Skip to main content
Log in

Effect of Pr doping on the optical and magnetic properties of calcium stannate perovskite nanostructures

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Pristine and Pr-doped CaSnO3 (CSO) nanostructures prepared by the chemical precipitation method are studied for optical and magnetic properties. Structural studies with lattice parameter variation and defect-related parameters arising on the effect of Pr ions are being investigated. Morphological changes from the doping concentration are described. Luminescence characteristics and bandgap variation are calculated from the optical properties. The presence of free radicals and anisotropic spin resonance centers are presented from EPR spectra. The magnetization behavior of pristine and Pr-doped CSO is explained through the defects and its related interaction with the host sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S. Kc, A.J.E. Rowberg, L. Weston, C.G. Van De Walle, J. Appl. Phys. 126, 195701 (2019)

    ADS  Google Scholar 

  2. J. Cui, Y. Zhang, J. Wang, Z. Zhao, H. Huang, W. Zou, M. Yang, R. Peng, W. Yan, Q. Huang, Z. Fu, Y. Lu, Phys. Rev. B 100, 165312 (2019)

    ADS  Google Scholar 

  3. N. Rajamanickam, P. Soundarrajan, K. Jayakumar, K. Ramachandran, Sol. Energy Mater. Sol. Cells 166, 69–77 (2017)

    Google Scholar 

  4. D.O. Scanlon, Phys. Rev. B 87, 161201 (2013)

    ADS  Google Scholar 

  5. L. Weston, L. Bajaalie, K. Krishnaswamy, C.G. Van De Walle, Phys. Rev. B 97, 054112 (2018)

    ADS  Google Scholar 

  6. N. Rajamanickam, K. Jayakumar, K. Ramachandran, J. Mater. Sci. Mater. Electron. 29, 19880–19888 (2018)

    Google Scholar 

  7. K. Balamurugan, E. Senthil Kumar, B. Ramachandran, S. Venkatesh, N. Harish Kumar, M.S. Ramachandra Rao, P.N. Santosh, J. Appl. Phys. 111, 074107 (2012)

