Skip to main content

Advertisement

Log in

Impact of ZnO addition on structural, morphological, optical, dielectric and electrical performances of BaTiO3 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

BaTiO3/(ZnO)x ceramics (x = 0, 2, 5 and 10 wt%) were produced via solid state reaction by using high energy ball milling. The morphological, structural, spectral, optical, electrical and dielectric properties were systematically investigated. X-ray diffraction indicated that all ceramics crystallize in the tetragonal structure. The grains size increases with ZnO additions. The optical band gap energy (Eg) was also evaluated and found to reduce with increasing ZnO concentration. The dielectric and electric properties revealed that an optimal ZnO content lead to obtain ceramic with high dielectric constant and low tangent loss, which are encouraging for radio frequencies and microwaves applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. L. Xiaochi, W. Bian, Y. Li, H. Zhu, F. Zhenxiao, Q. Zhang, Influence of inverse spinel structured CuGa2O4 on microwave dielectric properties of normal spinel ZnGa2O4 ceramics. J. Am. Ceram. Soc. 101, 1646–1654 (2018)

    Article  Google Scholar 

  2. L. Xiaochi, W. Bian, C. Min, F. Zhenxiao, Q. Zhang, H. Zhu, Cation distribution of high-performance Mn-substituted ZnGa2O4 microwave dielectric ceramics. Ceram. Int. 44, 10028–10034 (2018)

    Article  Google Scholar 

  3. C.D. Chandler, C. Roger, M.J. Hampdensmith, Chemical aspects of solution routes to perovskite-phase mixed-metal oxides from metal-organic precursors. Chem. Rev. 93, 1205–1241 (1993)

    Article  Google Scholar 

  4. M.A. Pena, J.L.G. Fierro, Chemical structures and performance of perovskite oxides. Chem. Rev. 101, 1981–2017 (2001)

    Article  Google Scholar 

  5. J. Harada, T. Pedersen, Z. Barnea, X-Ray and neutron diffraction study of tetragonal barium titanate. Acta Crystall. a-Crys. A 26, 336 (1970)

    Article  Google Scholar 

  6. F.I.H. Rhouma, A. Dhahri, J. Dhahri, H. Belmabrouk, M.A. Valente, Structural and dielectric properties of Ba0.8La0.133Ti0.90Sn0.1O3. Solid State Commun. 152, 1874–1879 (2012)

    Article  Google Scholar 

  7. M.Z.C. Hu, G.A. Miller, E.A. Payzant, C.J. Rawn, Homogeneous (co)precipitation of inorganic salts for synthesis of monodispersed barium titanate particles. J. Mater. Sci. 35, 2927–2936 (2000)

    Article  Google Scholar 

  8. S. Dudley, T. Kalem, M. Akinc, Conversion of SiO2 diatom frustules to BaTiO3 and SrTiO3. J. Am. Ceram. Soc. 89, 2434–2439 (2006)

    Article  Google Scholar 

  9. V. Paunovic, L. Zivkovic, Influence of Rare-earth additives (La, Sm and Dy) on the microstructure and dielectric properties of doped BaTiO3 ceramics. Sci. Sinter. 42, 69–79 (2010)

    Article  Google Scholar 

  10. H.A. Moghaddam, M.R. Mohammadi, TiO2-BaTiO3 nanocomposite for electron capture in dye-sensitized solar cells. J. Am. Ceram. Soc. 100, 2144–2153 (2017)

    Article  Google Scholar 

  11. H.A. Moghaddam, M.R. Mohammadi, S.M.S. Reyhani, Improved photon to current conversion in nanostructured TiO2 dye-sensitized solar cells by incorporating cubic BaTiO3 particles deliting incident. Sol. Energy 132, 1–14 (2016)

    Article  Google Scholar 

  12. Y.M. Zhang, M.H. Cao, Z.H. Yao, Z.J. Wang, Z. Song, A. Ullah, H. Hao, H.X. Liu, Effects of silica coating on the microstructures and energy storage properties of BaTiO3 ceramics. Mater. Res. Bull. 67, 70–76 (2015)

    Article  Google Scholar 

  13. W.H. Tzing, W.H. Tuan, H.L. Lin, The effect of microstructure on the electrical properties of NiO-doped BaTiO3. Ceram. Int. 25, 425–430 (1999)

    Article  Google Scholar 

  14. T. Nagai, K. Iijima, H.J. Hwang, M. Sando, T. Sekino, K. Niihara, Effect of MgO doping on the phase transformations of BaTiO3. J. Am. Ceram. Soc. 83, 107–112 (2000)

    Article  Google Scholar 

  15. Y. Sakabe, N. Wada, T. Hiramatsu, T. Tonogaki, Dielectric properties of fine-grained BaTiO3 ceramics doped with CaO. Jpn. J. Appl. Phys. 41, 6922–6925 (2002)

    Article  Google Scholar 

  16. Y.H. Song, J.H. Hwang, Y.H. Han, Effects of Y2O3 on temperature stability of acceptor-doped BaTiO3. Jpn. J. Appl. Phys. 44, 1310–1313 (2005)

