Skip to main content
Log in

Polymer-bioceramic composites for tissue engineering scaffolds

  • Commonality of Phenomena in Composite Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Designing tissue engineering scaffolds with the required mechanical properties and favourable microstructure to promote cell attachment, growth and new tissue formation is one of the key challenges facing the tissue engineering field. An important class of scaffolds for bone tissue engineering is based on bioceramics and bioactive glasses, including: hydroxyapatite, bioactive glass (e.g. Bioglass®), alumina, TiO2 and calcium phosphates. The primary disadvantage of these materials is their low resistance to fracture under loads and their high brittleness. These drawbacks are exacerbated by the fact that optimal scaffolds must be highly porous (>90% porosity). Several approaches are being explored to enhance the structural integrity, fracture strength and toughness of bioceramic scaffolds. This paper reviews recent proposed approaches based on developing bioactive composites by introducing polymer coatings or by forming interpenetrating polymer-bioceramic microstructures which mimic the composite structure of bone. Several systems are analysed and scaffold fabrication processes, microstructure development and mechanical properties are discussed. The analysis of the literature suggests that the scaffolds reviewed here might represent the optimal solution and be the scaffolds of choice for bone regeneration strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Vacanti JP, Vacanti CA (2000) In: Lanza RP, Langer R, Vancanti JP (eds) Principle of tissue engineering, 2nd edn. Acedemic Press, California, p 3

    Chapter  Google Scholar 

  2. Ikada Y (2006) J R Soc Interface 3:589

    Article  CAS  Google Scholar 

  3. Hutmacher DW, Schantz JT, Lam CXF, Tan KC, Lim TC (2007) J Tissue Eng Regen Med 1:245

    Article  CAS  Google Scholar 

  4. Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biomaterials 27:3413

    Article  CAS  Google Scholar 

  5. Guarino V, Causa F, Ambrosio L (2007) Expert Rev Medical Devices 4(3):405

    Article  CAS  Google Scholar 

  6. Agrawal CM, Ray RB (2001) J Biomed Mater Res 55(2):141

    Article  CAS  Google Scholar 

  7. Yang S, Leong K, Du Z, Chua C (2001) Tissue Eng 7(6):679

    Article  CAS  Google Scholar 

  8. Jones JR, Boccaccini AR (2005) In: Colombo P, Scheffler M (eds) Cellular ceramics, structure, manufacturing, properties and applications, chap 5.8. Wiley-VCH, Weinheim, pp 547–570. ISBN: 3-527-31320-6

  9. Hench LL, Splinter RJ, Allen WC, Greenlee TK (1971) J Biomed Mater Res 2:117

    Article  Google Scholar 

  10. Chen QZ, Thompson ID, Boccaccini AR (2006) Biomaterials 27:2414

    Article  CAS  Google Scholar 

  11. Vitale-Brovarone C, Verne E, Robiglio L, Appendino P, Bassi F, Martinasso G, Muzio G, Canuto R (2007) Acta Biomater 3:199

