Skip to main content

Advertisement

Log in

Bioceramics: a review on design concepts toward tailor-made (multi)-functional materials for tissue engineering applications

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Since the second half of the 20th century, bioceramics are widely used as a substitute for hard tissue engineering. Bioceramics including zirconia, alumina, hydroxyapatite, and bioactive glass plays a vital role in the design of tissue engineering scaffolds with tailor-made properties. The bioceramics scaffold has been used to replace or regenerate the tissue of the human body due to its excellent mechanical strength, biocompatibility, chemical stability, corrosion restriction behavior, and wear resistance. The advancement in technology has made the form of bioceramics and their function, structure, and composition more diversified, and manifold. Considering the promising role of the use of bioceramics in tissue engineering, we proposed this review, presenting the classification of bioceramics, their physiochemical properties, degradation pathway, product development so far, and their application in tissue engineering. The calcium phosphate and bioglass-based composite scaffold have also been discussed in detail. Furthermore, this paper also discussed the toxicity evaluation and market perspective of bioceramics. Thus, this review gives a complete insight into bioceramics for tissue engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Copyright 2020, Elsevier

Figure 4

Copyright 2020, Frontiers

Figure 5

Similar content being viewed by others

References

  1. Fiume E, Ciavattini S, Verné E, Baino F (2021) Foam replica method in the manufacturing of bioactive glass scaffolds: out-of-date technology or still underexploited potential? Materials (Basel) 14:2795. https://doi.org/10.3390/ma14112795

    Article  CAS  Google Scholar 

  2. Singh P, Yu X, Kumar A, Dubey AK (2022) Recent advances in silicate-based crystalline bioceramics for orthopedic applications: a review. J Mater Sci 57:13109–13151. https://doi.org/10.1007/s10853-022-07444-w

    Article  CAS  Google Scholar 

  3. Ouyang J, Sun X, Chen X et al (2014) Preparation of layered bioceramic hydroxyapatite/sodium titanate coatings on titanium substrates using a hybrid technique of alkali-heat treatment and electrochemical deposition. J Mater Sci 49:1882–1892. https://doi.org/10.1007/s10853-013-7879-3

    Article  CAS  Google Scholar 

  4. Dorozhkin S (2009) Calcium Orthophosphates in nature, biology and medicine. Materials (Basel) 2:399–498. https://doi.org/10.3390/ma2020399

    Article  CAS  Google Scholar 

  5. Sadat-Shojai M, Atai M, Nodehi A (2011) Design of experiments (DOE) for the optimization of hydrothermal synthesis of hydroxyapatite nanoparticles. J Braz Chem Soc 22:571–582. https://doi.org/10.1590/S0103-50532011000300023

    Article  CAS  Google Scholar 

  6. Aggarwal A, Singh RP, Saggu HS (2022) Novel mesoporous cationic substituted hydroxyapatite particles for multipurpose applications. J Inorg Organomet Polym Mater 32:803–813. https://doi.org/10.1007/s10904-021-02175-y

    Article  CAS  Google Scholar 

  7. Ploux L, Mateescu M, Guichaoua L et al (2016) New colloidal fabrication of bioceramics with controlled porosity for delivery of antibiotics. J Mater Sci 51:8861–8879. https://doi.org/10.1007/s10853-016-0133-z

    Article  CAS  Google Scholar 

  8. Mohan Babu M, Syam Prasad P, Venkateswara Rao P et al (2020) Influence of ZrO2 addition on structural and biological activity of phosphate glasses for bone regeneration. Materials (Basel) 13:4058. https://doi.org/10.3390/ma13184058

    Article  CAS  Google Scholar 

  9. Sadat-Shojai M, Khorasani MT, Dinpanah-Khoshdargi E, Jamshidi A (2013) Synthesis methods for nanosized hydroxyapatite with diverse structures. Acta Biomater 9:7591–7621. https://doi.org/10.1016/j.actbio.2013.04.012

    Article  CAS  Google Scholar 

  10. Ali A, Ershad M, Hira S et al (2020) Mechanochemical and in vitro cytocompatibilityevaluation of zirconia modified silver substituted1393 bioactive glasses. Bol la Soc Esp Ceram y Vidr. https://doi.org/10.1016/j.bsecv.2020.07.002

    Article  Google Scholar 

  11. Ng Z-N, Chan K-Y, Low C-Y et al (2015) Al and Ga doped ZnO films prepared by a sol–gel spin coating technique. Ceram Int 41:S254–S258. https://doi.org/10.1016/j.ceramint.2015.03.183

    Article  CAS  Google Scholar 

  12. Wei Z, Chen L, Thompson DM, Montoya LD (2014) Effect of particle size on in vitro cytotoxicity of titania and alumina nanoparticles. J Exp Nanosci 9:625–638. https://doi.org/10.1080/17458080.2012.683534

    Article  CAS  Google Scholar 

  13. Dziadek M, Stodolak-Zych E, Cholewa-Kowalska K (2017) Biodegradable ceramic-polymer composites for biomedical applications: a review. Mater Sci Eng C 71:1175–1191. https://doi.org/10.1016/j.msec.2016.10.014

    Article  CAS  Google Scholar 

  14. Narayanan R, Seshadri SK, Kwon TY, Kim KH (2008) Calcium phosphate-based coatings on titanium and its alloys. J Biomed Mater Res Part B Appl Biomater 85:279–299. https://doi.org/10.1002/jbm.b.30932

    Article  CAS  Google Scholar 

  15. Abbas Z, Dapporto M, Tampieri A, Sprio S (2021) Toughening of bioceramic composites for bone regeneration. J Compos Sci 5:259. https://doi.org/10.3390/jcs5100259

    Article  CAS  Google Scholar 

  16. Bhatt A, Anbarasu A (2019) Rapid and economic synthesis of bone like apatite using simulated body fluid (SBF). Mater Res Innov 23:149–154. https://doi.org/10.1080/14328917.2017.1404203

    Article  CAS  Google Scholar 

  17. Ruksudjarit A, Pengpat K, Rujijanagul G, Tunkasiri T (2008) Synthesis and characterization of nanocrystalline hydroxyapatite from natural bovine bone. Curr Appl Phys 8:270–272. https://doi.org/10.1016/j.cap.2007.10.076