    Article  Google Scholar 

  17. R. Saravanan, V.K. Gupta, E. Mosquera, F. Gracia, Preparation and characterization of V2O5/ZnO nanocomposite system for photocatalytic application. J. Mol. Liq. 198, 409–412 (2014)

    Article  Google Scholar 

  18. A.M. Al-syadi, V.K. Gupta, E. Mosquera, M.M. El-Desoky, M.S. Al-Assiri, Impedance spectroscopy of V2O5–Bi2O3–BaTiO3 glass–ceramics. Solid State Sci. 26, 72–82 (2014)

    Article  Google Scholar 

  19. N. Zhang, L. Li, J. Chen, J. Yu, ZnO-doped BaTiO3-Na0.5Bi0.5TiO3-Nb2O5-based ceramics with temperature-stable high permittivity from − 55 °C to 375 °C. Mater. Lett. 138, 228–230 (2015)

    Article  Google Scholar 

  20. T. Wang, X. Wei, Q. Hu, L. Jin, Z. Xu, Y. Feng, Effects of ZnNb2O6 addition on BaTiO3 ceramics for energy storage. Mater. Sci. Eng. B 178, 1081–1086 (2013)

    Article  Google Scholar 

  21. Y. Yan, C. Ning, Z. Jin, H. Qin, W. Luo, G. Liu, The dielectric properties and microstructure of BaTiO3 ceramics with ZnO–Nb2O5 composite addition. J. Alloys. Compd. 646, 748–752 (2015)

    Article  Google Scholar 

  22. Q.K. Muhammad, M. Waqar, M.A. Rafiq, M.N. Rafiq, M. Usman, M.S. Anwar, Structural, dielectric, and impedance study of ZnO doped barium zirconium titanate (BZT) ceramics. J. Mater. Sci. 51, 10048–10058 (2016)

    Article  Google Scholar 

  23. Y. Iqbal, A. Jamal, The effect of Ta2O5- and ZnO-doping on the Curie temperature of BaTiO3. J. Phys 371, 012035 (2012)

    Google Scholar 

  24. A.C. Caballero, J.F. Fernández, C. Moure, P. Durán, Y.M. Chiang, Grain growth control and dopant distribution in ZnO-doped BaTiO3. J. Am. Ceram. Soc. 81, 939–944 (1998)

    Article  Google Scholar 

  25. M. Atif, S. Ahmed, M. Nadeem, M.K. Ali, M. Idrees, R. Grossinger, R.S. Turtelli, Role of competing phases in the structural, magnetic and dielectric relaxation for (1 − x)CoFe2O4 + (x)BaTiO3 composites. Ceram. Int. 42, 14618–14626 (2016)

    Article  Google Scholar 

  26. S. Lather, A. Gupta, J. Dalal, V. Verma, R. Tripathi, A. Ohlan, Effect of mechanical milling on structural, dielectric and magnetic properties of BaTiO3-Ni0.5Co0.5Fe2O4 multiferroic nanocomposites. Ceram. Int. 43, 3246–3251 (2016)

    Article  Google Scholar 

  27. S. Kappadan, T.W. Gebreab, S. Thomas, N. Kalarikkal, Tetragonal BaTiO3 nanoparticles: an efficient photocatalyst for the degradation of organic pollutants. Mater. Sci. Semicond. Process 51, 42–47 (2016)

    Article  Google Scholar 

  28. Y. Yan, L. Liu, C. Ning, Y. Yang, C.J. Xia, Y.T. Zou, S.Y. Liu, X.X. Wang, K.H. Liu, X.K. Liu, G. Liu, Improved electrical properties of SiO2-added BaTiO3 ceramics by microwave sintering. Mater. Lett. 165, 135–138 (2016)

    Article  Google Scholar 

  29. Y. Slimani, H. Gungunes, M. Nawaz, A. Manikandan, H.S. El Sayed, M.A. Almessiere, H. Sozeri, S.E. Shirsath, I. Ercan, A. Baykal, Magneto-optical and microstructural properties of spinel cubic copper ferrites with Li-Al co-substitution. Ceram. Int. 44, 14242–14250 (2018)

    Article  Google Scholar 

  30. P.G. Wang, C.M. Fan, Y.W. Wang, G.Y. Ding, P.H. Yuan, A dual chelating sol-gel synthesis of BaTiO3 nanoparticles with effective photocatalytic activity for removing humic acid from water. Mater. Res. Bull. 48, 869–877 (2013)

    Article  Google Scholar 

  31. Z.A. Garmaroudi, M.R. Mohammadi, Design of TiO2 dye-sensitized solar cell photoanode electrodes with different microstructures and arrangement modes of the layers. J. Sol–Gel Sci. Techn. 76, 666–678 (2015)

