Skip to main content
Log in

Study of tungsten oxide effect on the performance of BaTiO3 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

BaTiO3/(WO3)x ceramics (where x = 0, 0.5, 1, 2 and 5 wt%) were prepared by solid state reaction. X-ray powder diffraction, scanning electron microscope, Fourier transform-infrared spectroscopy and ultraviolet–visible diffuse reflectance spectrophotometry were used to investigate the structure, morphology and optical properties, respectively. The electrical and dielectric properties were also performed for different synthesized ceramics. A pure phase was obtained for x = 0.5 wt% ceramic, nevertheless a secondary phase was detected for x ≥ 1 wt% ceramics. The grains size increases for x = 0.5 wt% ceramic and then reduces abruptly with further increasing WO3 content. The increase of grains size and the absence of impurities were all efficient to enhance the dielectric properties. A suitable WO3 content leads to obtain ceramics having high dielectric constant and low tangent loss, which is encouraging for radio frequencies and microwaves applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C.D. Chandler, C. Roger, M.J. Hampden-Smith, Chemical aspects of solution routes to perovskite-phase mixed-metal. Chem. Rev. 93, 1205–1241 (1993)

    Article  Google Scholar 

  2. M.A. Pena, J.L.G. Fierro, Chemical structures and performance of perovskite oxides. Chem. Rev. 101, 1981–2017 (2001)

    Article  Google Scholar 

  3. S. Royer, D. Duprez, F. Can, X. Courtois, C. Batiot-Dupeyrat, S. Laassiri, H. Alamdari, Perovskites as substitutes of noble metals for heterogeneous catalysis: dream or reality. Chem. Rev. 114, 10292–10368 (2014)

    Article  Google Scholar 

  4. H.F. Kay, H.J. Vellard, P. Vousden, Atomic positions and optical properties of barium titanate. Nature 163, 636 (1949)

    Article  Google Scholar 

  5. J. Harada, T. Pedersen, Z. Barnea, X-ray and neutron diffraction study of tetragonal barium titanate. Acta Cryst. B 26, 336 (1970)

    Article  Google Scholar 

  6. M. Wongduan, K. Reinhard, B.H. Robert, P. Simon, Structural and dielectric properties of Ba0.8La0.133Ti0.90Sn0.1O3. J. Eur. Ceram. Soc. 23, 127 (2003)

    Article  Google Scholar 

  7. M.Z.-C. Hu, G.A. Miller, E.A. Payzant, C.J. Rawn, Homogeneous (co)precipitation of inorganic salts for synthesis of monodispersed barium titanate particles. J. Mater. Sci. 35, 2927–2936 (2000)

    Article  Google Scholar 

  8. S. Dudley, T. Kalem, M. Akinc, Conversion of SiO2 diatom frustules to BaTiO3 and SrTiO3. J. Am. Ceram. Soc. 89, 2434–2439 (2006)

    Article  Google Scholar 

  9. Y. Luo, P. Yongping, P. Zhang, J. Zhao, W. Yurong, Y. Liu, Study on dielectric properties of SiO2-doped BaTiO3 ceramics. Ferroelectrics 492, 10–16 (2016)

    Article  Google Scholar 

  10. E.P. Gorzkowski, M.J. Pan, B. Bender, C.C.M. Wu, Glass-ceramics of barium strontium titanate for high energy density capacitors. J. Electroceram. 18, 269–276 (2007)

    Article  Google Scholar 

  11. J.S. Park, Y.H. Han, Nano size BaTiO3 powder coated with silica. Ceram. Int. 31, 777–782 (2005)

    Article  Google Scholar 

  12. M. Cernea, B.S. Vasile, A. Boni, A. Iuga, Synthesis, structure characterization and dielectric properties of Nb doped BaTiO3/SiO2 core-shell heterostructure. J. Alloys Compd. 587, 553–559 (2014)

    Article  Google Scholar 

  13. Y. Zhang, M. Cao, Z. Yao, Z. Wang, Z. Song, A. Ullah, H. Hao, H. Liu, Effects of silica coating on the microstructures and energy storage properties of BaTiO3 ceramics. Mater. Res. Bull. 67, 70–76 (2015)

    Article  Google Scholar 

  14. K. Bi, M. Bi, Y. Hao, W. Luo, Z. Cai, X. Wang, Y. Huang, Ultrafine core-shell BaTiO3@SiO2 structures for nanocomposite capacitors with high energy density. Nano Energy 51, 513–523 (2018)

