessiere, A. Baykal, I. Ercan, J. Mater. Sci. Mater. Electron. 30(10), 9520–9530 (2019)

    Article  CAS  Google Scholar 

  18. Y. Slimani, A. Selmi, E. Hannachi, M.A. Almessiere, M. Mumtaz, A. Baykal, I. Ercan, J. Mater. Sci. Mater. Electron. 30(14), 13509–13518 (2019)

    Article  CAS  Google Scholar 

  19. Y. Slimani, B. Unal, M.A. Almessiere, E. Hannachi, G. Yasin, A. Baykal, I. Ercan, J. Mater. Sci. Mater. Electron. 31(10), 7786–7797 (2020)

    Article  CAS  Google Scholar 

  20. Y. Slimani, M.A. Almessiere, S.E. Shirsath, E. Hannachi, G. Yasin, A. Baykal, B.E. Ozcelik, I. Ercan, J. Magn. Magn. Mater. 510, 166933 (2020)

    Article  CAS  Google Scholar 

  21. M.H. Mhareb, Y. Slimani, Y.S. Alajerami, M.I. Sayyed, E. Lacomme, M.A. Almessiere, Ceram. Int. 46(18), 28877–28886 (2020)

    Article  CAS  Google Scholar 

  22. Y. Slimani, A. Selmi, E. Hannachi, M.A. Almessiere, G. AlFalah, L.F. AlOusi, G. Yasin, M. Iqbal, J. Phys. Chem. Solids 156, 110183 (2021)

    Article  CAS  Google Scholar 

  23. M.B. Salem, A. Hamrita, E. Hannachi, Y. Slimani, M.B. Salem, F.B. Azzouz, Phys. C 498, 38–44 (2014)

    Article  CAS  Google Scholar 

  24. M.K. Ben Salem, Y. Slimani, E. Hannachi, A. Hamrita, F. Ben Azzouz, M. Ben Salem, Appl. Int. Phys. Conf. Proc. 1569, 423–426 (2013)

    Google Scholar 

  25. Y. Slimani, E. Hannachi, A. Hamrita, M.B. Salem, F.B. Azzouz, A. Manikandan, M.B. Salem, Ceram. Int. 40, 4953–4962 (2014)

    Article  CAS  Google Scholar 

  26. S.V. Trukhanov, A.V. Trukhanov, M.M. Salem, E.L. Trukhanova, L.V. Panina, V.G. Kostishyn, M.A. Darwish, A.V. Trukhanov, T.I. Zubar, D.I. Tishkevich, V. Sivakov, Ceram. Int. 44, 10470–10477 (2018)

    Article  CAS  Google Scholar 

  27. Y. Slimani, E. Hannachi, M.B. Salem, A. Hamrita, A. Varilci, W. Dachraoui, M.B. Salem, F.B. Azzouz, Phys. B Condens. Matter 450, 7–15 (2014)

    Article  CAS  Google Scholar 

  28. Y. Slimani, M.A. Almessiere, E. Hannachi, A. Baykal, A. Manikandan, M. Mumtaz, F.B. Azzouz, Ceram. Int. 45, 2621–2628 (2019)