    Article  Google Scholar 

  18. Fiume E, Tulyaganov D, Ubertalli G et al (2020) Dolomite-foamed bioactive silicate scaffolds for bone tissue repair. Materials (Basel) 13:1–13. https://doi.org/10.3390/ma13030628

    Article  CAS  Google Scholar 

  19. Evis Z, Webster TJ (2011) Nanosize hydroxyapatite: doping with various ions. Adv Appl Ceram 110:311–320. https://doi.org/10.1179/1743676110Y.0000000005

    Article  CAS  Google Scholar 

  20. Faure J, Drevet R, Lemelle A et al (2015) A new sol–gel synthesis of 45S5 bioactive glass using an organic acid as catalyst. Mater Sci Eng C 47:407–412. https://doi.org/10.1016/j.msec.2014.11.045

    Article  CAS  Google Scholar 

  21. Niu W, Chen M, Guo Y et al (2021) A multifunctional bioactive glass-ceramic nanodrug for post-surgical infection/cancer therapy-tissue regeneration. ACS Nano 15:14323–14337. https://doi.org/10.1021/acsnano.1c03214

    Article  CAS  Google Scholar 

  22. Rial R, González-Durruthy M, Liu Z, Ruso JM (2021) Advanced materials based on nanosized hydroxyapatite. Molecules 26:3190. https://doi.org/10.3390/molecules26113190

    Article  CAS  Google Scholar 

  23. Kumar R, Mohanty S (2022) Hydroxyapatite: a versatile bioceramic for tissue engineering application. J Inorg Organomet Polym Mater. https://doi.org/10.1007/s10904-022-02454-2

    Article  Google Scholar 

  24. Mohamad Yunos D, Bretcanu O, Boccaccini AR (2008) Polymer-bioceramic composites for tissue engineering scaffolds. J Mater Sci 43:4433–4442. https://doi.org/10.1007/s10853-008-2552-y

    Article  CAS  Google Scholar 

  25. Adhikari J, Perwez MS, Das A, Saha P (2021) Development of hydroxyapatite reinforced alginate–chitosan based printable biomaterial-ink. Nano Struct Nano Object 25:100630. https://doi.org/10.1016/j.nanoso.2020.100630

    Article  CAS  Google Scholar 

  26. Wang W, Zhang B, Li M et al (2021) 3D printing of PLA/n-HA composite scaffolds with customized mechanical properties and biological functions for bone tissue engineering. Compos Part B Eng 224:109192. https://doi.org/10.1016/j.compositesb.2021.109192

    Article  CAS  Google Scholar 

  27. Jodati H, Yılmaz B, Evis Z (2020) A review of bioceramic porous scaffolds for hard tissue applications: effects of structural features. Ceram Int 46:15725–15739. https://doi.org/10.1016/j.ceramint.2020.03.192

    Article  CAS  Google Scholar 

  28. Shekhawat D, Singh A, Banerjee MK et al (2021) Bioceramic composites for orthopaedic applications: a comprehensive review of mechanical, biological, and microstructural properties. Ceram Int 47:3013–3030. https://doi.org/10.1016/j.ceramint.2020.09.214

    Article  CAS  Google Scholar 

  29. Baino F, Fiume E (2019) Elastic mechanical properties of 45S5-based bioactive glass-ceramic scaffolds. Materials (Basel). https://doi.org/10.3390/ma12193244

    Article  Google Scholar 

  30. Vallet-Regí M (2019) Bioceramics: from bone substitutes to nanoparticles for drug delivery. Pure Appl Chem 91:687–706. https://doi.org/10.1515/pac-2018-0505

    Article  CAS  Google Scholar 

  31. Dorozhkin SV (2018) Current state of bioceramics. J Ceram Sci Technol 9:353–370. https://doi.org/10.4416/JCST2018-00026

    Article  Google Scholar 

  32. Punj S, Singh J, Singh K (2021) Ceramic biomaterials: properties, state of the art and future prospectives. Ceram Int 47:28059–28074. https://doi.org/10.1016/j.ceramint.2021.06.238

    Article  CAS  Google Scholar 

  33. Durgalakshmi D, Balakumar S, Raja CA et al (2015) Structural, morphological and antibacterial investigation of Ag-impregnated sol-gel-derived 45S5 nanoBioglass systems. J Nanosci Nanotechnol 15:4285–4295. https://doi.org/10.1166/jnn.2015.9724

    Article  CAS  Google Scholar 

  34. Balasubramanian S, Gurumurthy B, Balasubramanian A (2017) Biomedical applications of ceramics nanomaterials: a review. Int J Pharm Sci Res 8:4950–4959. https://doi.org/10.13040/IJPSR.0975-8232.8(12).4950-59

    Article  CAS  Google Scholar 

  35. Jordan DR, Mawn LA, Brownstein S et al (2000) The bioceramic orbital implant: a new generation of porous implants. Ophthal Plast Reconstr Surg 16:347–355. https://doi.org/10.1097/00002341-200009000-00008

    Article  CAS  Google Scholar 

  36. Thomas S, Harshita BSP, Mishra P, Talegaonkar S (2015) Ceramic nanoparticles: fabrication methods and applications in drug delivery. Curr Pharm Des 21:6165–6188. https://doi.org/10.2174/1381612821666151027153246

    Article  CAS  Google Scholar 

  37. Karthiga P, Ponnanikajamideen M, Samuel Rajendran R et al (2019) Characterization and toxicology evaluation of zirconium oxide nanoparticles on the embryonic development of zebrafish, danio rerio. Drug Chem Toxicol 42:104–111. https://doi.org/10.1080/01480545.2018.1523186

    Article  CAS  Google Scholar 

  38. Colombo M, Cavallo M, Miegge M et al (2017) Color stability of CAD/CAM Zirconia ceramics following exposure to acidic and staining drinks. J Clin Exp Dent 9:e1297–e1303. https://doi.org/10.4317/jced.54404

    Article  Google Scholar 

  39. Alnassar TM (2022) Color stability of monolithic zirconia in various staining liquids: an in vitro study. Appl Sci 12:9752. https://doi.org/10.3390/app12199752

    Article  CAS  Google Scholar 

  40. Alvarado A (2018) Clinical approach in the diagnosis of acute appendicitis. In: Garbuzenko DV (ed) Current issues in the diagnostics and treatment of acute appendicitis. InTech. https://doi.org/10.5772/intechopen.75530