    Article  Google Scholar 

  15. Y. Yan, L. Liu, C. Ning, Y. Yang, C. Xia, Y. Zou, S. Liu, X. Wang, K. Liu, X. Liu, G. Liu, Improved electrical properties of SiO2-added BaTiO3 ceramics by microwave sintering. Mater. Lett. 165, 135–138 (2016)

    Article  Google Scholar 

  16. X. Lu, Y. Tong, H. Talebinezhad, J. Liu, Y. Cai, Z.Y. Cheng, L. Wang, Effects of SiO2 coating on the dielectric and ferroelectric properties of BaTiO3-SiO2 composites, in 2017 Joint IEEE International Symposium on the Applications of Ferroelectric (ISAF)/International Workshop on Acoustic Transduction Materials and Devices (IWATMD)/Piezoresponse Force Microscopy (PFM)

  17. Q. Zhao, X. Wang, H. Gong, B. Liu, B. Luo, L. Li, The properties of Al2O3 coated fine-grain temperature stable BaTiO3-based ceramics sintered in reducing atmosphere. J. Am. Ceram. Soc. 101, 1245–1254 (2018)

    Article  Google Scholar 

  18. H.A. Moghaddam, M.R. Mohammadi, TiO2–BaTiO3 nanocomposite for electron capture in dye-sensitized solar cells. J. Am. Ceram. Soc. 100, 2144–2153 (2017)

    Article  Google Scholar 

  19. R. Li, Q. Li, L. Zong, X. Wang, J. Yang, BaTiO3/TiO2 heterostructure nanotube arrays for improved photoelectrochemical and photocatalytic activity. Electrochim. Acta 91, 30–35 (2013)

    Article  Google Scholar 

  20. L. Zhang, Y. Shi, S. Peng, J. Liang, Z. Tao, J. Chen, Dye-sensitized solar cells made from BaTiO3-coated TiO2 nanoporous electrodes. J. Photochem. Photobiol., A 197, 260–265 (2008)

    Article  Google Scholar 

  21. Z.A. Garmaroudi, M.R. Mohammadi, Design of TiO2 dye-sensitized solar cell photoanode electrodes with different microstructures and arrangement modes of the layers. J. Sol-Gel. Sci. Technol. 76, 666–678 (2015)

    Article  Google Scholar 

  22. H. Asgari Moghaddam, M.R. Mohammadi, S.M. Seyed Reyhani, Improved photon to current conversion in nanostructured TiO2 dye-sensitized solar cells by incorporating cubic BaTiO3 particles deliting incident. Sol. Energy 132, 1–14 (2016)

    Article  Google Scholar 

  23. V. Paunović, L.J. Živković, V. Mitić, Influence of rare-earth additives (La, Sm and Dy) on the microstructure and dielectric properties of doped BaTiO3 ceramics. Sci. Sinter. 42, 69–79 (2010)

    Article  Google Scholar 

  24. W.H. Tzing, W.H. Tuan, H.L. Lin, The effect of microstructure on the electrical properties of NiO-doped BaTiO3. Ceram. Int. 25, 425–430 (1999)

    Article  Google Scholar 

  25. T. Nagai, K. Iijima, H.J. Hwang, M. Sando, T. Sekino, K. Niihara, Effect of MgO doping on the phase transformations of BaTiO3. J. Am. Ceram. Soc. 83, 107–112 (2000)

    Article  Google Scholar 

  26. Y. Sakabe, N. Wada, T. Hiramatsu, T. Tonogaki, Dielectric properties of fine-grained BaTiO3 ceramics doped with CaO. Jpn. J. Appl. Phys. 41, 6922 (2002)

    Article  Google Scholar 

  27. Y.H. Song, J.H. Hwang, Y.H. Han, Effects of Y2O3 on temperature stability of acceptor-doped BaTiO3. Jpn. J. Appl. Phys. 44, 1310 (2005)

    Article  Google Scholar 

  28. A. Shukla, R.N.P. Choudhary, A.K. Thakur, D.K. Pradhan, Structural, microstructural and electrical studies of La and Cu doped BaTiO3 ceramics. Physica B 405, 99–106 (2010)

    Article  Google Scholar 

  29. X. Cheng, M. Shen, Enhanced spontaneous polarization in Sr and Ca co-doped BaTiO3 ceramics. Solid State Commun. 141, 587–590 (2007)

    Article  Google Scholar 

  30. Y.-S. Jung, E.-S. Na, U. Paik, J. Lee, J. Kim, A study on the phase transition and characteristics of rare earth elements doped BaTiO3. Mater. Res. Bull. 37, 1633–1640 (2002)