    ADS  Google Scholar 

  8. M. Salavati-Nisari, Chem. Lett. 34, 1444–1445 (2005)

    Google Scholar 

  9. M. Salavati-Nisari, Inorg. Chem. Commun. 8, 174–177 (2005)

    Google Scholar 

  10. M. Salavati-Nisari, Microporous Mesoporous Mater. 95, 248–256 (2006)

    Google Scholar 

  11. M. Salavati-Nisari, M.R. Loghman-Estarki, Chem. Eng. J. 145, 346–350 (2008)

    Google Scholar 

  12. M. Salavati-Nisari, A. Sobhani, F. Davar, J. Alloy. Compd. 507, 77–83 (2010)

    Google Scholar 

  13. M. Salavati-Nisari, D. Ghambari, M.R. Loghman-Estarki, Polyhedron 35, 149–153 (2012)

    Google Scholar 

  14. M. Yousefi, F. Gholamian, D. Ghambari, M. Salavati-Nisari, Ployhedran 30, 1055–1060 (2011)

    Google Scholar 

  15. F. Davar, M. Salavati-Nisari, J. Alloy. Compd. 509, 2487–2492 (2011)

    Google Scholar 

  16. F. Mohandes, F. Davar, M. Salavati-Nisari, J. Phys. Chem. Solids 71, 1623–1628 (2010)

    ADS  Google Scholar 

  17. E. Esmaeili, M. Salavati-Nisari, F. Mohandes, F. Davar, H. Seyghalkar, Chem. Eng. J. 170, 278–285 (2011)

    Google Scholar 

  18. S. Mortazavi-Derazkola, S. Zinatloo-Ajabshir, M. Salavati-Nisari, Ceram. Int. 41, 9593–9601 (2015)

    Google Scholar 

  19. M. Masjedi-Arani, M. Salavati-Nisari, Int. J. Hydrog. Energy 42, 12420–12429 (2017)

    Google Scholar 

  20. M. Masjedi-Arani, M. Salavati-Nisari, Int. J. Hydrog. Energy 42, 858–866 (2017)

    Google Scholar 

  21. M. Masjedi-Arani, M. Salavati-Nisari, Ultrason. Sonochem. 29, 226–235 (2016)

    Google Scholar 

  22. C. Zheng, Q. Liu, RSC Adv. 9, 33596 (2019)

    Google Scholar 

  23. Q. Liu, F. Jin, B. Li, L. Geng, J. Alloy. Compd. 717, 55–61 (2017)

    Google Scholar 

  24. A.M. Azad, L.L. Shyan, M.A. Alim, J. Mater. Sci. 34(6), 1175 (1999)

    ADS  Google Scholar 

  25. J. Cerda, J. Arbiol, G. Dezanneau, R. Diaz, J.R. Morante, Sens. Actuators B 84, 21 (2002)

    Google Scholar 

  26. C.G. Reddy, S.V. Manorama, V.J. Rao, A. Lobo, S.K. Kulkarani, Thin Solid Films 348(1), 261 (1999)

    ADS  Google Scholar 

  27. N. Sharma, K.M. Shaju, G.S. Rao, B.V. Chowdari, Electrochem. Commun. 4(12), 947 (2002)

    Google Scholar 

  28. W. Wang, J. Bi, L. Wu, Z. Li, X. Fu, Scr. Mater. 60, 186–189 (2009)

    ADS  Google Scholar 

  29. A.R. Jha, CRC Press, Boca Raton (2016)

  30. S. Ravi, J. Rare Earths 36, 1175–1178 (2018)

    Google Scholar 

  31. D.-Y. Lu, X.-Y. Sun, B. Liu, J.-L. Zhang, T. Ogata, J. Alloy. Compd. 615, 25–34 (2014)

    Google Scholar 

  32. A. Paul Blessington Selvadurai, V. Pazhanivelu, B.K. Vasanth, C. Jagadeeshwaran, R. Murugaraj, J. Mater. Sci. Mater. Electron. 26, 7655–7665 (2015)

    Google Scholar 

  33. I. Zouari, Z. Sassi, L. Seveyrat, V. Perrin, S. Zghal, N. Abdelmoula, L. Lebrun, H. Khemakhem, J. Electron. Mater. 46, 4662–4669 (2017)

    ADS  Google Scholar 

  34. J. Zhang, Y. Hao, Q. Wang, J. Xu, L. Guo, K. Bi, APL Mater. 6, 086102 (2018)

    ADS  Google Scholar 

  35. K. Goto, Y. Nakachi, K. Ueda, Thin Solid Films 516, 5585–5589 (2008)

    Google Scholar 

  36. A.C. Larson, R.B. Von Dreele, L. Alamos, National Laboratory Report No. LAUR 86-748 (1994)

  37. H.M. Rietveld, J. Appl. Crystallogr. 2, 65–71 (1969)

    Google Scholar 

  38. R.W.G. Wyckoff, Crystal Structure, vol. 1, 2nd edn. (Interscience Publishers, New York, 1963)

    Google Scholar 

  39. R.D. Shanon, Acta Crystallogr. A 32, 751 (1976)

    ADS  Google Scholar 

  40. K. Momma, F. Izumi, J. Appl. Crystallogr. 41, 653–658 (2008)

    Google Scholar 

  41. R. Saravanan, GRAIN software. http://www.saraxraygroup.net. Accessed 4 Dec 2019

  42. A.L. Patterson, Phys. Rev. 56, 978–982 (1939)

    ADS  Google Scholar 

  43. S. Sumithra, N. Victor Jaya, J. Mater. Sci. Mater. Electron. 29, 4048–4057 (2018)

    Google Scholar 

  44. V.M. Goldschmidt, Naturwissenschaften 14, 477 (1926)

    ADS  Google Scholar 

  45. M.R. Suchomel, P.K. Davies, J. Appl. Phys. 96(8), 4405–4410 (2004)

    ADS  Google Scholar 

  46. Bilbao Crystallographic Server. http://www.cryst.ehu.es. Accessed 10 Jan 2020

  47. H.L. Zheng, Z.C. Zang, J.G. Zhou, S.S. Yang, J. Zhao, Appl. Phys. A 108(2), 465 (2012)

    ADS  Google Scholar 

  48. E. Moreira, C.A. Baroza, E.L. Albuquerque, U.L. Fulco, J.M. Henriques, A.I. Araujo, J. Phys. Chem. Solids 77, 85–91 (2015)

    ADS  Google Scholar 

  49. J. Kung, Y.J. Lin, C.M. Lin, J. Chem. Phys. 135, 224507 (2011)

    ADS  Google Scholar 

  50. X. Pang, Y. Zhang, L. Ding, Z. Su, W.F. Zhang, J. Nanosci. Nanotechnol. 10, 1860–1864 (2010)

    Google Scholar 

  51. A. Yangthaisong, Chin. Phys. Lett. 30(7), 077101 (2013)

    ADS  Google Scholar 

  52. U. Balachandran, N.G. Eror, Solid State Commun. 44, 815 (1982)

    ADS  Google Scholar 

  53. M.K. Singh, N.K. Karan, R.S. Katiyar, J.F. Scott, H.M. Jang, J. Phys. Condens. Matter 20, 055210 (2008)

    ADS  Google Scholar 

  54. M.K. Singh, J.W. Hong, N.K. Karan, H.M. Jang, R.S. Katiyar, S. Redfern, J.F. Scott, J. Phys. Condens. Matter 22, 095901 (2010)