    Chapter  Google Scholar 

  41. Chan MH, Liu RS, Hsiao M (2019) Graphitic carbon nitride-based nanocomposites and their biological applications: a review. Nanoscale 11:14993–15003. https://doi.org/10.1039/c9nr04568f

    Article  CAS  Google Scholar 

  42. Heimann RB (2021) Silicon nitride, a close to ideal ceramic material for medical application. Ceramics 4:208–223. https://doi.org/10.3390/ceramics4020016

    Article  CAS  Google Scholar 

  43. Dejob L, Toury B, Tadier S et al (2021) Electrospinning of in situ synthesized silica-based and calcium phosphate bioceramics for applications in bone tissue engineering: a review. Acta Biomater 123:123–153. https://doi.org/10.1016/j.actbio.2020.12.032

    Article  CAS  Google Scholar 

  44. Malavasi G, Pedone A (2022) The effect of the incorporation of catalase mimetic activity cations on the structural, thermal and chemical durability properties of the 45s5 bioglass®. Acta Mater 229:117801. https://doi.org/10.1016/j.actamat.2022.117801

    Article  CAS  Google Scholar 

  45. Ruiz-Aguilar C, Aguilar-Reyes EA, Flores-Martínez M et al (2017) Synthesis and characterisation of β-TCP/bioglass/zirconia scaffolds. Adv Appl Ceram 116:452–461. https://doi.org/10.1080/17436753.2017.1356043

    Article  CAS  Google Scholar 

  46. Mazzoni E, Iaquinta MR, Lanzillotti C et al (2021) Bioactive materials for soft tissue repair. Front Bioeng Biotechnol 9:1–17. https://doi.org/10.3389/fbioe.2021.613787

    Article  Google Scholar 

  47. Ben-Arfa BAE, Miranda Salvado IM, Ferreira JMF, Pullar RC (2017) A hundred times faster: novel, rapid sol-gel synthesis of bio-glass nanopowders (Si–Na–Ca–P system, Ca: P=1.67) without aging. Int J Appl Glas Sci 8:337–343. https://doi.org/10.1111/ijag.12255

    Article  CAS  Google Scholar 

  48. Hench LL, Thompson I (2010) Twenty-first century challenges for biomaterials. J R Soc Interf 7:S379–S391. https://doi.org/10.1098/rsif.2010.0151.focus

    Article  CAS  Google Scholar 

  49. Bento R, Gaddam A, Ferreira JMF (2021) Sol-gel synthesis and characterization of a quaternary bioglass for bone regeneration and tissue engineering. Materials (Basel) 14:4515. https://doi.org/10.3390/ma14164515

    Article  CAS  Google Scholar 

  50. Kim YB, Lim JY, Yang GH et al (2019) 3D-printed PCL/bioglass (BGS-7) composite scaffolds with high toughness and cell-responses for bone tissue regeneration. J Ind Eng Chem 79:163–171. https://doi.org/10.1016/j.jiec.2019.06.027

    Article  CAS  Google Scholar 

  51. Miculescu F, Maidaniuc A, Voicu SI et al (2017) Progress in hydroxyapatite-starch based sustainable biomaterials for biomedical bone substitution applications. ACS Sustain Chem Eng 5:8491–8512. https://doi.org/10.1021/acssuschemeng.7b02314

    Article  CAS  Google Scholar 

  52. Ismail SA, Abdullah HZ (2020) Extraction and characterization of natural hydroxyapatite from goat bone for biomedical applications. Mater Sci Forum 1010:573–578. https://doi.org/10.4028/www.scientific.net/MSF.1010.573

    Article  Google Scholar 

  53. Backes EH, Fernandes EM, Diogo GS et al (2021) Engineering 3D printed bioactive composite scaffolds based on the combination of aliphatic polyester and calcium phosphates for bone tissue regeneration. Mater Sci Eng C. https://doi.org/10.1016/j.msec.2021.111928

    Article  Google Scholar 

  54. Ramesh N, Moratti SC, Dias GJ (2018) Hydroxyapatite–polymer biocomposites for bone regeneration: a review of current trends. J Biomed Mater Res Part B Appl Biomater 106:2046–2057. https://doi.org/10.1002/jbm.b.33950

    Article  CAS  Google Scholar 

  55. Nedaipour F, Bagheri H, Mohammadi S (2020) “Polylactic acid-polyethylene glycol-hydroxyapatite composite” an efficient composition for interference screws. Nanocomposites 6:99–110. https://doi.org/10.1080/20550324.2020.1794688

    Article  CAS  Google Scholar 

  56. Marew T, Birhanu G (2021) Three dimensional printed nanostructure biomaterials for bone tissue engineering. Regen Ther 18:102–111. https://doi.org/10.1016/j.reth.2021.05.001

    Article  CAS  Google Scholar 

  57. Aldhuwayhi SD, Sajjad A, Bakar WZW et al (2021) Evaluation of fracture toughness, color stability, and sorption solubility of a fabricated novel glass ionomer nano zirconia-silica-hydroxyapatite hybrid composite material. Int J Polym Sci 2021:1–8. https://doi.org/10.1155/2021/6626712

    Article  CAS  Google Scholar 

  58. Thomas MV, Puleo DA (2009) Calcium sulfate: properties and clinical applications. J Biomed Mater Res Part B Appl Biomater 88:597–610. https://doi.org/10.1002/jbm.b.31269

    Article  CAS  Google Scholar 

  59. Orsini G, Ricci J, Scarano A et al (2004) Bone-defect healing with calcium-sulfate particles and cement: an experimental study in rabbit. J Biomed Mater Res Part B Appl Biomater 68:199–208. https://doi.org/10.1002/jbm.b.20012

    Article  CAS  Google Scholar 

  60. Ene R, Nica M, Ene D et al (2021) Review of calcium-sulphate-based ceramics and synthetic bone substitutes used for antibiotic delivery in pji and osteomyelitis treatment. EFORT Open Rev 6:297–304. https://doi.org/10.1302/2058-5241.6.200083

    Article  Google Scholar 

  61. Fiume E, Magnaterra G, Rahdar A et al (2021) Hydroxyapatite for biomedical applications: a short overview. Ceramics 4:542–563. https://doi.org/10.3390/ceramics4040039