    Article  Google Scholar 

  31. J. Li, M. Kuwabara, Preparation and luminescent properties of Eu-doped BaTiO3 thin films by sol–gel process. Sci. Technol. Adv. Mater. 4, 143–148 (2003)

    Article  Google Scholar 

  32. H. Zheng, J. Zhen-Ou, M.S. Strano, R.B. Kaner, A. Mitchell, K. Kalantar Zadeh, Nanostructured tungsten oxide—properties, synthesis, and applications. Adv. Funct. Mater. 21, 2175–2196 (2011)

    Article  Google Scholar 

  33. W.J. Lee, Y.K. Fang, J.-J. Ho, W.T. Hsieh, S.F. Ting, D. Huang, F.C. Ho, Effects of surface porosity on tungsten trioxide (WO3) films’ electrochromic performance. J. Electron. Mater. 29, 183–187 (2000)

    Article  Google Scholar 

  34. M.M. El-Nahass, H.A.M. Ali, M. Saadeldin, M. Zaghllol, AC conductivity and dielectric properties of bulk tungsten trioxide (WO3). Physica B 407, 4453–4457 (2012)

    Article  Google Scholar 

  35. R.S. Vemuri, K. Kamala Bharathi, S.K. Gullapalli, C.V. Ramana, Effect of structure and size on the electrical properties of nanocrystalline WO3 films. ACS Appl. Mater. Interfaces. 2, 2623–2628 (2010)

    Article  Google Scholar 

  36. Y. Slimani, M.A. Almessiere, E. Hannachi, A. Baykal, A. Manikandan, M. Mumtaz, F. Ben Azzouz, Influence of WO3 nanowires on structural, morphological and flux pinning ability of YBa2Cu3Oy superconductor. Ceram. Int. 45, 2621–2628 (2019)

    Article  Google Scholar 

  37. Y. Slimani, M.A. Almessiere, E. Hannachi, M. Mumtaz, A. Manikandan, A. Baykal, F. Ben Azzouz, Improvement of flux pinning ability by tungsten oxide nanoparticles added in YBa2Cu3Oy superconductor. Ceram. Int. 45, 6828–6835 (2019)

    Article  Google Scholar 

  38. S. Rajan, P.M. Mohammed-Gazzali, G. Chandrasekaran, Electrical and magnetic phase transition studies of Fe and Mn co-doped BaTiO3. J. Alloys Compd. 656, 98–109 (2016)

    Article  Google Scholar 

  39. B. Deka, S. Ravi, A. Perumal, D. Pamu, Ferromagnetism and ferroelectricity in Fe doped BaTiO3. Physica B 448, 204–206 (2014)

    Article  Google Scholar 

  40. B.D. Cullity, Elements of X-ray diffraction (Addison-Wesley, Boston, 1956)

    Google Scholar 

  41. E. Hannachi, Y. Slimani, A. Ekicibil, A. Manikandan, F. Ben Azzouz, Magneto-resistivity and magnetization investigations of YBCO superconductor added by nano-wires and nano-particles of titanium oxide. J. Mater. Sci. Mater. Electron. 30, 8805–8813 (2019)

    Article  Google Scholar 

  42. S. Lather, A. Gupta, J. Dalal, V. Verma, R. Tripathi, A. Ohlan, Effect of mechanical milling on structural, dielectric and magnetic properties of BaTiO3–Ni0.5Co0.5Fe2O4 multiferroic ceramics. Ceram. Int. 43, 3246–3251 (2017)

    Article  Google Scholar 

  43. G. Arlt, D. Hennings, G. de With, Dielectric properties of fine-grained barium titanate ceramics. J. Appl. Phys. 58, 1619–1625 (1985)

    Article  Google Scholar 

  44. S. Kappadan, T.W. Gebreab, S. Thomas, N. Kalarikkal, Tetragonal BaTiO3 nanoparticles: an efficient photocatalyst for the degradation of organic pollutants. Mater. Sci. Semicond. Process. 51, 42–47 (2016)

    Article  Google Scholar 

  45. S. Adhikari, D. Sarkar, H.S. Maiti, Synthesis and characterization of WO3 spherical nanoparticles and nanorods. Mater. Res. Bull. 49, 325–330 (2014)

    Article  Google Scholar 

  46. Y. Slimani, B. Unal, E. Hannachi, A. Selmi, M.A. Almessiere, M. Nawaz, A. Baykal, I. Ercan, M. Yildiz, Frequency and dc bias voltage dependent dielectric properties and electrical conductivity of BaTiO3-SrTiO3/(SiO2)x nanocomposites. Ceram. Int. 45, 11989–12000 (2019)

