Skip to main content
Log in

A new pyridine-dicarbohydrazide-based turn-off fluorescent and colorimetric chemosensor for selective recognition of Cu2+

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

A new indole-containing 2,6-pyridinedicarbohydrazide P3 was synthesized and well characterized employing NMR, ESI+-MS, FT-IR, and elemental analyses. The synthesized compound was examined as an efficient fluorescent turn-off and colorimetric cation receptor. The P3 receptor exhibited a remarkable rapid color change from colorless to brown in the presence of Cu2+ cations. P3 displayed selective fluorescence quenching and a UV-vis redshift only in the presence of Cu2+ ions. Job’s plot, NMR titration, and ESI+-MS data were used to determine the complex’s 1:2 stoichiometry between P3 and Cu2+. Fluorescence titration was used to calculate the association constant (Ka) as 2.9–3.5 × 1011 M− 2 and the limit of detection (LOD) as 4.2 × 10− 9 M. P3-based test strips were developed, which might be used as a simple and effective Cu2+ test kit. DFT calculations were also performed to optimize the structures of the P3 and P3 + Cu2+ complex. This design will likely provide another avenue to develop chemosensors incorporating a functional group on the upper rim of the 2,6-pyridinedicarbohydrazide platform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and analyzed during the current study are not publicly available due to [According to Mazandaran University’s policies that all analysis devices are not connected to the Internet, the output of all devices is printed as a sheet or available on CD.] but are available from the corresponding author on reasonable request.

References

  1. Ahmad, W., Alharthy, R.D., Zubair, M., Ahmed, M., Hameed, A., Rafique, S.: Toxic and heavy metals contamination assessment in soil and water to evaluate human health risk. Sci. Rep. 11, 17006 (2021). https://doi.org/10.1038/s41598-021-94616-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hamdan, A.M., Abd-El-Mageed, H., Ghanem, N.: Biological treatment of hazardous heavy metals by Streptomyces rochei ANH for sustainable water management in agriculture. Sci. Rep. 11, 9314 (2021). https://doi.org/10.1038/s41598-021-88843-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Franz, K.J., Metzler-Nolte, N., Introduction: Metals in Medicine. Chem. Rev. 119, 727–729 (2019). https://doi.org/10.1021/acs.chemrev.8b00685

    Article  CAS  PubMed  Google Scholar 

  4. Carter, P., Young, K.M., Palmer, A.E.: Fluorescent sensors for Measuring Metal Ions in Living Systems. Chem. Rev. 114, 4564–4601 (2014). https://doi.org/10.1021/cr400546e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mohanty, P., Behura, R., Bhardwaj, V., Dash, P.P., Sahoo, S., Jali, B.: Recent advancement on chromo-fluorogenic sensing of aluminum(III) with Schiff bases. Trends Environ. Anal. Chem. 34, e00166 (2022). https://doi.org/10.1016/j.teac.2022.e00166

    Article  CAS  Google Scholar 

  6. Bhardwaj, V., Nurchi, V., Sahoo, S.: Mercury Toxicity and Detection using chromo-fluorogenic chemosensors. Pharmaceuticals. 14, 123 (2021). https://doi.org/10.3390/ph14020123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Turski, M.L., Thiele, D.J.: New roles for copper metabolism in cell proliferation, signaling, and disease. J. Biol. Chem. 284, 717–721 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li, Y., Ji, Y.-X., Song, L.-J., Zhang, Y., Li, Z.-C., Yang, L., et al.: A novel BF2–curcumin-based fluorescent chemosensor for detection of Cu2 + in aqueous solution and living cells. Res. Chem. Intermed. 44, 5169–5180 (2018). https://doi.org/10.1007/s11164-018-3416-y

    Article  CAS  Google Scholar 

  9. Bhardwaj, V., Patel, D., Majeed, S.A., Hameed, A.S., Aatif, A.M., Sk, A., et al.: Probing Biothiols using a red-emitting Pyridoxal Derivative by adopting copper(II) Displacement Approach and Cell Imaging. Chem. Biodivers. 19 (2022). https://doi.org/10.1002/cbdv.202200425

  10. Bertini, I., Rosato, A.: Menkes disease. Cell. Mol. Life Sci. 65, 89 (2007). https://doi.org/10.1007/s00018-007-7439-6

    Article  CAS  Google Scholar 

  11. Gaggelli, E., Kozlowski, H., Valensin, D., Valensin, G.: Copper homeostasis and neurodegenerative Disorders (Alzheimer’s, Prion, and Parkinson’s Diseases and Amyotrophic lateral sclerosis). Chem. Rev. 106, 1995–2044 (2006). https://doi.org/10.1021/cr040410w