    Article  CAS  Google Scholar 

  62. Sasikumar S, Ravy L (2015) Influence of needle-like morphology on the bioactivity of nanocrystalline wollastonite and ndash; an in vitro study. Int J Nanomed 129:129. https://doi.org/10.2147/IJN.S79986

    Article  CAS  Google Scholar 

  63. Sunil BR, Jagannatham M (2016) Producing hydroxyapatite from fish bones by heat treatment. Mater Lett 185:411–414. https://doi.org/10.1016/j.matlet.2016.09.039

    Article  CAS  Google Scholar 

  64. Sprio S, Dapporto M, Preti L et al (2020) Enhancement of the biological and mechanical performances of sintered hydroxyapatite by multiple ions doping. Front Mater 7:1–18. https://doi.org/10.3389/fmats.2020.00224

    Article  Google Scholar 

  65. He LH, Standard OC, Huang TTY et al (2008) Mechanical behaviour of porous hydroxyapatite. Acta Biomater 4:577–586. https://doi.org/10.1016/j.actbio.2007.11.002

    Article  CAS  Google Scholar 

  66. Kannan S, Ferreira JMF (2006) Synthesis and thermal stability of hydroxyapatite-β-tricalcium phosphate composites with cosubstituted sodium, magnesium, and fluorine. Chem Mater 18:198–203. https://doi.org/10.1021/cm051966i

    Article  CAS  Google Scholar 

  67. Noshirvani N, Hong W, Ghanbarzadeh B et al (2018) Study of cellulose nanocrystal doped starch-polyvinyl alcohol bionanocomposite films. Int J Biol Macromol 107:2065–2074. https://doi.org/10.1016/j.ijbiomac.2017.10.083

    Article  CAS  Google Scholar 

  68. Barabashko M, Ponomarev A, Rezvanova A et al (2022) Young’s modulus and vickers hardness of the hydroxyapatite bioceramics with a small amount of the multi-walled carbon nanotubes. Materials (Basel). https://doi.org/10.3390/ma15155304

    Article  Google Scholar 

  69. Zheng K, Solodovnyk A, Li W et al (2015) Aging time and temperature effects on the structure and bioactivity of gel-derived 45S5 glass-ceramics. J Am Ceram Soc 98:30–38. https://doi.org/10.1111/jace.13258

    Article  CAS  Google Scholar 

  70. Ma J, Chen CZ, Wang DG, Hu JH (2011) Synthesis, characterization and in vitro bioactivity of magnesium-doped sol-gel glass and glass-ceramics. Ceram Int 37:1637–1644. https://doi.org/10.1016/j.ceramint.2011.01.043

    Article  CAS  Google Scholar 

  71. Ballouze R, Marahat MH, Mohamad S et al (2021) Biocompatible magnesium-doped biphasic calcium phosphate for bone regeneration. J Biomed Mater Res Part B Appl Biomater 109:1426–1435. https://doi.org/10.1002/jbm.b.34802

    Article  CAS  Google Scholar 

  72. Rezabeigi E, Wood-Adams PM, Drew RAL (2014) Synthesis of 45S5 Bioglass® via a straightforward organic, nitrate-free sol-gel process. Mater Sci Eng C 40:248–252. https://doi.org/10.1016/j.msec.2014.03.042

    Article  CAS  Google Scholar 

  73. Karamian E, Abdellahi M, Khandan A, Abdellah S (2016) Introducing the fluorine doped natural hydroxyapatite-titania nanobiocomposite ceramic. J Alloys Compd 679:375–383. https://doi.org/10.1016/j.jallcom.2016.04.068

    Article  CAS  Google Scholar 

  74. Mohd Pu’adAbdul HaqMohd Noh NASRHH et al (2019) Synthesis method of hydroxyapatite: a review. Mater Today Proc 29:233–239. https://doi.org/10.1016/j.matpr.2020.05.536

    Article  CAS  Google Scholar 

  75. Sheikh Z, Abdallah MN, Hanafi AA et al (2015) Mechanisms of in vivo degradation and resorption of calcium phosphate based biomaterials. Materials (Basel) 8:7913–7925. https://doi.org/10.3390/ma8115430

    Article  CAS  Google Scholar 

  76. Dias AG, Gibson IR, Santos JD, Lopes MA (2007) Physicochemical degradation studies of calcium phosphate glass ceramic in the CaO-P2O5-MgO-TiO2 system. Acta Biomater 3:263–269. https://doi.org/10.1016/j.actbio.2006.09.009

    Article  CAS  Google Scholar 

  77. Barrère F, Ni M, Habibovic P et al (2008) Degradation of bioceramics. Tissue engineering. Elsevier, NY, pp 223–254

    Chapter  Google Scholar 

  78. Thomas NG, Manoharan A, Anbarasu A (2021) Preclinical evaluation of sol-gel synthesized modulated 45S5-bioglass based biodegradable bone graft intended for alveolar bone regeneration. J Hard Tissue Biol 30:303–308. https://doi.org/10.2485/jhtb.30.303

    Article  CAS  Google Scholar 

  79. Bingel L, Groh D, Karpukhina N, Brauer DS (2015) Influence of dissolution medium pH on ion release and apatite formation of Bioglass® 45S5. Mater Lett 143:279–282. https://doi.org/10.1016/j.matlet.2014.12.124

    Article  CAS  Google Scholar 

  80. Sepulveda P, Jones JR, Hench LL (2002) In vitro dissolution of melt-derived 45S5 and sol-gel derived 58S bioactive glasses. J Biomed Mater Res 61:301–311. https://doi.org/10.1002/jbm.10207

    Article  CAS  Google Scholar 

  81. Kartsogiannis V, Ng KW (2004) Cell lines and primary cell cultures in the study of bone cell biology. Mol Cell Endocrinol 228:79–102. https://doi.org/10.1016/j.mce.2003.06.002

    Article  CAS  Google Scholar 

  82. Raynaud S, Champion E, Lafon J, Bernache-Assollant D (2002) Calcium phosphate apatites with variable Ca/P atomic ratio III. Mechanical properties and degradation in solution of hot pressed ceramics. Biomaterials 23:1081–1089. https://doi.org/10.1016/S0142-9612(01)00220-4

