Skip to main content
Log in

Determination of Cu2+ in drinking water using a hydroxyjulolidine-dihydroperimidine colorimetric sensor

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

A new and highly efficient colorimetric Cu2+ chemosensor HL, synthesized by condensation between 8-hydroxyjulolidine-9-carboxaldehyde and 1,8-diaminonaphthalene, has been rationally designed and thoroughly studied. In a buffered aqueous methanol mixture, interactions between HL and Cu2+ produce an intense visible band at 421 nm, considerably red-shifted (~ 100 nm) from the peak maxima of HL (320 nm). Absorbance spectrophotometry experiments pointed to an exceptional 2.3 nM limit of detection (LoD) calculated from the ratiometric response upon Cu2+ binding. Furthermore, without the aid of instrumentation an impressive 0.5 µM LoD is possible by naked-eye observations, far below the 31.5 µM (2 mg/L) guidelines for drinking water established by the World Health Organization. Spectrophotometric pH titrations allowed the determination of the equilibrium constants and speciation plots for the formation of the various chemical species of HL in the absence and presence of Cu2+, with only mononuclear complexes being found. Additional studies highlighted the selectivity of HL to Cu2+ when in the presence of other metal ions, and a 1:1 (M:L) binding stoichiometry has also been confirmed with results from Cu2+ titrations, Job’s plot and ESI-HRMS in good agreement. The Cu2+ sensing mechanism was also found to be reversible by cycling with H2Na2EDTA.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Li, Z., Askim, J.R., Suslick, K.S.: The optoelectronic nose: colorimetric and fluorometric sensor arrays. Chem. Rev. (2018). https://doi.org/10.1021/acs.chemrev.8b00226

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kaur, B., Kaur, N., Kumar, S.: Colorimetric metal ion sensors—a comprehensive review of the years 2011–2016. Coord. Chem. Rev. 358, 13–69 (2018)

    Article  CAS  Google Scholar 

  3. Martínez-Máñez, R., Sancenón, F.: Fluorogenic and chromogenic chemosensors and reagents for anions. Chem. Rev. 103, 4419–4476 (2003)

    Article  CAS  PubMed  Google Scholar 

  4. Viles, J.H.: Metal ions and amyloid fiber formation in neurodegenerative diseases. Copper, zinc and iron in Alzheimer’s, Parkinson’s and prion diseases. Coord. Chem. Rev. 256, 2271–2284 (2012)

    Article  CAS  Google Scholar 

  5. Nagajyoti, P.C., Lee, K.D., Sreekanth, T.V.M.: Heavy metals, occurrence and toxicity for plants: a review. Environ. Chem. Lett. 8, 199–216 (2010)

    Article  CAS  Google Scholar 

  6. White, P.J., Brown, P.H.: Plant nutrition for sustainable development and global health. Ann. Bot. 105, 1073–1080 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Oliver, M.: Soil and human health: a review. Eur. J. Soil Sci. 48, 573–592 (1997)

    Article  CAS  Google Scholar 

  8. Lee, J., Mahendra, S., Alvarez, P.J.J.: Nanomaterials in the construction industry: a review of their applications and environmental health and safety considerations. ACS Nano. 4, 3580–3590 (2010)

    Article  CAS  PubMed  Google Scholar 

  9. Bilal, M., Shah, J.A., Ashfaq, T., Gardazi, S.M.H., Tahir, A.A., Pervez, A., Haroon, H., Mahmood, Q.: Waste biomass adsorbents for copper removal from industrial wastewater—a review. J. Hazard. Mater. 263, 322–333 (2013)

    Article  CAS  PubMed  Google Scholar 

  10. Dietrich, A.M., Glindemann, D., Pizarro, F., Gidi, V., Olivares, M., Araya, M., Camper, A., Duncan, S., Dwyer, S., Whelton, A.J., Younos, T., Subramanian, S., Burlingame, G.A., Khiari, D., Edwards, M.: Health and aesthetic impacts of copper corrosion on drinking water. Water Sci. Technol. 49, 55–62 (2004). https://doi.org/10.2166/wst.2004.0087

    Article  CAS  PubMed  Google Scholar 

  11. Sivaraman, G., Iniya, M., Anand, T., Kotla, N.G., Sunnapu, O., Singaravadivel, S., Gulyani, A., Chellappa, D.: Chemically diverse small molecule fluorescent chemosensors for copper ion. Coord. Chem. Rev. 357, 50–104 (2018)

    Article  CAS  Google Scholar 

  12. Udhayakumari, D., Naha, S., Velmathi, S.: Colorimetric and fluorescent chemosensors for Cu2+. A comprehensive review from the years 2013–15. Anal. Methods 9, 552–578 (2017)