    Article  CAS  PubMed  Google Scholar 

  12. Hung, Y.H., Bush, A.I., Cherny, R.A.: Copper in the brain and Alzheimer’s disease. JBIC J. Biol. Inorg. Chem. 15, 61–76 (2010). https://doi.org/10.1007/s00775-009-0600-y

    Article  CAS  PubMed  Google Scholar 

  13. Tapiero, H., Townsend, D.M., Tew, K.D.: Trace elements in human physiology and pathology. Copp. Biomed Pharmacother. 57, 386–398 (2003). https://doi.org/10.1016/s0753-3322(03)00012-x

    Article  CAS  Google Scholar 

  14. Vulpe, C., Levinson, B., Whitney, S., Packman, S., Gitschier, J.: Isolation of a candidate gene for Menkes disease and evidence that it encodes a copper–transporting ATPase. Nat. Genet. 3, 7–13 (1993). https://doi.org/10.1038/ng0193-7

    Article  CAS  PubMed  Google Scholar 

  15. Lee, J.C., Gray, H.B., Winkler, J.R.: Copper(II) binding to α-Synuclein, the Parkinson’s protein. J. Am. Chem. Soc. 130, 6898–6899 (2008). https://doi.org/10.1021/ja711415b

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chen, Y., Tang, T., Chen, Y., Xu, D.: Novel 1,8-naphthalimide dye for multichannel sensing of H + and. Cu2+ Res. Chem. Intermed. 44, 2379–2393 (2018). https://doi.org/10.1007/s11164-017-3235-6

    Article  CAS  Google Scholar 

  17. Kaiafa, G.D., Saouli, Z., Diamantidis, M.D., Kontoninas, Z., Voulgaridou, V., Raptaki, M., et al.: Copper levels in patients with hematological malignancies. Eur. J. Intern. Med. 23, 738–741 (2012). https://doi.org/10.1016/j.ejim.2012.07.009

    Article  CAS  PubMed  Google Scholar 

  18. Rakesh, P., Singh, H.B., Butcher, R.J.: Isolation and molecular structures of novel organotellurium(iv) halides, oxyhalide, and mixed halide. Dalt Trans. 41, 10707–10714 (2012). https://doi.org/10.1039/C2DT30645J

    Article  CAS  Google Scholar 

  19. Shi, M., Kwon, H.S., Peng, Z., Elder, A., Yang, H.: Effects of Surface Chemistry on the generation of reactive oxygen species by copper nanoparticles. ACS Nano. 6, 2157–2164 (2012). https://doi.org/10.1021/nn300445d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gao, G., Hao, C., Ding, C., Zheng, X., Liu, L., Xie, P., et al.: A near-infrared colorimetric and fluorometric chemodosimeter for Cu2 + based on a bis-spirocyclic rhodamine and its application in imagings. Res. Chem. Intermed. (2022). https://doi.org/10.1007/s11164-022-04920-5

    Article  Google Scholar 

  21. Liu, J.-M., Zheng, Q.-Y., Chen, C.-F., Huang, Z.-T.: The design of a highly selective fluorescent Chemosensor for Cu(II) within wide pH region and a molecular switch controlled by pH. J. Incl. Phenom. Macrocycl. Chem. 51, 165–171 (2005). https://doi.org/10.1007/s10847-004-6445-7

    Article  CAS  Google Scholar 

  22. Wang, Y., Wang, Y., Guo, F., Wang, Y., Xie, P.: A new naked-eye fluorescent chemosensor for Cu(II) and its practical applications. Res. Chem. Intermed. 47, 3515–3528 (2021). https://doi.org/10.1007/s11164-021-04489-5

    Article  CAS  Google Scholar 

  23. Yang, Y., Gao, C.-Y., Li, T., Chen, J.A., Tetraphenylethene-Based: Cu2+. ChemistrySelect. 1, 4577–4581 (2016). https://doi.org/10.1002/slct.201600883 Rhodamine Hydrazone Chemosensor for Colorimetric and Reversible Detection of

  24. Kumar, M., Nagendra Babu, J., Bhalla, V.: Fluorescent chemosensor for Cu2 + ion based on iminoanthryl appended calix[4]arene. J. Incl. Phenom. Macrocycl. Chem. 66, 139–145 (2010). https://doi.org/10.1007/s10847-009-9670-2