    Article  CAS  Google Scholar 

  83. Sathiyavimal S, Vasantharaj S, LewisOscar F et al (2020) Natural organic and inorganic–hydroxyapatite biopolymer composite for biomedical applications. Prog Org Coat 147:105858. https://doi.org/10.1016/j.porgcoat.2020.105858

    Article  CAS  Google Scholar 

  84. Lasprilla AJR, Martinez AGR, Lunelli BH et al (2011) Synthesis and characterization of poly (lactic acid) for use in biomedical field. Chem Eng Trans 24:985–990. https://doi.org/10.3303/CET1124165

    Article  Google Scholar 

  85. Veeman D, Sai MS, Sureshkumar P et al (2021) Additive manufacturing of biopolymers for tissue engineering and regenerative medicine: an overview, potential applications, advancements, and trends. Int J Polym Sci. https://doi.org/10.1155/2021/4907027

    Article  Google Scholar 

  86. Wei S, Ma JX, Xu L et al (2020) Biodegradable materials for bone defect repair. Mil Med Res 7:1–25. https://doi.org/10.1186/s40779-020-00280-6

    Article  CAS  Google Scholar 

  87. Kawakami T, Antoh M, Hasegawa H et al (1992) Experimental study on osteoconductive properties of a chitosan-bonded hydroxyapatite self-hardening paste. Biomaterials 13:759–763. https://doi.org/10.1016/0142-9612(92)90014-F

    Article  CAS  Google Scholar 

  88. Anjaneyulu U, Swaroop VK, Vijayalakshmi U (2016) Preparation and characterization of novel Ag doped hydroxyapatite-Fe3O4-chitosan hybrid composites and in vitro biological evaluations for orthopaedic applications. RSC Adv 6:10997–11007. https://doi.org/10.1039/c5ra21479c

    Article  CAS  Google Scholar 

  89. Maji K, Dasgupta S, Kundu B, Bissoyi A (2015) Development of gelatin-chitosan-hydroxyapatite based bioactive bone scaffold with controlled pore size and mechanical strength. J Biomater Sci Polym Ed 26:1190–1209. https://doi.org/10.1080/09205063.2015.1082809

    Article  CAS  Google Scholar 

  90. Vozzi G, Corallo C, Carta S et al (2014) Collagen-gelatin-genipin-hydroxyapatite composite scaffolds colonized by human primary osteoblasts are suitable for bone tissue engineering applications: in vitro evidences. J Biomed Mater Res Part A 102:1415–1421. https://doi.org/10.1002/jbm.a.34823

    Article  CAS  Google Scholar 

  91. Ding H, Xiong HM (2015) Exploring the blue luminescence origin of nitrogen-doped carbon dots by controlling the water amount in synthesis. RSC Adv 5:66528–66533. https://doi.org/10.1039/c5ra11796h

    Article  CAS  Google Scholar 

  92. Shi H, Zhou Z, Li W et al (2021) Hydroxyapatite based materials for bone tissue engineering: a brief and comprehensive introduction. Crystals 11:1–18. https://doi.org/10.3390/cryst11020149

    Article  CAS  Google Scholar 

  93. Henriques Lourenço A, Neves N, Ribeiro-Machado C et al (2017) Injectable hybrid system for strontium local delivery promotes bone regeneration in a rat critical-sized defect model. Sci Rep 7:1–15. https://doi.org/10.1038/s41598-017-04866-4

    Article  CAS  Google Scholar 

  94. Mahmoud EM, Sayed M, El-Kady AM et al (2020) In vitro and in vivo study of naturally derived alginate/hydroxyapatite bio composite scaffolds. Int J Biol Macromol 165:1346–1360. https://doi.org/10.1016/j.ijbiomac.2020.10.014

    Article  CAS  Google Scholar 

  95. Ishikawa Y, Komotori J, Senna M (2012) Properties of hydroxyapatite hyaluronic acid nano-composite sol and its interaction with natural bones and collagen fibers. Curr Nanosci 2:191–196. https://doi.org/10.2174/1573413710602030191

    Article  Google Scholar 

  96. Esposito Corcione C, Gervaso F, Scalera F et al (2019) Highly loaded hydroxyapatite microsphere/ PLA porous scaffolds obtained by fused deposition modelling. Ceram Int 45:2803–2810. https://doi.org/10.1016/j.ceramint.2018.07.297

    Article  CAS  Google Scholar 

  97. Zhang H, Fu Q-W, Sun T-W et al (2015) Amorphous calcium phosphate, hydroxyapatite and poly( d, l -lactic acid) composite nanofibers: electrospinning preparation, mineralization and in vivo bone defect repair. Coll Surf B Biointerfaces 136:27–36. https://doi.org/10.1016/j.colsurfb.2015.08.015

    Article  CAS  Google Scholar 

  98. Carfì Pavia F, Conoscenti G, Greco S et al (2018) Preparation, characterization and in vitro test of composites poly-lactic acid/hydroxyapatite scaffolds for bone tissue engineering. Int J Biol Macromol 119:945–953. https://doi.org/10.1016/j.ijbiomac.2018.08.007

    Article  CAS  Google Scholar 

  99. Shikinami Y, Okuno M (2001) Bioresorbable devices made of forged composites of hydroxyapatite (HA) particles and poly L-lactide (PLLA). Part II: Practical properties of miniscrews and miniplates. Biomaterials 22:3197–3211. https://doi.org/10.1016/S0142-9612(01)00072-2

    Article  CAS  Google Scholar 

  100. Wan Y, Wu C, Xiong G et al (2015) Mechanical properties and cytotoxicity of nanoplate-like hydroxyapatite/polylactide nanocomposites prepared by intercalation technique. J Mech Behav Biomed Mater 47:29–37. https://doi.org/10.1016/j.jmbbm.2015.03.009

    Article  CAS  Google Scholar 

  101. Smith IO, McCabe LR, Baumann MJ (2006) MC3T3-E1 osteoblast attachment and proliferation on porous hydroxyapatite scaffolds fabricated with nanophase powder. Int J Nanomed 1:189–194. https://doi.org/10.2147/nano.2006.1.2.189