    Article  CAS  Google Scholar 

  13. Kang, J.H., Lee, S.Y., Ahn, H.M., Kim, C.: Sequential detection of copper (II) and cyanide by a simple colorimetric chemosensor. Inorg. Chem. Commun. 74, 62–65 (2016)

    Article  CAS  Google Scholar 

  14. Elmorsi, T.M., Aysha, T.S., Machalický, O., Mohamed, M.B.I., Bedair, A.H.: A dual functional colorimetric and fluorescence chemosensor based on benzo[f]fluorescein dye derivatives for copper ions and pH; kinetics and thermodynamic study. Sens. Actuators B 253, 437–450 (2017)

    Article  CAS  Google Scholar 

  15. Lee, S.Y., Bok, K.H., Kim, J.A., Kim, S.Y., Kim, C.: Simultaneous detection of Cu2+ and Cr3+ by a simple Schiff-base colorimetric chemosensor bearing NBD (7-nitrobenzo-2-oxa-1, 3-diazolyl) and julolidine moieties. Tetrahedron. 72, 5563–5570 (2016)

    Article  CAS  Google Scholar 

  16. Kim, M.S., Jo, T.G., Ahn, H.M., Kim, C.: A colorimetric and fluorescent chemosensor for the selective detection of Cu2+ and Zn2+ Ions. J. Fluoresc. 27, 357–367 (2017)

    Article  CAS  PubMed  Google Scholar 

  17. Qu, L., Yin, C., Huo, F., Chao, J., Zhang, Y., Cheng, F.: A pyridoxal-based dual chemosensor for visual detection of copper ion and ratiometric fluorescent detection of zinc ion. Sens. Actuators B 191, 158–164 (2014)

    Article  CAS  Google Scholar 

  18. Pang, X., Gao, L., Feng, H., Li, Y., Li, L., Kong, J.: A peptide-based multifunctional fluorescent probe for Cu2+, Hg2+ and biothiol. New J. Chem. (2018). https://doi.org/10.1039/C8NJ03624A

    Article  Google Scholar 

  19. Tamil Selvan, G., Varadaraju, C., Tamil Selvan, R., Enoch, I.V., Selvakumar, M.P.: On/off fluorescent chemosensor for selective detection of divalent iron and copper ions: molecular logic operation and protein binding. ACS Omega 3, 7985–7992 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lin, Q., Chen, P., Liu, J., Fu, Y.-P., Zhang, Y.-M., Wei, T.-B.: Colorimetric chemosensor and test kit for detection copper (II) cations in aqueous solution with specific selectivity and high sensitivity. Dyes Pigment. 98, 100–105 (2013)

    Article  CAS  Google Scholar 

  21. Kim, S.Y., Lee, S.Y., Jung, J.M., Kim, M.S., Kim, C.: Selective detection of Cu2+ and S2– by a colorimetric chemosensor: experimental and theoretical calculations. Inorg. Chim. Acta 471, 709–717 (2018)

    Article  CAS  Google Scholar 

  22. Roy, D., Chakraborty, A., Ghosh, R.: Perimidine based selective colorimetric and fluorescent turn-off chemosensor of aqueous Cu2+: studies on its antioxidant property along with its interaction with calf thymus-DNA. RSC Adv. 7, 40563–40570 (2017)

    Article  CAS  Google Scholar 

  23. Paul, S., Ghosh, P., Bhuyan, S., Mukhopadhyay, S.K., Banerjee, P.: Nanomolar-level selective dual channel sensing of Cu2+ and CN from an aqueous medium by an opto-electronic chemoreceptor. Dalton Trans. 47, 1082–1091 (2018)

    Article  CAS  PubMed  Google Scholar 

  24. Parsaee, Z., Haratipour, P., Lariche, M.J., Vojood, A.: A novel high performance nano chemosensor for copper (II) ion based on an ultrasound-assisted synthesized diphenylamine-based Schiff base: design, fabrication and density functional theory calculations. Ultrason. Sonochem. 41, 337–349 (2018)

    Article  CAS  PubMed  Google Scholar 

  25. Jia, H., Yang, M., Meng, Q., He, G., Wang, Y., Hu, Z., Zhang, R., Zhang, Z.: Synthesis and application of an aldazine-based fluorescence chemosensor for the sequential detection of Cu2+ and biological thiols in aqueous solution and living cells. Sensors 16, 79 (2016)

    Article  CAS  Google Scholar 

  26. Naskar, B., Modak, R., Maiti, D.K., Bauzá, A., Frontera, A., Maiti, P.K., Mandal, S., Goswami, S.: A highly selective “ON–OFF” probe for colorimetric and fluorometric sensing of Cu2+ in water. RSC Adv. 7, 11312–11321 (2017)