    Article  CAS  Google Scholar 

  25. Hosseinzadeh, R., Domehri, E., Tajbakhsh, M., Bekhradnia, A.: New fluorescent sensor based on a calix[4]arene bearing two triazole–coumarin units for copper ions: Application for Cu2 + detection in human blood serum. J. Incl. Phenom. Macrocycl. Chem. 93, 245–252 (2019). https://doi.org/10.1007/s10847-018-0872-3

    Article  CAS  Google Scholar 

  26. Thangaraj, A., Bhardwaj, V., Sahoo, S.K.: A multi-analyte selective dansyl derivative for the fluorescence detection of Cu(ii) and cysteine. Photochem. Photobiol Sci. 18, 1533–1539 (2019). https://doi.org/10.1039/c9pp00080a

    Article  CAS  PubMed  Google Scholar 

  27. Bhardwaj, V., Sk, A., Sahoo, S.: Pyridoxal derived red-emitting aggregates for the ratiometric sensing of pH and copper(II). Opt. Mater. (Amst). 136, 113414 (2023). https://doi.org/10.1016/j.optmat.2022.113414

    Article  CAS  Google Scholar 

  28. Tajbakhsh, M., Chalmardi, G.B., Bekhradnia, A., Hosseinzadeh, R., Hasani, N., Amiri, M.A.: A new fluorene-based Schiff-base as fluorescent chemosensor for selective detection of Cr3 + and Al3+. Spectrochim Acta Part A Mol Biomol Spectrosc. 189, 22–31 (2018). https://doi.org/10.1016/j.saa.2017.08.007

    Article  CAS  Google Scholar 

  29. Savran, T., Karuk Elmas, S.N., Aydin, D., Arslan, S., Arslan, F.N., Yilmaz, I.: Design of multiple-target chemoprobe: “naked-eye” colorimetric recognition of Fe3 + and off–on fluorogenic detection for Hg2 + and its on-site applications. Res. Chem. Intermed. 48, 1003–1023 (2022). https://doi.org/10.1007/s11164-021-04648-8

    Article  CAS  Google Scholar 

  30. Inoue, K., Aikawa, S., Fukushima, Y.: Colorimetric chemosensor based on a carminic acid and Pb2 + complex for selective detection of cysteine over homocysteine and glutathione in aqueous solution. J. Incl. Phenom. Macrocycl. Chem. 90, 105–110 (2018). https://doi.org/10.1007/s10847-017-0772-y

    Article  CAS  Google Scholar 

  31. Zhou, Q., Qian, L., Pan, Q., Si, G., Qi, Z., Zheng, Y., et al.: A novel chemosensor for Fe3 + based on open–closed-loop mechanism and imaging in living cells. Res. Chem. Intermed. 46, 533–545 (2020). https://doi.org/10.1007/s11164-019-03965-3

    Article  CAS  Google Scholar 

  32. Fanna, D.J., Lima, L.M.P., Craze, A.R., Trinchi, A., Wei, G., Reynolds, J.K., et al.: Determination of Cu2 + in drinking water using a hydroxyjulolidine-dihydroperimidine colorimetric sensor. J. Incl. Phenom. Macrocycl. Chem. 94, 141–154 (2019). https://doi.org/10.1007/s10847-018-0862-5

    Article  CAS  Google Scholar 

  33. Chalmardi, G.B., Tajbakhsh, M., Hasani, N., Bekhradnia, A.: A new Schiff-base as fluorescent chemosensor for selective detection of Cr3+: An experimental and theoretical study. Tetrahedron. 74, 2251–2260 (2018). https://doi.org/10.1016/j.tet.2018.03.046

    Article  CAS  Google Scholar 

  34. Lee, S.C., Lee, M., Suh, B., Lee, J., Kim, C.: A bithiophene-based Ratiometric fluorescent sensor for sensing Cd2+. ChemistrySelect. 6, 8397–8401 (2021). https://doi.org/10.1002/slct.202102503

    Article  CAS  Google Scholar 

  35. Bhardwaj, V., Hindocha, L., Ashok Kumar, S.K., Sahoo, S.K.: An aggregation-induced emissive pyridoxal derived tetradentate Schiff base for the fluorescence turn-off sensing of copper(ii) in an aqueous medium. New. J. Chem. 46, 3248–3257 (2022). https://doi.org/10.1039/D1NJ05523B