    Article  CAS  Google Scholar 

  102. Goloshchapov DL, Kashkarov VM, Rumyantseva NA et al (2013) Synthesis of nanocrystalline hydroxyapatite by precipitation using hen’s eggshell. Ceram Int 39:4539–4549. https://doi.org/10.1016/j.ceramint.2012.11.050

    Article  CAS  Google Scholar 

  103. Ge M, Ge K, Gao F et al (2018) Biomimetic mineralized strontium-doped hydroxyapatite on porous poly(L-lactic acid) scaffolds for bone defect repair. Int J Nanomed 13:1707–1721. https://doi.org/10.2147/IJN.S154605

    Article  CAS  Google Scholar 

  104. Niaza KV, Senatov FS, Stepashkin A et al (2017) Long-term creep and impact strength of biocompatible 3D-printed PLA-based scaffolds. Nano Hybrids Compos 13:15–20. https://doi.org/10.4028/www.scientific.net/NHC.13.15

    Article  Google Scholar 

  105. Huang YX, Ren J, Chen C et al (2008) Preparation and properties of poly(lactide-co-glycolide) (PLGA)/ Nano-Hydroxyapatite (NHA) scaffolds by thermally induced phase separation and rabbit MSCs culture on scaffolds. J Biomater Appl 22:409–432. https://doi.org/10.1177/0885328207077632

    Article  CAS  Google Scholar 

  106. Petricca SE, Marra KG, Kumta PN (2006) Chemical synthesis of poly(lactic-co-glycolic acid)/hydroxyapatite composites for orthopaedic applications. Acta Biomater 2:277–286. https://doi.org/10.1016/j.actbio.2005.12.004

    Article  Google Scholar 

  107. Ródenas-Rochina J, Ribelles JLG, Lebourg M (2013) Comparative study of PCL-HAp and PCL-bioglass composite scaffolds for bone tissue engineering. J Mater Sci Mater Med 24:1293–1308. https://doi.org/10.1007/s10856-013-4878-5

    Article  CAS  Google Scholar 

  108. Eshraghi S, Das S (2012) Micromechanical finite-element modeling and experimental characterization of the compressive mechanical properties of polycaprolactone-hydroxyapatite composite scaffolds prepared by selective laser sintering for bone tissue engineering. Acta Biomater 8:3138–3143. https://doi.org/10.1016/j.actbio.2012.04.022

    Article  CAS  Google Scholar 

  109. Baji A, Wong SC, Srivatsan TS et al (2006) Processing methodologies for polycaprolactone-hydroxyapatite composites: a review. Mater Manuf Process 21:211–218. https://doi.org/10.1081/AMP-200068681

    Article  CAS  Google Scholar 

  110. Backes EH, de Nóbile Pires L, Selistre-de-Araujo HS et al (2021) Development and characterization of printable PLA/β-TCP bioactive composites for bone tissue applications. J Appl Polym Sci. https://doi.org/10.1002/app.49759

    Article  Google Scholar 

  111. Idowu AT, Benjakul S, Sinthusamran S et al (2020) Effect of alkaline treatment on characteristics of bio-calcium and hydroxyapatite powders derived from Salmon bone. Appl Sci 10:4141. https://doi.org/10.3390/APP10124141

    Article  CAS  Google Scholar 

  112. Zou C, Weng W, Cheng K et al (2008) Porous β-tricalcium phosphate/collagen composites prepared in an alkaline condition. J Biomed Mater Res Part A 87:38–44. https://doi.org/10.1002/jbm.a.31686

    Article  CAS  Google Scholar 

  113. Liao F, Chen Y, Li Z et al (2010) A novel bioactive three-dimensional β-tricalcium phosphate/chitosan scaffold for periodontal tissue engineering. J Mater Sci Mater Med 21:489–496. https://doi.org/10.1007/s10856-009-3931-x

    Article  CAS  Google Scholar 

  114. Sarikaya B, Aydin HM (2015) Collagen/beta-tricalcium phosphate based synthetic bone grafts via dehydrothermal processing. Biomed Res Int. https://doi.org/10.1155/2015/576532

    Article  Google Scholar 

  115. Arafat MT, Lam CXF, Ekaputra AK et al (2011) Biomimetic composite coating on rapid prototyped scaffolds for bone tissue engineering. Acta Biomater 7:809–820. https://doi.org/10.1016/j.actbio.2010.09.010

    Article  CAS  Google Scholar 

  116. Makarov C, Cohen V, Raz-Pasteur A, Gotman I (2014) In vitro elution of vancomycin from biodegradable osteoconductive calcium phosphate-polycaprolactone composite beads for treatment of osteomyelitis. Eur J Pharm Sci 62:49–56. https://doi.org/10.1016/j.ejps.2014.05.008

    Article  CAS  Google Scholar 

  117. Huang SH, Hsu TT, Huang TH et al (2017) Fabrication and characterization of polycaprolactone and tricalcium phosphate composites for tissue engineering applications. J Dent Sci 12:33–43. https://doi.org/10.1016/j.jds.2016.05.003

    Article  Google Scholar 

  118. Sen SG, Li YY, Luo YP et al (2020) Bioactive PLGA/tricalcium phosphate scaffolds incorporating phytomolecule icaritin developed for calvarial defect repair in rat model. J Orthop Transl 24:112–120. https://doi.org/10.1016/j.jot.2020.05.008

    Article  Google Scholar 

  119. Bohner M, Galea L, Doebelin N (2012) Calcium phosphate bone graft substitutes: failures and hopes. J Eur Ceram Soc 32:2663–2671. https://doi.org/10.1016/j.jeurceramsoc.2012.02.028

    Article  CAS  Google Scholar 

  120. Chen Y, Liu Z, Jiang T et al (2020) Strontium-substituted biphasic calcium phosphate microspheres promoted degradation performance and enhanced bone regeneration. J Biomed Mater Res 108:895–905. https://doi.org/10.1002/jbm.a.36867

    Article  CAS  Google Scholar 

  121. Pourreza E, Alshemary AZ, Yilmaz B et al (2017) Strontium and fluorine co-doped biphasic calcium phosphate: Characterization and in vitro cytocompatibility analysis. Biomed Phys Eng Express. https://doi.org/10.1088/2057-1976/aa768c