    Article  CAS  Google Scholar 

  27. Ghorai, A., Mondal, J., Manna, A.K., Chowdhury, S., Patra, G.K.: A novel pyrene based highly selective reversible fluorescent-colorimetric sensor for the rapid detection of Cu2+ ions: application in bio-imaging. Anal. Methods 10, 1063–1073 (2018)

    Article  CAS  Google Scholar 

  28. Shan, Y., Liu, Z., Cao, D., Liu, G., Guan, R., Sun, N., Wang, C., Wang, K.: Coumarinic chalcone derivatives as chemosensors for cyanide anions and copper ions. Sens. Actuators B 221, 463–469 (2015)

    Article  CAS  Google Scholar 

  29. Wang, M., Leung, K.-H., Lin, S., Chan, D.S.-H., Kwong, D.W.J., Leung, C.-H., Ma, D.-L.: A colorimetric chemosensor for Cu(2+) ion detection based on an iridium(III) complex. Sci. Rep. 4, 6794 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhao, Y.-C., Chen, C., Chen, B., Wang, P.-Y., Wu, Z.-B., Li, H., Song, B.-A., Yang, S.: Tunable fluorescent probes for selective detection of copper (II) and sulphide with completely different modes. Sens. Actuators B 241, 168–173 (2017)

    Article  CAS  Google Scholar 

  31. Fanna, D.J., Lima, L.M.P., Craze, A.R., Trinchi, A., Wuhrer, R., Lindoy, L.F., Wei, G., Reynolds, J.K., Li, F.: Ultrasensitive colorimetric and ratiometric detection of Cu2+: acid–base properties, complexation, and binding studies. ACS Omega 3, 10471–10480 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang, X., Guo, X., Yuan, H., Jia, X., Dai, B.: One-pot synthesis of a natural phenol derived fluorescence sensor for Cu(II) and Hg(II) detection. Dyes Pigments 155, 100–106 (2018)

    Article  CAS  Google Scholar 

  33. Liu, C., Jiao, X., He, S., Zhao, L., Zeng, X.: A highly selective and sensitive fluorescent probe for Cu2+ based on a novel naphthalimide–rhodamine platform and its application in live cell imaging. Org. Biomol. Chem. 15, 3947–3954 (2017)

    Article  CAS  PubMed  Google Scholar 

  34. Zhu, D., Ren, A., He, X., Luo, Y., Duan, Z., Yan, X., Xiong, Y., Zhong, X.: A novel ratiometric fluorescent probe for selective and sensitive detection of Cu2+ in complete aqueous solution. Sens. Actuators B 252, 134–141 (2017)

    Article  CAS  Google Scholar 

  35. Yuan, Y., Sun, S., Liu, S., Song, X., Peng, X.: Highly sensitive and selective turn-on fluorescent probes for Cu2+ based on rhodamine B. J. Mater. Chem. B 3, 5261–5265 (2015)

    Article  CAS  Google Scholar 

  36. Parsaee, Z., Karachi, N., Razavi, R.: Ultrasound assisted fabrication of a novel optode base on a triazine based Schiff base immobilized on TEOS for copper detection. Ultrason. Sonochem. 47, 36–46 (2018)

    Article  CAS  PubMed  Google Scholar 

  37. Storr, T., Verma, P., Pratt, R.C., Wasinger, E.C., Shimazaki, Y., Stack, T.D.P.: Defining the electronic and geometric structure of one-electron oxidized copper—bis-phenoxide complexes. J. Am. Chem. Soc. 130, 15448–15459 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sokolowski, A., Leutbecher, H., Weyhermüller, T., Schnepf, R., Bothe, E., Bill, E., Hildebrandt, P., Wieghardt, K.: Phenoxyl-copper(II) complexes: models for the active site of galactose oxidase. JBIC J. Biol. Inorg. Chem. 2, 444–453 (1997)

    Article  CAS  Google Scholar 

  39. Thomas, F., Jarjayes, O., Duboc, C., Philouze, C., Saint-Aman, E., Pierre, J.-L.: Intramolecularly hydrogen-bonded versus copper(ii) coordinated mono- and bis-phenoxyl radicals. Dalton Trans. 17, 2662–2669 (2004)

  40. Sahoo, S.K., Sharma, D., Moirangthem, A., Kuba, A., Thomas, R., Kumar, R., Kuwar, A., Choi, H.-J., Basu, A.: Pyridoxal derived chemosensor for chromogenic sensing of Cu2+ and fluorogenic sensing of Fe3+ in semi-aqueous medium. J. Lumin. 172, 297–303 (2016)

    Article  CAS  Google Scholar 

  41. Qu, L., Yin, C., Huo, F., Zhang, Y., Li, Y.: A commercially available fluorescence chemosensor for copper ion and its application in bioimaging. Sens. Actuators B 183, 636–640 (2013)