    Article  CAS  Google Scholar 

  36. Duke, R.M., O’Brien, J.E., McCabe, T., Gunnlaugsson, T.: Colorimetric sensing of anions in aqueous solution using a charge neutral, cleft-like, amidothiourea receptor: Tilting the balance between hydrogen bonding and deprotonation in anion recognition. Org. Biomol. Chem. 6, 4089–4092 (2008). https://doi.org/10.1039/B807579D

    Article  CAS  PubMed  Google Scholar 

  37. Li, J., Gu, Q., Heng, H., Wang, Z., Jin, H., He, J.: Rare-earth hydroxide nanosheets based ratio fluorescence nanoprobe for dipicolinic acid detection. Spectrochim Acta Part A Mol Biomol Spectrosc. 272, 120969 (2022). https://doi.org/10.1016/j.saa.2022.120969

    Article  CAS  Google Scholar 

  38. Narula, A., Rao, C.P.: Fluorophoric conjugate of N-Alkyl Naphthalimide in Sodium Dodecyl Sulfate as a tunable and sustainable sensing system: Differential Sensing of Zn2 + and Al3 + and the application of its Zn2 + complex in detecting Dipicolinic Acid, a component of Anthrax Bact. J. Phys. Chem. C. 123, 21271–21280 (2019). https://doi.org/10.1021/acs.jpcc.9b05349

    Article  CAS  Google Scholar 

  39. Chopra, S., Singh, N., Thangarasu, P., Bhardwaj, V.K., Kaur, N.: Fluorescent organic nanoparticles as chemosensor for nanomolar detection of cs + in aqueous medium. Dye Pigment. 106, 45–50 (2014). https://doi.org/10.1016/j.dyepig.2014.02.024

    Article  CAS  Google Scholar 

  40. Lee, S., Yuen, K.K.Y., Jolliffe, K.A., Yoon, J.: Fluorescent and colorimetric chemosensors for pyrophosphate. Chem. Soc. Rev. 44, 1749–1762 (2015). https://doi.org/10.1039/C4CS00353E

    Article  CAS  PubMed  Google Scholar 

  41. Lee, H.G., Lee, J.H., Jang, S.P., Park, H.M., Kim, S.-J., Kim, Y., et al.: Zinc selective chemosensor based on pyridyl-amide fluorescence. Tetrahedron. 67, 8073–8078 (2011). https://doi.org/10.1016/j.tet.2011.08.049

    Article  CAS  Google Scholar 

  42. Dorazco-González, A., Alamo, M.F., Godoy-Alcántar, C., Höpfl, H., Yatsimirsky, A.K.: Fluorescent anion sensing by bisquinolinium pyridine-2,6-dicarboxamide receptors in water. RSC Adv. 4, 455–466 (2014). https://doi.org/10.1039/C3RA44363A

    Article  Google Scholar 

  43. Rahimi, H., Hosseinzadeh, R., Tajbakhsh, M.: A new and efficient pyridine-2,6-dicarboxamide-based fluorescent and colorimetric chemosensor for sensitive and selective recognition of Pb2 + and Cu2+. J. Photochem. Photobiol A Chem. 407, 113049 (2021). https://doi.org/10.1016/j.jphotochem.2020.113049

    Article  CAS  Google Scholar 

  44. Łukasik, N., Wagner-Wysiecka, E., Hubscher-Bruder, V., Michel, S., Bocheńska, M., Kamińska, B.: Naphthyl- vs. anthrylpyridine-2,6-dicarboxamides in cation binding studies. Synthesis and spectroscopic properties. Supramol Chem. 28, 673–685 (2016). https://doi.org/10.1080/10610278.2015.1119830

    Article  CAS  Google Scholar 

  45. Mohanasundaram, D., Bhaskar, R., Sankarganesh, M., Nehru, K., Gangatharan Vinoth Kumar, G., Rajesh, J.: A simple pyridine based fluorescent chemosensor for selective detection of copper ion. Spectrochim Acta Part A Mol Biomol Spectrosc. 265, 120395 (2022). https://doi.org/10.1016/j.saa.2021.120395

    Article  CAS  Google Scholar 

  46. Amini, A., Rahimi, M., Behmadi, H., Nazari, M., Benson, V., Cheng, C., et al.: 2,6-Pyridinedicarbohydrazide-salicylal hydrazone-base derivative with high detection limit and binding constant for emissive ion chemosensing in aqueous solution. J. Photochem. Photobiol A Chem. 392, 112344 (2020). https://doi.org/10.1016/j.jphotochem.2019.112344