    Article  Google Scholar 

  122. Sokolova V, Kostka K, Shalumon KT et al (2020) Synthesis and characterization of PLGA/HAP scaffolds with DNA-functionalised calcium phosphate nanoparticles for bone tissue engineering. J Mater Sci Mater Med 31:1–12. https://doi.org/10.1007/s10856-020-06442-1

    Article  CAS  Google Scholar 

  123. Franco RA, Sadiasa A, Seo HS, Lee BT (2014) Biphasic calcium phosphate loading on polycaprolactone/poly(lacto-co- glycolic acid) membranes for improved tensile strength, in vitro biocompatibility, and in vivo tissue regeneration. J Biomater Appl 28:1164–1179. https://doi.org/10.1177/0885328213500544

    Article  CAS  Google Scholar 

  124. Bleach NC, Nazhat SN, Tanner KE et al (2002) Effect of filler content on mechanical and dynamic mechanical properties of particulate biphasic calcium phosphate-polylactide composites. Biomaterials 23:1579–1585. https://doi.org/10.1016/S0142-9612(01)00283-6

    Article  CAS  Google Scholar 

  125. Nevado P, Lopera A, Bezzon V et al (2020) Preparation and in vitro evaluation of PLA/biphasic calcium phosphate filaments used for fused deposition modelling of scaffolds. Mater Sci Eng C 114:111013. https://doi.org/10.1016/j.msec.2020.111013

    Article  CAS  Google Scholar 

  126. Lee EU, Kim DJ, Lim HC et al (2015) Comparative evaluation of biphasic calcium phosphate and biphasic calcium phosphate collagen composite on osteoconductive potency in rabbit calvarial defect. Biomater Res 19:1–7. https://doi.org/10.1186/s40824-014-0026-7

    Article  CAS  Google Scholar 

  127. Amirian J, Linh NTB, Min YK, Lee BT (2015) Bone formation of a porous Gelatin-Pectin-biphasic calcium phosphate composite in presence of BMP-2 and VEGF. Int J Biol Macromol 76:10–24. https://doi.org/10.1016/j.ijbiomac.2015.02.021

    Article  CAS  Google Scholar 

  128. Amudha S, Ramya JR, Arul KT et al (2020) Enhanced mechanical and biocompatible properties of strontium ions doped mesoporous bioactive glass. Compos Part B Eng 196:108099. https://doi.org/10.1016/j.compositesb.2020.108099

    Article  CAS  Google Scholar 

  129. Kumar A, Murugavel S, Aditya A, Boccaccini AR (2017) Mesoporous 45S5 bioactive glass: synthesis,: in vitro dissolution and biomineralization behavior. J Mater Chem B 5:8786–8798. https://doi.org/10.1039/c7tb01738c

    Article  CAS  Google Scholar 

  130. Bellucci D, Salvatori R, Giannatiempo J et al (2019) A new bioactive glass/collagen hybrid composite for applications in dentistry. Materials (Basel) 12:2–7. https://doi.org/10.3390/ma12132079

    Article  CAS  Google Scholar 

  131. Zurita-Méndez NN, Carbajal-De la Torre G, Flores-Merino MV, Espinosa-Medina MA (2022) Development of bioactive glass-collagen-hyaluronic acid-polycaprolactone scaffolds for tissue engineering applications. Front Bioeng Biotechnol 10:1–15. https://doi.org/10.3389/fbioe.2022.825903

    Article  Google Scholar 

  132. Luz GM, Mano JF (2012) Chitosan/bioactive glass nanoparticles composites for biomedical applications. Biomed Mater. https://doi.org/10.1088/1748-6041/7/5/054104

    Article  Google Scholar 

  133. Distler T, Fournier N, Grünewald A et al (2020) Polymer-bioactive glass composite filaments for 3d scaffold manufacturing by fused deposition modeling: fabrication and characterization. Front Bioeng Biotechnol. https://doi.org/10.3389/fbioe.2020.00552

    Article  Google Scholar 

  134. Mehboob H, Bae JH, Han MG, Chang SH (2016) Effect of air plasma treatment on mechanical properties of bioactive composites for medical application: composite preparation and characterization. Compos Struct 143:23–32. https://doi.org/10.1016/j.compstruct.2016.02.012

    Article  Google Scholar 

  135. Canales D, Saavedra M, Flores MT et al (2020) Effect of bioglass nanoparticles on the properties and bioactivity of poly(lactic acid) films. J Biomed Mater Res Part A 108:2032–2043. https://doi.org/10.1002/jbm.a.36963

    Article  CAS  Google Scholar 

  136. Ali W, Mehboob A, Han MG, Chang SH (2020) Novel biodegradable hybrid composite of polylactic acid (PLA) matrix reinforced by bioactive glass (BG) fibres and magnesium (Mg) wires for orthopaedic application. Compos Struct 245:112322. https://doi.org/10.1016/j.compstruct.2020.112322

    Article  Google Scholar 

  137. Yang L, Liu S, Fang W et al (2019) Poly(lactic-co-glycolic acid)-bioactive glass composites as nanoporous scaffolds for bone tissue engineering: In vitro and in vivo studies. Exp Ther Med. https://doi.org/10.3892/etm.2019.8121

    Article  Google Scholar 

  138. Thrivikraman G, Madras G, Basu B (2014) In vitro/In vivo assessment and mechanisms of toxicity of bioceramic materials and its wear particulates. RSC Advances 4(25):12763. https://doi.org/10.1039/c3ra44483j

    Article  CAS  Google Scholar 

  139. Sonmez E, Cacciatore I, Bakan F et al (2016) Toxicity assessment of hydroxyapatite nanoparticles in rat liver cell model in vitro. Hum Exp Toxicol 35:1073–1083. https://doi.org/10.1177/0960327115619770

    Article  CAS  Google Scholar 

  140. Zhao X, Ong KJ, Ede JD et al (2013) Evaluating the toxicity of hydroxyapatite nanoparticles in catfish cells and zebrafish embryos. Small 9:1734–1741. https://doi.org/10.1002/smll.201200639

    Article  CAS  Google Scholar 

  141. Pappus SA, Ekka B, Sahu S et al (2017) A toxicity assessment of hydroxyapatite nanoparticles on development and behaviour of drosophila melanogaster. J Nanoparticle Res. https://doi.org/10.1007/s11051-017-3824-8

