Skip to main content

Advertisement

Log in

Top-seeded solution growth and investigation of electrical and energy storage performance of pure and doped (1−x)Na0.5Bi0.5TiO3–xBaTiO3 ferroelectric single crystals

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Urgent requirement exists to develop the lead-free piezoelectric energy storage devices, sensors and actuators for the reduction of toxicity in the environment. This paper deals with the lead-free ferroelectric single crystals with excellent piezoelectric behaviour. A series of pure and doped (Mn and Nb) (1−x)Na0.5Bi0.5TiO3–xBaTiO3 (NBBT) bulk size single crystals was successfully grown by the top-seeded solution growth (TSSG) method. The crystal growth, phase confirmation, compositional analysis, electric properties and energy storage density were investigated. The NBBT crystal belongs to perovskite structure and is confirmed using X-ray Powder diffraction pattern (PXRD). The elemental composition of the NBBT crystals grown by TSSG was investigated by the Inductively coupled plasma-Atomic Emission spectroscopy (ICP-AES). The electrical properties like dielectric constant (εr = 674, 700, 837, 694, 2872 and 378) and dielectric loss (tanδ = 0.2, 0.6, 0.5, 0.7, 0.47 and 0.27) were measured and it was found to be relaxor-type behaviour due to diffuseness of NBBT crystals by the dielectric permittivity. The piezoelectric coefficients (d33 = 374, 290, 167, 110, 410 and 103) and piezoelectric voltage coefficients (g33 = 6.26, 4.6, 2.2, 1.79, 1.6 and 3.0) were obtained. Greater value of remnant polarization (Pr = 87, 46, 30, 0.30, 117 and 0.11), maximum polarization (Pm = 104, 55, 49, 1.08, 136 and 0.34) and lower value of coercive electric field (Ec = 16.5, 13.8, 26, 0.64, 20 and 233) were obtained from the PE hysteresis loop of NBBT crystals studied to identify good performance of the compositions. The NBBT 90/10 crystal was found to be of 94/06 composition as obtained from ICP-AES. Moreover, NBBT 90/10 was doped by Mn and Nb and its electrical properties were measured. The Mn-doped NBBT 90/10 crystal attained a large energy storage density (W) of 0.27 Jcm−3 at ~ 20 kV cm−1 compared to the undoped and Nb-doped NBBT 90/10 crystal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig.6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig.12

Similar content being viewed by others

References

  1. L. Zheng, X. Yi, S. Zhang, W. Jiang, B. Yang, R. Zhang, W. Cao, Appl. Phys. Lett. 103, 122905–122908 (2013)

    Article  Google Scholar 

  2. W. Ge, H. Liu, X. Zhao, X. Pan, T. He, Di Lin, Xu Haiqing, H. Luo, J. Alloys Compd. 456, 503–507 (2008)

    Article  CAS  Google Scholar 

  3. A. Mayeen, M.S. Kala, S. Sunija, D. Rouxel, R.N. Bhowmik, S. Thomas, N. Kalarikkal, J. Alloys Compd. 837, 155–492 (2020)

    Article  Google Scholar 

  4. A. Hershkovitz, F. Johann, M. Barzilay, A.H. Avidor, Y. Ivry, Acta Mater. 187, 186–190 (2020)

    Article  CAS  Google Scholar 

  5. Y. An, C. He, C. Deng, Z. Chen, H. Chen, T. Wu, Y. Lu, X. Gu, J. Wang, Y. Liu, Z. Li, Ceram. Int. 46, 4664–4669 (2020)

    Article  CAS  Google Scholar 

  6. S.B. Aziz, R.T. Abdul wahid, M.H. Hamsan, M.A. Brza, R.M. Abdullah, M.F.Z. Kadir, S.K. Muzakir, Molecules 24, 3508 (2019)

    Article  CAS  Google Scholar 

  7. B. Wang, H. Lu, C.W. Bark, C.-B. Eom, A. Gruverman, L.-Q. Chen, Acta Mater. 193, 151–162 (2020)

    Article  CAS  Google Scholar 

  8. S.B. Aziz, M.H. Hamsan, W.O. Karim, R.T. Abdulwahid, M.F.Z. Kadir, M.A. Brza, Ionics (2020). https://doi.org/10.1007/s11581-020-03578-6

    Article  Google Scholar 

  9. S.B. Aziz, M.H. Hamsan, M.A. Brza, M.F.Z. Kadir, R.T. Abdulwahid, H.O. Ghareeb, H.J. Woo, Results Phys. 15, 102584 (2019)

    Article  Google Scholar 

  10. T.R. Short, S.J. Zhang, J. Electroceram. 19, 113 (2007)

    Article  Google Scholar 

  11. M.M. Hejazi, E. Taghaddos, A. Sarafi, J. Mater. Sci. 48, 3511 (2013)

    Article  CAS  Google Scholar 

  12. H. Zhang, H. Deng, C. Chen, L. Li, D. Lin, X. Li, X. Zhao, H. Luo, J. Yan, Scr. Mater. 75, 50–53 (2014)

    Article  CAS  Google Scholar 

  13. R. Zuo, H. Wang, B. Ma, L. Li, J. Mater. Sci. Mater. Electron. 20(1140), 1143 (2009)

    Google Scholar 

  14. T. Takenaka, K. Maruyama, K. Sakata, Jpn. J. Appl. Phys. 30(9B), 2236–2239 (1991)

    Article  CAS  Google Scholar 

  15. H. Irie, M. Miyayama, T. Kudo, J. Appl. Phys. 90, 4089–4094 (2001)

    Article  CAS  Google Scholar 

  16. Q. Zhang, X. Zhao, R. Sun, H. Luo, Phys. Status Solidi A 208, 1012–1020 (2011)

    Article  CAS  Google Scholar 

  17. R. Garg, B.N. Rao, A. Senyshyn, P.S.R. Krishna, R. Ranjan, Phys. Rev. B 88, 014103–014117 (2013)

    Article  Google Scholar 

  18. B.N. Rao, A.N. Fitch, R. Ranjan, Phys. Rev. B 87, 060102–060105 (2013)

    Article  Google Scholar 

  19. B.N. Rao, R. Ranjan, Phys. Rev. B 86, 134103–134104 (2012)

    Article  Google Scholar 

  20. X.X. Wang, H.L.W. Chan, C.L. Choy, Solid State Commun. 125, 395–399 (2003)

    Article  CAS  Google Scholar 

  21. J.Y. Yi, J.K. Lee, K.S. Hong, Jpn. J. Appl. Phys. 43, 6188–6192 (2004)

    Article  CAS  Google Scholar 

  22. X. Li, C. Chen, H. Deng, H. Zhang, D. Lin, X. Zhao, H. Luo, Crystals 5, 172–192 (2015)

    Article  CAS  Google Scholar 

  23. R.N. Perumal, V. Athikesavan, J. Mater. Sci. Mater. Electron. 30, 902–913 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the DRDO-ARMREB (reference no. ARMREB/MAA/2015/168). The authors are grateful to Dr. S. Ganesamoorthy and Dr. G. Anandha babu for fruitful discussions. The authors thank Dr. Indranil Bhaumik, RRCAT for characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. William Carry.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 46 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

William Carry, M., Senthil Pandian, M. & Ramasamy, P. Top-seeded solution growth and investigation of electrical and energy storage performance of pure and doped (1−x)Na0.5Bi0.5TiO3–xBaTiO3 ferroelectric single crystals. J Mater Sci: Mater Electron 31, 13714–13723 (2020). https://doi.org/10.1007/s10854-020-03929-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03929-z

Navigation