    Article  CAS  Google Scholar 

  47. Yadav, N., Singh, A.K.: Dicarbohydrazide based chemosensors for copper and cyanide ions via a displacement approach. New. J. Chem. 42, 6023–6033 (2018). https://doi.org/10.1039/C8NJ00230D

    Article  CAS  Google Scholar 

  48. Chen, A.Y., Thomas, P.W., Stewart, A.C., Bergstrom, A., Cheng, Z., Miller, C., et al.: Dipicolinic acid derivatives as inhibitors of New Delhi Metallo-β-lactamase-1. J. Med. Chem. 60, 7267–7283 (2017). https://doi.org/10.1021/acs.jmedchem.7b00407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fegade, U.A., Sahoo, S.K., Singh, A., Singh, N., Attarde, S.B., Kuwar, A.S.: A chemosensor showing discriminating fluorescent response for highly selective and nanomolar detection of Cu2 + and Zn2 + and its application in molecular logic gate. Anal. Chim. Acta. 872, 63–69 (2015). https://doi.org/10.1016/j.aca.2015.02.051

    Article  CAS  PubMed  Google Scholar 

  50. De Silva, A.P., Gunaratne, H.Q.N., Gunnlaugsson, T., Huxley, A.J.M., McCoy, C.P., Rademacher, J.T., et al.: Signaling recognition events with fluorescent sensors and switches. Chem. Rev. 97, 1515–1566 (1997). https://doi.org/10.1021/cr960386p

    Article  PubMed  Google Scholar 

  51. Huang, H., Li, H., Wang, A.-J., Zhong, S.-X., Fang, K.-M., Feng, J.-J.: Green synthesis of peptide-templated fluorescent copper nanoclusters for temperature sensing and cellular imaging. Analyst. 139, 6536–6541 (2014). https://doi.org/10.1039/C4AN01757A

    Article  CAS  PubMed  Google Scholar 

  52. Parker, C.A., Rees, W.T.: Correction of fluorescence spectra and measurement of fluorescence quantum efficiency. Analyst. 85, 587–600 (1960). https://doi.org/10.1039/AN9608500587

    Article  CAS  Google Scholar 

  53. Kaur, M., Cho, M.J., Choi, D.H.: A phenothiazine-based “naked-eye” fluorescent probe for the dual detection of Hg2 + and Cu2+: Application as a solid state sensor. Dye Pigment. 125, 1–7 (2016). https://doi.org/10.1016/j.dyepig.2015.09.030

    Article  CAS  Google Scholar 

  54. Bhattacharyya, A., Ghosh, S., Guchhait, N.: Highly sensitive and selective “naked eye” sensing of Cu(ii) by a novel amido–imine based receptor: A spectrophotometric and DFT study with practical application. RSC Adv. 6, 28194–28199 (2016). https://doi.org/10.1039/C6RA01269H

    Article  CAS  Google Scholar 

  55. Sadia, M., Naz, R., Khan, J., Khan, R.: Synthesis and evaluation of a Schiff-Based fluorescent chemosensors for the selective and sensitive detection of Cu2 + in aqueous media with fluorescence Off-On responses. J. Fluoresc. 28, 1281–1294 (2018). https://doi.org/10.1007/s10895-018-2278-4

    Article  CAS  PubMed  Google Scholar 

  56. Benesi, H.A., Hildebrand, J.H.: A Spectrophotometric Investigation of the Interaction of Iodine with aromatic hydrocarbons. J. Am. Chem. Soc. 71, 2703–2707 (1949). https://doi.org/10.1021/ja01176a030

    Article  CAS  Google Scholar 

  57. Organization, W.H.: Safety IP on C. Guidelines for drinking-water Quality. Vol. 2, Health criteria and other supporting information n.d

  58. Liu, S., Wang, Y.-M., Han, J.: Fluorescent chemosensors for copper(II) ion: Structure, mechanism and application. J. Photochem. Photobiol C Photochem. Rev. 32, 78–103 (2017). https://doi.org/10.1016/j.jphotochemrev.2017.06.002

    Article  CAS  Google Scholar 

  59. Mani, K.S., Rajamanikandan, R., Murugesapandian, B., Shankar, R., Sivaraman, G., Ilanchelian, M., et al.: Coumarin based hydrazone as an ICT-based fluorescence chemosensor for the detection of Cu2 + ions and the application in HeLa cells. Spectrochim Acta Part A Mol Biomol Spectrosc. 214, 170–176 (2019). https://doi.org/10.1016/j.saa.2019.02.020