    Article  Google Scholar 

  142. Bakry AS, Tamura Y, Otsuki M et al (2011) Cytotoxicity of 45S5 bioglass paste used for dentine hypersensitivity treatment. J Dent 39:599–603. https://doi.org/10.1016/j.jdent.2011.06.003

    Article  CAS  Google Scholar 

  143. Rismanchian M, Khodaeian N, Bahramian L et al (2013) In-vitro comparison of cytotoxicity of two bioactive glasses in micropowder and nanopowder forms. Iran J Pharm Res 12:437–443

    CAS  Google Scholar 

  144. Furlan RG, Correr WR, Russi AFC et al (2018) Preparation and characterization of boron-based bioglass by sol−gel process. J Sol-Gel Sci Technol 88:181–191. https://doi.org/10.1007/s10971-018-4806-8

    Article  CAS  Google Scholar 

  145. Zhao R, Shi L, Gu L et al (2021) Evaluation of bioactive glass scaffolds incorporating SrO or ZnO for bone repair: in vitro bioactivity and antibacterial activity. J Appl Biomater Funct Mater. https://doi.org/10.1177/22808000211040910

    Article  Google Scholar 

  146. Lee JH, Ryu HS, Seo JH et al (2010) A 90-day intravenous administration toxicity study of CaO-SiO2-P2O5-B2O3 glass-ceramics (BGS-7) in rat. Drug Chem Toxicol 33:38–47. https://doi.org/10.3109/01480540903373647

    Article  CAS  Google Scholar 

  147. Wang W, Liu Y, Yang C et al (2019) Mesoporous bioactive glass combined with graphene oxide scaffolds for bone repair. Int J Biol Sci 15:2156–2169. https://doi.org/10.7150/ijbs.35670

    Article  CAS  Google Scholar 

  148. Atalay H, Çelik A, Ayaz F (2018) Investigation of genotoxic and apoptotic effects of zirconium oxide nanoparticles (20 nm) on L929 mouse fibroblast cell line. Chem Biol Interact 296:98–104. https://doi.org/10.1016/j.cbi.2018.09.017

    Article  CAS  Google Scholar 

  149. Soltaninejad H, Zare-Zardini H, Hamidieh AA et al (2020) Evaluating the toxicity and histological effects of Al2O3 nanoparticles on bone tissue in animal model: a case-control study. J Toxicol. https://doi.org/10.1155/2020/8870530

    Article  Google Scholar 

  150. Zhang Q, Ding Y, He K et al (2018) Exposure to alumina nanoparticles in female mice during pregnancy induces neurodevelopmental toxicity in the offspring. Front Pharmacol 9:1–12. https://doi.org/10.3389/fphar.2018.00253

    Article  CAS  Google Scholar 

  151. Thrivikraman G, Madras G, Basu B (2014) In vitro/In vivo assessment and mechanisms of toxicity of bioceramic materials and its wear particulates. RSC Adv 4:12763–12781. https://doi.org/10.1039/c3ra44483j

    Article  CAS  Google Scholar 

  152. Sun X, Chen J, Rao C-Y, Ouyang J-M (2020) Size-dependent cytotoxicity of hydroxyapatite crystals on renal epithelial cells. Int J Nanomed 15:5043–5060. https://doi.org/10.2147/IJN.S232926

    Article  CAS  Google Scholar 

  153. Zhao X, Ng S, Heng BC et al (2013) Cytotoxicity of hydroxyapatite nanoparticles is shape and cell dependent. Arch Toxicol 87:1037–1052. https://doi.org/10.1007/s00204-012-0827-1

    Article  CAS  Google Scholar 

  154. Patel DK, Jin B, Dutta SD, Lim K (2020) Osteogenic potential of human mesenchymal stem cells on eggshells-derived hydroxyapatite nanoparticles for tissue engineering. J Biomed Mater Res Part B Appl Biomater 108:1953–1960. https://doi.org/10.1002/jbm.b.34536

    Article  CAS  Google Scholar 

  155. Jahangir MU, Islam F, Wong SY, Jahan RA, Matin MA, Li X, Arafat MT (2020) Comparative analysis and antibacterial properties of thermally sintered apatites with varied processing conditions. J Am Ceram Soc 104:1023–1039. https://doi.org/10.1111/jace.17525

    Article  CAS  Google Scholar 

  156. Westhauser F, Wilkesmann S, Nawaz Q et al (2021) Effect of manganese, zinc, and copper on the biological and osteogenic properties of mesoporous bioactive glass nanoparticles. J Biomed Mater Res Part A 109:1457–1467. https://doi.org/10.1002/jbm.a.37136

    Article  CAS  Google Scholar 

  157. Zheng K, Kang J, Rutkowski B et al (2019) Toward highly dispersed mesoporous bioactive glass nanoparticles with high cu concentration using cu/ascorbic acid complex as precursor. Front Chem 7:1–15. https://doi.org/10.3389/fchem.2019.00497

    Article  CAS  Google Scholar 

  158. Kazi GAS, Yamagiwa R (2020) Cytotoxicity and biocompatibility of high mol% yttria containing zirconia. Restor Dent Endod 45:1–11. https://doi.org/10.5395/rde.2020.45.e52

    Article  Google Scholar 

  159. Schwarz F, Langer M, Hagena T et al (2019) Cytotoxicity and proinflammatory effects of titanium and zirconia particles. Int J Implant Dent 5:25. https://doi.org/10.1186/s40729-019-0178-2

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Department of chemicals and petrochemicals, ministry of chemicals and fertilizers (DCPC), Government of India for sponsoring of “Centers of Excellence” in the field of Petrochemicals.

Funding

This research was funded by the Department of chemicals and petrochemicals, ministry of chemicals and fertilizers (DCPC), Government of India (F:No 25012/01/2020-PC-II (FTS:16020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ritesh Kumar.

Ethics declarations

Conflict of interest

The authors declared that they have no any conflict of interest that could influence the work reported in this paper.

Additional information

Handling Editor: Annela M. Seddon.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Pattanayak, I., Dash, P.A. et al. Bioceramics: a review on design concepts toward tailor-made (multi)-functional materials for tissue engineering applications. J Mater Sci 58, 3460–3484 (2023). https://doi.org/10.1007/s10853-023-08226-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08226-8

Navigation