    ADS  Google Scholar 

  55. J. Goethals, C. Foudrin, M. Tarrida, A. Bedidi, F. Hatert, S. Rossano, Phys. Chem. Miner. 46, 143–155 (2019)

    ADS  Google Scholar 

  56. D.L. Cairns, I.M. Reaney, H. Zeng, D. Iddles, T. Price, J. Eur. Ceram. Soc. 25, 433–439 (2005)

    Google Scholar 

  57. R. Lowndes, F. Azough, R. Cernik, R. Freer, J. Eur. Ceram. Soc. 32, 3791–3799 (2012)

    Google Scholar 

  58. X. Faurel, A. Vanderperre, P. Colomban, J. Raman Spectrosc. 34, 290 (2003)

    ADS  Google Scholar 

  59. S. Shojaei, S.A. Hassanzadeh-Tabrizi, M. Ghashang, Ceram. Int. 40, 9609–9613 (2014)

    Google Scholar 

  60. J. Anthoniappen, W.S. Chang, F.M. Ruiz, C.S. Tu, C.T. Blaise, P.Y. Chen, C.S. Chen, H. Mana-ay, J. Alloys. Compd. 790, 587–596 (2019)

    Google Scholar 

  61. M. Muralidharan, R. Thiyagarajan, K. Sivakumar, K. Sivaji, J. Mater. Sci. Mater. Electron. 30, 4634–4643 (2019)

    Google Scholar 

  62. S. Sumithra, N. Victor Jaya, Mater. Res. Innov. 23(6), 375–384 (2019)

    Google Scholar 

  63. S. Saha, S. Das, U.K. Ghorai, N. Muzumder, D. Ganguly, K.K. Chattopadhyay, J. Phys. Chem. C 119, 16824–16835 (2015)

    Google Scholar 

  64. A. Stanulis, A. Katelnikovas, M.V. Bael, A. Hardy, A. Kareiva, T. Justel, J. Lumin. 172, 323–330 (2016)

    Google Scholar 

  65. N. Nhakta, A. Bandyopadhyay, A. Bajorek, P.K. Chakrabarti, Appl. Phys. A 125, 811 (2019)

    ADS  Google Scholar 

  66. N. Chiodini, C. Canevali, F. Morazzoni, R. Scotti, C.L. Bianchi, Inter. J. Inorg. Mater. 2, 355–363 (2000)

    Google Scholar 

  67. B. Subban, R. Dhanraj, Luminescence 33, 885–890 (2018)

    Google Scholar 

  68. M. Avinash, M. Muralidharan, S. Selvakumar, S. Hussain, K. Sivaji, J. Mater Sci. Mater. Electron. 31, 3375–3386 (2020)

    Google Scholar 

  69. M. Muralidharan, V. Anbarasu, A. Elaya Perumal, K. Sivakumar, J. Mater Sci. Mater. Electron. 26, 6926–6938 (2015)

    Google Scholar 

  70. S.M. Yakout, H.A. Mousa, H.T. Handal, W. Sharmoukh, J. Solid State Chem. 281, 121028 (2020)

    Google Scholar 

  71. N. Ohashi, S. Mitarai, O. Fukunaga, J. Electroceram. 4, 61–68 (1999)

    Google Scholar 

  72. S. Bhaumik, S.K. Ray, A.K. Das, Phys. Status Solidi A 210, 2146–2152 (2013)

    ADS  Google Scholar 

  73. V.D. Nithya, R. Jacob Immanuel, S.T. Senthilkumar, C. Sanjeeviraja, I. Perelshtein, D. Zitoun, R. Kalai Selvan, Mater. Res. Bull. 47, 1861–1868 (2012)

    Google Scholar 

  74. K. Balamurugan, N. Harish Kumar, B. Ramachandran, M.S. Ramachandra Rao, J. Arout Chelvane, P.N. Santosh, Solid State Commun. 149, 884–887 (2009)

    ADS  Google Scholar 

Download references

Acknowledgements

AM acknowledges the University of Madras for the University Research Fellowship (URF). MM thanks the DST SERB for National Postdoctoral Fellowship (PDF 2016/000372). The authors are grateful to National Centre for Ultra-Fast Process (NCUFP), Central Instrumentation Facility (CIF), University of Madras and Radiological Safety Division (RSD), IGCAR for FT-IR, Raman, and PL measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sivaji Krishnan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manoharan, A., Munusamy, M., Pradeep, A. et al. Effect of Pr doping on the optical and magnetic properties of calcium stannate perovskite nanostructures. Appl. Phys. A 126, 874 (2020). https://doi.org/10.1007/s00339-020-04061-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04061-9

Keywords

Navigation