    Article  CAS  Google Scholar 

  60. Kumar, A., Kumar, V., Diwan, U., Upadhyay, K.K.: Highly sensitive and selective naked-eye detection of Cu2 + in aqueous medium by a ninhydrin–quinoxaline derivative. Sens. Actuators B Chem. 176, 420–427 (2013). https://doi.org/10.1016/j.snb.2012.09.089

    Article  CAS  Google Scholar 

  61. Zheng, X., Lee, K.H., Liu, H., Park, S.-Y., Yoon, S.S., Lee, J.Y., et al.: A bis(pyridine-2-ylmethyl)amine-based selective and sensitive colorimetric and fluorescent chemosensor for Cu2+. Sens. Actuators B Chem. 222, 28–34 (2016). https://doi.org/10.1016/j.snb.2015.08.053

    Article  CAS  Google Scholar 

  62. Zhao, C., Liu, B., Bi, X., Liu, D., Pan, C., Wang, L., et al.: A novel flavonoid-based bioprobe for intracellular recognition of Cu2 + and its complex with Cu2 + for secondary sensing of pyrophosphate. Sens. Actuators B Chem. 229, 131–137 (2016). https://doi.org/10.1016/j.snb.2016.01.116

    Article  CAS  Google Scholar 

  63. Kumar, R., Jain, H., Gahlyan, P., Joshi, A., Ramachandran, C.N.: A highly sensitive pyridine-dicarbohydrazide based chemosensor for colorimetric recognition of Cu2+, AMP2–, F – and AcO – ions. New. J. Chem. 42, 8567–8576 (2018). https://doi.org/10.1039/C8NJ00918J

    Article  CAS  Google Scholar 

  64. Fang, H., Huang, P.-C., Wu, F.-Y.: A highly sensitive fluorescent probe with different responses to Cu2 + and Zn2+. Spectrochim Acta Part A Mol Biomol Spectrosc. 214, 233–238 (2019). https://doi.org/10.1016/j.saa.2019.02.007

    Article  CAS  Google Scholar 

  65. Zhang, X., Shen, L.-Y., Zhang, Q.-L., Yang, X.-J., Huang, Y.-L., Redshaw, C., et al.: A simple turn-off Schiff Base fluorescent sensor for copper (II) Ion and its application in Water Analysis. Mol. 26 (2021). https://doi.org/10.3390/molecules26051233

  66. Tang, L., Cai, M.: A highly selective and sensitive fluorescent sensor for Cu2 + and its complex for successive sensing of cyanide via Cu2 + displacement approach. Sens. Actuators B Chem. 173, 862–867 (2012). https://doi.org/10.1016/j.snb.2012.07.112

    Article  CAS  Google Scholar 

  67. Liu, Y., Jiang, B., Zhao, L., Zhao, L., Wang, Q., Wang, C., et al.: A dansyl-based fluorescent probe for sensing Cu2 + in aqueous solution. Spectrochim Acta Part A Mol Biomol Spectrosc. 261, 120009 (2021). https://doi.org/10.1016/j.saa.2021.120009

    Article  CAS  Google Scholar 

  68. Wei, J., Sun, H., Jiang, Y., Miao, B., Han, X., Zhao, Y., et al.: A novel 1,8-naphthalimide-based Cu2 + ion fluorescent probe and its bioimaging application. Spectrochim Acta Part A Mol Biomol Spectrosc. 261, 120037 (2021). https://doi.org/10.1016/j.saa.2021.120037

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support for this work from the Research Council of the University of Mazandaran is gratefully acknowledged.

Funding

Partial financial support was received from the Research Council of the Univerity of Mazandaran.

Author information

Authors and Affiliations

Authors

Contributions

Ali Zamani: Methodology, Formal analysis, Validation, Investigation, Writing - original draft. Yaghoub Sarrafi: Validation, Conceptualization, Investigation. Mahmood Tajbakhsh: Conceptualization, Investigation, Writing - review & editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mahmood Tajbakhsh.

Ethics declarations

Ethics approval

This is an observational study. The University of Mazandaran Research Ethics Committee has confirmed that no ethical approval is required.

Competing interests

The authors have no relevant financial or non-financial interests to disclose. The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zamani, A., Sarrafi, Y., Rouzbahani, M.R. et al. A new pyridine-dicarbohydrazide-based turn-off fluorescent and colorimetric chemosensor for selective recognition of Cu2+. J Incl Phenom Macrocycl Chem 103, 277–288 (2023). https://doi.org/10.1007/s10847-023-01193-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-023-01193-2

Keywords

Navigation