    Article  CAS  Google Scholar 

  12. Fu Q, Rahaman MN, Bal BS, Huang W, Day DE (2007) J Biomed Mater Res A 82:222

    Article  Google Scholar 

  13. Livingston T, Ducheyne P, Garino J (2002) J Biomed Mater Res 62:1

    Article  CAS  Google Scholar 

  14. Xynos ID, Edgar AJ, Buttery LDK, Hench LL, Polak JM (2001) J Biomed Mater Res 55:151

    Article  CAS  Google Scholar 

  15. Wang X, Bank RA, Tekoppele JM, Agrawal CM (2001) J Orthop Res 19:1021

    Article  CAS  Google Scholar 

  16. Schwarzwalder K, Somers AV (1963) Methods of making porous ceramic articles, US Pat 3090094, 1963

  17. Sieber H, Kaindl A, Schwarze D, Werner JP, Greil P (2000) CFI Ceram Forum Int 77:21

    CAS  Google Scholar 

  18. Zhu XW, Jiang DL, Tan SH, Zhang ZQ (2001) J Am Ceram Soc 84:1654

    Article  CAS  Google Scholar 

  19. Montanaro L, Jorand Y, Fantozzi G, Negro A (1998) J Eur Ceram Soc 18:1339

    Article  CAS  Google Scholar 

  20. Saggio-Woyansky J, Scott CE, Minnear WP (1992) Am Ceram Soc Bull 71:1674

    CAS  Google Scholar 

  21. Lutyen J, Thijis I, Vandermeulen W, Mullens S, Wallaeys B, Mortelmans R (2005) Adv Appl Ceram 104(1):4

    Article  Google Scholar 

  22. Richardson JT, Peng Y, Remue D (2000) Appl Cat A Gen 204:19

    Article  CAS  Google Scholar 

  23. Lange FF, Miller KT (1987) Adv Ceram Mater 2:827

    Article  CAS  Google Scholar 

  24. Haugen H, Will J, Koehler A, Hopfner U, Aigner J, Wintermantel E (2004). J Eur Ceram Soc 24:661

    Article  CAS  Google Scholar 

  25. Novak S, Druce J, Chen QZ, Boccaccini AR (2008) J Mater Sci (submitted)

  26. Chen QZ, Zhang HB, Wang DZ, Edirisinghe MJ, Boccaccini AR (2006) J Am Ceram Soc 89:1534

    Article  CAS  Google Scholar 

  27. Kim HW, Kim HE, Knowles JC (2004) J Biomed Mater Res 70B:270

    Article  CAS  Google Scholar 

  28. Boccaccini AR, Chen QZ, Lefebvre L, Gremillard L, Chevalier J (2007) Faraday Discuss 136:27

    Article  CAS  Google Scholar 

  29. Ben-Nissan B (2003) Curr Opin Solid State Mater Sci 7:283

    Article  CAS  Google Scholar 

  30. Roy DM, Linnehan SK (1974) Nature 247:220

    Article  CAS  Google Scholar 

  31. Ebaretonbofa E, Evans JRG (2002) J Porous Mater 9:257

    Article  CAS  Google Scholar 

  32. Ramay HR, Zhang M (2003) Biomaterials 24:3293

    Article  CAS  Google Scholar 

  33. Zhang Y, Zhang M (2002) J Biomed Mater Res 61:1

    Article  CAS  Google Scholar 

  34. Miao X, Hu Y, Liu J, Wong AP (2004) Mater Lett 58:397

    Article  CAS  Google Scholar 

  35. Lee Y-K, Park YS, Kim MC, Kim KM, Kim KN, Choi SH, Kim CK, Jung HS, You CK, Legeros RZ (2004) Key Eng Mater 254–256:1079