    Article  Google Scholar 

  32. Y.C. Teh, A.A. Saif, Influence of annealing temperature on structural and optical properties of sol-gel derived Ba0.9Gd0.1TiO3 thin films for optoelectronics. J. Alloys. Compd. 703, 407–413 (2015)

    Article  Google Scholar 

  33. L.V. Maneeshya, P.V. Thomas, K. Joy, Effects of site substitutions and concentration on the structural, optical and visible photoluminescence properties of Er doped BaTiO3 thin films prepared by RF magnetron sputtering. Opt. Mater. 46, 304–309 (2015)

    Article  Google Scholar 

  34. T.G. Reddy, B.R. Kumar, T.S. Rao, J.A. Ahmad, Structural and dielectric properties of barium bismuth titanate (BaBi4Ti4O15) ceramics. Int. J. Appl. Eng. Res. 6, 571–580 (2011)

    Google Scholar 

  35. P. Jaita, A. Watcharapasorn, N. Kumar, D.P. Cann, S. Jiansirisomboon, Large electric field-induced strain and piezoelectric responses of lead-free Bi0.5(Na0.80K0.20)0.5TiO3-Ba(Ti0.90Sn0.10)O3 ceramics near morphotropic phase boundary. Electron. Mater. Lett. 11, 828–835 (2011)

    Article  Google Scholar 

  36. X.X. Dong, H.W. Chen, M. Wei, K.T. Wu, J.H. Zhang, Structure, dielectric and energy storage properties of BaTiO3 ceramics doped with YNbO4. J. Alloys. Compd. 744, 721–727 (2018)

    Article  Google Scholar 

  37. K. Kumari, A. Prasad, K. Prasad, Dielectric, Impedance/modulus and conductivity studies on [Bi0.5(Na1-xKx)0.5]0.94Ba0.06TiO3,[0.16 ≤ x ≤ 0.20] leadfree ceramics. Am. J. Mater. Sci. 6, 1–8 (2016)

    Google Scholar 

  38. A.K. Jonscher, The ‘universal’dielectric response. Nature 267, 673 (1977)

    Article  Google Scholar 

  39. L. Singh, U.S. Rai, K. Mandal, B.C. Sin, S.I. Lee, Y. Lee, Dielectric, AC-impedance, modulus studies on 0.5BaTiO3· 0.5CaCu3Ti4O12 nano-composite ceramic synthesized by one-pot, glycine-assisted nitrate-gel route. Ceram. Int. 40, 10073–10083 (2014)

    Article  Google Scholar 

  40. A. Rouahi, A. Kahouli, F. Challali, M.-P. Besland, C. Vallée, B. Yangui, S. Salimy, A. Goullet, A. Sylvestre, Impedance and electric modulus study of amorphous TiTaO thin films: highlight of the interphase effect. J. Phys. D 46, 065308 (2013)

    Article  Google Scholar 

  41. A. Selmi, O. Khaldi, M. Mascot, F. Jomni, J. Carru, Dielectric relaxations in Ba0.85Sr0.15TiO3 thin films deposited on Pt/Ti/SiO2/Si substrates by sol–gel method. J. Mater. Sci. 27, 11299–11307 (2016)

    Google Scholar 

  42. M. Sahu, S.K. Pradhan, S. Hajra, B.K. Panigrahi, R. Choudhary, Studies of structural, electrical, and excitation performance of electronic material: europium substituted 0.9(Bi0.5Na0.5TiO3)–0.1(PbZr0.48Ti0.52O3). Appl. Phys. A 125, 183 (2019)

    Article  Google Scholar 

  43. C. Rayssi, S.E. Kossi, J. Dhahri, K. Khirouni, Frequency and temperature-dependence of dielectric permittivity and electric modulus studies of the solid solution Ca0.85Er0.1Ti1−xCo4x/3O3 (0 ≤ x ≤ 0.1). RSC Adv. 8, 17139–17150 (2018)

    Article  Google Scholar 

  44. R. Schmidt, S. Pandey, P. Fiorenza, D.C. Sinclair, Non-stoichiometry in “CaCu3Ti4O12” (CCTO) ceramics. RSC Adv. 3, 14580–14589 (2013)

    Article  Google Scholar 

  45. A. Rouahi, A. Kahouli, A. Sylvestre, E. Defay, B. Yangui, Impedance spectroscopic and dielectric analysis of Ba0.7Sr0.3TiO3 thin films. J. Alloys. Compd. 529, 84–88 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

The authors highly acknowledged the supports of the Institute for Research & Medical Consultations (Projects application No. 2017-IRMC-S-3, No. 2017-576-IRMC and No. 2018-IRMC-S-2) of Imam Abdulrahman Bin Faisal University (IAU—Saudi Arabia).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y. Slimani or E. Hannachi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slimani, Y., Selmi, A., Hannachi, E. et al. Impact of ZnO addition on structural, morphological, optical, dielectric and electrical performances of BaTiO3 ceramics. J Mater Sci: Mater Electron 30, 9520–9530 (2019). https://doi.org/10.1007/s10854-019-01284-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01284-2

Navigation