    Article  Google Scholar 

  47. Y. Slimani, A. Selmi, E. Hannachi, M.A. Almessiere, A. Baykal, I. Ercan, Impact of ZnO addition on structural, morphological, optical, dielectric and electrical performances of BaTiO3 ceramics. J. Mater. Sci. Mater. Electron. 30, 9520–9530 (2019)

    Article  Google Scholar 

  48. P. Wang, C. Fan, Y. Wang, G. Ding, P. Yuan, A dual chelating sol–gel synthesis of BaTiO3 nanoparticles with effective photocatalytic activity for removing humic acid from water. Mater. Res. Bull. 48, 869–877 (2013)

    Article  Google Scholar 

  49. J.-i. Fujisawa, T. Eda, M. Hanaya, Comparative study of conduction-band and valence-band edges of TiO2, SrTiO3, and BaTiO3 by ionization potential measurements. Chem. Phys. Lett. 685, 23–26 (2017)

    Article  Google Scholar 

  50. Y.C. Teh, A.A. Saif, Influence of annealing temperature on structural and optical properties of sol-gel derived Ba0.9Gd0.1TiO3 thin films for optoelectronics. J. Alloys Compd. 703, 407–413 (2017)

    Article  Google Scholar 

  51. M. Ozta, Influence of grain size on electrical and optical properties of InP films. Chin. Phys. Lett. 25, 4090–4092 (2008)

    Article  Google Scholar 

  52. L.V. Maneeshya, P.V. Thomas, K. Joy, Effects of site substitutions and concentration on the structural, optical and visible photoluminescence properties of Er doped BaTiO3 thin films prepared by RF magnetron sputtering. Opt. Mater. 46, 304–309 (2015)

    Article  Google Scholar 

  53. K. Karishma, P. Ashutosh, K. Prasad, Impedance/modulus and conductivity studies on [Bi0.5(Na1-xKx)0.5]0.94Ba0.06TiO3, (0.16 ≤ x ≤ 0.20) lead-free ceramics. Am. J. Mater. Sci. 6, 1–18 (2016)

    Google Scholar 

  54. A. Selmi, O. Khaldi, M. Mascot, F. Jomni, J.C. Carru, Dielectric relaxations in Ba0.85Sr0.15TiO3 thin films deposited on Pt/Ti/SiO2/Si substrates by sol–gel method. J. Mater. Sci. Mater. Electron. 27, 11299–11307 (2016)

    Article  Google Scholar 

  55. T. Gopal Reddy, B. Rajesh Kumar, T. Subba Rao, J. Altaf Ahmad, Structural and dielectric properties of barium bismuth titanate (BaBi4Ti4O15) ceramics. Int. J. Appl. Eng. Res. 6, 571–580 (2011)

    Google Scholar 

  56. A. Jain, A.K. Panwar, A.K. Jha, Effect of ZnO doping on structural, dielectric, ferroelectric and piezoelectric properties of BaZr0.1Ti0.9O3 ceramics. Ceram. Int. 43, 1948–1955 (2017)

    Article  Google Scholar 

  57. X. Dong, H. Chen, M. Wei, W. Kaituo, J. Zhang, Structure, dielectric and energy storage properties of BaTiO3 ceramics doped with YNbO4. J. Alloys Compd. 744, 721–727 (2018)

    Article  Google Scholar 

  58. A.K. Jonscher, The ‘universal’ dielectric response. Nature 267, 673–679 (1977)

    Article  Google Scholar 

  59. L. Singh, U.S. Rai, K. Mandal, B.C. Sin, S.-I. Leed, Y. Lee, Dielectric, AC-impedance, modulus studies on 0.5BaTiO3-0.5CaCu3Ti4O12 nano-composite ceramic synthesized by one-pot, glycine-assisted nitrate-gel route. Ceram. Int. 40, 10073–10083 (2014)

    Article  Google Scholar 

  60. C.R. Cena, A.K. Behera, B. Behera, Structural, dielectric, and electrical properties of lithium niobate microfibers. J. Adv. Ceram. 5, 84–92 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Institute for Research & Medical Consultations (Projects Nos. 2017-IRMC-S-3 and 2018-IRMC-S-2) and the Deanship for Scientific Research (Projects Nos. 2018-209-IRMC and 2017-576-IRMC) of Imam Abdulrahman Bin Faisal University (IAU – Saudi Arabia).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y. Slimani or E. Hannachi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slimani, Y., Selmi, A., Hannachi, E. et al. Study of tungsten oxide effect on the performance of BaTiO3 ceramics. J Mater Sci: Mater Electron 30, 13509–13518 (2019). https://doi.org/10.1007/s10854-019-01718-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01718-x

Navigation