    Google Scholar 

  36. Queiroz AC, Teixeira S, Santos JD, Monteiro FJ (2004) Key Eng Mater 254–256:997

    Google Scholar 

  37. Sepulveda P, Bressiani AH, Bressiani JC, Meseguer L, Koenig B Jr (2002) J Biomed Mater Res 62:587

    Article  CAS  Google Scholar 

  38. Sepulveda P (1997) Am Ceram Soc Bull 76(10):61

    CAS  Google Scholar 

  39. Bouler JM, Trecant M, Delecrin J, Royer J, Passuti N, Daculsi G (1996) J Biomed Mater Res 32:603

    Article  CAS  Google Scholar 

  40. Koc N, Timucin M, Korkusuz F (2004) Ceram Int 30:205

    Article  CAS  Google Scholar 

  41. Suchanek W, Yoshimura M (1998) J Mater Res 13:94

    Article  CAS  Google Scholar 

  42. Navarro M, Del Valle S, Ginebra MP, Martinez S, Planell JA (2004) Key Eng Mater 254–256:945

    Google Scholar 

  43. Liu DM (1997) J Mater Sci Mater Med 8:227

    Article  CAS  Google Scholar 

  44. Tsuruga E, Takita H, Itoh H, Wakisaka Y, Kuboki Y (1997) J Biochem (Tokyo) 121:317

    Article  CAS  Google Scholar 

  45. Albuquerque JSV, Nogueira REFQ, Pinheiro da Silva TD, Lima DO, Prado da Silva MH (2004) Key Eng Mater 254–256:1021

    Google Scholar 

  46. Sepulveda P, Jones JR, Hench LL (2002) J Biomed Mater Res 59:340

    Article  CAS  Google Scholar 

  47. Lemos AF, Ferreira JMF (2004) Key Eng Mater 254–256:1041

    Google Scholar 

  48. Almirall A, Larrecq G, Delgado JA, Martinez S, Planell JA, Ginebra MP (2004) Biomaterials 25:3671

    Article  CAS  Google Scholar 

  49. Sepulveda P, Binner JGP, Rogero SO, Higa OZ, Bressiani JC (2000) J Biomed Mater Res 50:27

    Article  CAS  Google Scholar 

  50. Rainer A, Giannitelli SM, Abbuzzese F, Traversa E, Licoccia S, Trombetta M (2008) Acta Biomater 4:362

    Article  CAS  Google Scholar 

  51. Komlev VC, Barinov SM, Rustichelli F (2003) J Mater Sci Lett 22:1215

    Article  CAS  Google Scholar 

  52. Nalla RK, Kinney JH, Ritchie RO (2003 Nat Mater 2:164

    Article  CAS  Google Scholar 

  53. Nalla RK, Kinney JH, Ritchie RO (2003) Biomaterials 24:3955

    Article  CAS  Google Scholar 

  54. Pezzotti G, Asmus SMF, Ferroni LP, Miki S (2002) J Mater Sci Mater Med 13:783

    Article  CAS  Google Scholar 

  55. Mansur GS, Costa HS (2008) Chem Eng J 137:72

    Article  CAS  Google Scholar 

  56. Montserrat C, Antonio JS, Maria V-R (2006) Chem Mater 18:5676

    Article  Google Scholar 

  57. Miao X, Tan LP, Tan LS, Huang X (2007) Mater Sci Eng C 27:274

    Article  CAS  Google Scholar 

  58. Miao X, Lim G, Loh K-H, Boccaccini AR (2004) In: Khor KA, Ramanujan RV, Ooi CP, Zhao JH (eds) Materials processing for properties and performance (MP3), vol 3. Institute of Materials East Asia, pp 319–326

  59. Miao X, Tan DM, Li J, Xiao Y, Crawford R (2008) Acta Biomater (in press). doi:https://doi.org/10.1016/j.actbio.2007.10.006

    Article  CAS  Google Scholar 

  60. Pezzotti G, Asmus SMF (2001) Mater Sci Eng A A316:231

    Article  CAS  Google Scholar 

  61. Li SH, De Wijn JR, Layrolle P, De Groot K (2003) Key Eng Mater 240–242:147

    Google Scholar 

  62. Tencer AF, Woodard PL, Swenson J, Brown KL (1987) J Orthop Res 5(2):275

    Article  CAS  Google Scholar 

  63. Tencer AF, Mooney V, Brown KL, Silva PA (1985) J Biomed Mater Res 19:957

    Article  CAS  Google Scholar 

  64. Hench LL (1998) J Am Ceram Soc 81:1705

    Article  CAS  Google Scholar 

  65. Huang X, Miao X (2007) J Biomater Appl 21(4):351

    Article  CAS  Google Scholar 

  66. Nakahira A, Tamai M, Miki S, Pezotti G (2002) J Mater Sci 37:4425. doi:https://doi.org/10.1023/A:1020681309572

    Article  CAS  Google Scholar 

  67. Miao X, Lim WK, Huang X, Chen Y (2005) Mater Lett 59:4000

    Article  CAS  Google Scholar 

  68. Kim HW, Knowles JC, Kim HE (2004) J Biomed Mater Res 70B:240

    Article  CAS  Google Scholar 

  69. Kim HW, Knowles KC, Kim HE (2004) Biomaterials 25:1279

    Article  CAS  Google Scholar 

  70. Tian T, Jiang D, Zhang J, Lin Q (2008) Mater Sci Eng C 28:51

    Article  CAS  Google Scholar 

  71. Kim HW, Knowles JC, Kim HE (2005) J Mater Sci Mater Med 16:189

    Article  Google Scholar 

  72. Chen QZ, Boccaccini AR (2006) J Biomed Mater Res 77A:445

    Article  CAS  Google Scholar 

  73. Chen QZ, Efthymiou A, Salih V, Boccaccini AR (2008) J Biomed Mater Res A 84:1049

    Article  CAS  Google Scholar 

  74. Bretcanu O, Chen QZ, Misra SK, Roy I, Verne’ E, Vitale Brovarone C, Boccaccini AR (2007) Eur J Glass Sci Technol A 48:227

    CAS  Google Scholar 

  75. Misra SK, Valappil SP, Roy I, Boccaccini AR (2006) Biomacromolecules 7(8):2249

    Article  CAS  Google Scholar 

  76. Wu C, Ramaswamy Y, Boughton P, Zreiqat H (2008) Acta Biomater 4:343

    Google Scholar 

  77. Peroglio M, Gremillard L, Chevalier J, Chazeau L, Gauthier G, Hamaide T (2007) J Eur Ceram Soc 27:2679

    Article  CAS  Google Scholar 

Download references

Acknowledgements

OB acknowledges the European Commission for funding via a Marie Curie Fellowship. DMY acknowledges the financial support of the Malaysian Government for a PhD Studentship at Imperial College London, UK. We thank X. Miao (Queensland University of Technology, Australia) and J. Chevalier (INSA Lyon, France) for providing some of the micrographs presented in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aldo R. Boccaccini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohamad Yunos, D., Bretcanu, O. & Boccaccini, A.R. Polymer-bioceramic composites for tissue engineering scaffolds. J Mater Sci 43, 4433–4442 (2008). https://doi.org/10.1007/s10853-008-2552-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2552-y

Keywords

Navigation