    Article  CAS  Google Scholar 

  29. K. Madhan, A. Paul Blessington Selvadurai, R. Murugaraj, Mater. Lett. 243, 100–103 (2019)

    Article  CAS  Google Scholar 

  30. K. Madhan, R. Murugaraj, J. Electron. Mater. 49, 377–384 (2020)

    Article  CAS  Google Scholar 

  31. A. Manoharan, M. Munusamy, A. Pradeep, S. Sellaiyan, S. Hussain, S. Krishnan, Appl. Phys. A 126, 874 (2020)

    Article  CAS  Google Scholar 

  32. W. Ge, H. Liu, X. Zhao, X. Pan, T. He, Di. Lin, Xu. Haiqing, H. Luo, J. Alloys Compd. 456, 503–507 (2008)

    Article  CAS  Google Scholar 

  33. M. William Carry, S.P. Muthu, P. Ramasamy, J. Mater. Sci. Mater. Electron. 31(12), 9894–9903 (2020)

    Article  CAS  Google Scholar 

  34. A.B. Schaufele, K. Heinz Hardtl, J. Am. Ceram. Soc. 79, 2637–2640 (1996)

    Article  Google Scholar 

  35. A.A. Bokov, X. Long, Z.-G. Ye, Phys. Rev. B 81, 172103 (2010)

    Article  CAS  Google Scholar 

  36. S.-E. Park, T.R. Shrout, J. Appl. Phys. 82, 1804–1811 (1997)

    Article  CAS  Google Scholar 

  37. M. William Carry, K. Ramachandran, A. Raja, M.S. Pandian, P. Ramasamy, Mater. Lett. 276, 128248 (2020)

    Article  CAS  Google Scholar 

  38. R.K. Raji, V. Kurapati, T. Ramachandran, M. Muralidharan, R. Suriakarthick, M. Dhilip, F. Hamed, J. Mater. Sci. Mater. Electron. 31, 7998–8014 (2020)

    Article  CAS  Google Scholar 

  39. R. Ramesh Kumar, T. Ramachandran, K. Natarajan, M. Muralidharan, F. Hamed, V. Kurapati, J. Electron. Mater. 48, 1694–1703 (2019)

    Article  CAS  Google Scholar 

  40. M. William Carry, M.S. Pandian, P. Ramasamy, J. Mater. Sci. Mater. Electron. 31(16), 13714–13723 (2020)

    Article  CAS  Google Scholar 

  41. R. Zuo, H. Wang, B. Ma, L. Li, J. Mater. Sci. Mater. Electron. 20, 1140–1143 (2009)

    Article  CAS  Google Scholar 

  42. Y. Zhang, S. Gao, B. Zhang, J. Mater. Sci. Mater. Electron. 26, 2709–2712 (2015)

    Article  CAS  Google Scholar 

  43. N.V. Prasad, S. Narendra Babu, A. Siddeshwar, G. Prasad, G.S. Kumar, Ceram. Int. 35, 1057 (2009)

    Article  CAS  Google Scholar 

  44. R.N. Perumal, V. Athikesavan, P. Nair, Ceram. Int. 44, 13259–13266 (2018)

    Article  CAS  Google Scholar 

  45. J.B. Babu, M. He, D. Zhang, X. Chen, Appl. Phys. Lett. 90, 102901 (2007)

    Article  CAS  Google Scholar 

  46. N.V. Prasad, S. Karmakar, S.M. Gupta, Int. J. Mod. Phys. B 21, 1875 (2007)

    Article  CAS  Google Scholar 

  47. R. Zuo, C. Ye, X. Fang, J. Li, J. Eur. Ceram. Soc. 28, 871 (2008)

    Article  CAS  Google Scholar 

  48. D. Lin, K.W. Kwok, H.L.W. Chen, Solid State Ion. 178, 1930 (2008)

    CAS  Google Scholar 

  49. R. Zhou, Y. Liu, X. Meng, J. Electroceram. 18, 9 (2007)

    Article  CAS  Google Scholar 

  50. I. Bhaumik, S. Ganesamoorthy, R. Bhatt, A.K. Karnal, V.K. Wadhawan, P.K. Gupta, J. Appl. Phys. 103, 014108 (2008)

    Article  CAS  Google Scholar 

  51. Q. Zhang, X. Zhao, R. Sun, H. Luo, Phys. Status Solidi A 208, 1012–1020 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author K. Sudhakar would like to thank the SSN Management for providing Senior Research Fellowship (SRF). One of the author (M.W.C) would like to thank the science and Engineering Board (SERB) for providing Junior Research Fellowship (JRF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Sudhakar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sudhakar, K., William Carry, M., Logeswari, A. et al. Enrichment of piezoelectric properties in Nb5+doped (0.94) (Na0.5Bi0.5)TiO3–(0.06) BaTiO3 ceramics across morphotropic phase boundary region. J Mater Sci: Mater Electron 32, 24115–24124 (2021). https://doi.org/10.1007/s10854-021-06877-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06877-4

Navigation