    Article  CAS  Google Scholar 

  42. World Health Organization: Guidelines for drinking-water quality. World Health Organization, Geneva (2011)

    Google Scholar 

  43. Schwarzenbach, G., Flaschka, H.: Complexometric titrations. Methuen, London (1969)

    Google Scholar 

  44. Cowieson, N.P., Aragao, D., Clift, M., Ericsson, D.J., Gee, C., Harrop, S.J., Mudie, N., Panjikar, S., Price, J.R., Riboldi-Tunnicliffe, A., Williamson, R., Caradoc-Davies, T.: MX1: a bending-magnet crystallography beamline serving both chemical and macromolecular crystallography communities at the Australian Synchrotron. J. Synchrotron Radiat. 22, 187–190 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. McPhillips, T.M., McPhillips, S.E., Chiu, H.-J., Cohen, A.E., Deacon, A.M., Ellis, P.J., Garman, E., Gonzalez, A., Sauter, N.K., Phizackerley, R.P., Soltis, S.M., Kuhn, P.: Blu-Ice and the Distributed Control System: software for data acquisition and instrument control at macromolecular crystallography beamlines. J. Synchrotron Radiat. 9, 401–406 (2002)

    Article  CAS  PubMed  Google Scholar 

  46. Kabsch, W.: Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Crystallogr. 26, 795–800 (1993)

    Article  CAS  Google Scholar 

  47. Sheldrick, G.M.: SADABS, A program for empirical absorption correction of area detector data (1996)

  48. Sheldrick, G.M.: SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. A 71, 3–8 (2015)

    Article  CAS  Google Scholar 

  49. Sheldrick, G.M.: A short history of SHELX. Acta Crystallogr. A 64, 112–122 (2008)

    Article  CAS  PubMed  Google Scholar 

  50. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A.K., Puschmann, H.: OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 42, 339–341 (2009)

    Article  CAS  Google Scholar 

  51. Magnusson, B., Örnemark, U.: The fitness for purpose of analytical methods: a laboratory guide to method validation and related topics. Eurachem (2014)

  52. Job, P.: Formation and stability of inorganic complexes in solution. Ann. Chim. Appl. 9, 113–203 (1928)

  53. Renny, J.S., Tomasevich, L.L., Tallmadge, E.H., Collum, D.B.: Method of continuous variations: applications of job plots to the study of molecular associations in organometallic chemistry. Angew. Chem. Int. Ed. 52, 11998–12013 (2013)

    Article  CAS  Google Scholar 

  54. Rossotti, F.J.C., Rossotti, H.: Potentiometric titrations using Gran plots: a textbook omission. J. Chem. Educ. 42, 375 (1965)

    Article  CAS  Google Scholar 

  55. Gans, P., Sabatini, A., Vacca, A.: Determination of equilibrium constants from spectrophometric data obtained from solutions of known pH: the program pHab. Ann. Chim. 89, 45–49 (1999)

    CAS  Google Scholar 

  56. Alderighi, L., Gans, P., Ienco, A., Peters, D., Sabatini, A., Vacca, A.: Hyperquad simulation and speciation (HySS): a utility program for the investigation of equilibria involving soluble and partially soluble species. Coord. Chem. Rev. 184, 311–318 (1999)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Western Sydney University (WSU), Dr Laurel George and Dr Richard Wuhrer from the WSU Advance Material Characterisation Facility, and Dr Meena Mikhael from the WSU Mass Spectrometry Facility for instrument access. The authors would also like to thank the Australian Synchrotron (Clayton, Victoria, Australia) and their beamline scientists for assistance and access to the MX1 beamline where crystallographic data acquisition was undertaken. DJF would also like to acknowledge and thank WSU for a Postgraduate Research Award and CSIRO for a PhD top-up award. LMPL is grateful for financial support from project LISBOA-01-0145-FEDER-007660 (Microbiologia Molecular, Estrutural e Celular) funded by FEDER funds through COMPETE2020-Programa Operacional Competitividade e Internacionalização (POCI) and by national funds through Fundação para a Ciência e a Tecnologia (FCT), and also for a postdoctoral fellowship (SFRH/BPD/73361/2010) from FCT.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Luís M. P. Lima or Feng Li.

Additional information

This paper is dedicated to Professor Karsten Gloe on the occasion of his 70th Birthday.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fanna, D.J., Lima, L.M.P., Craze, A.R. et al. Determination of Cu2+ in drinking water using a hydroxyjulolidine-dihydroperimidine colorimetric sensor. J Incl Phenom Macrocycl Chem 94, 141–154 (2019). https://doi.org/10.1007/s10847-018-0862-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-018-0862-5

Keywords

Navigation