Skip to main content
Log in

Colorimetric chemosensor based on a carminic acid and Pb2+ complex for selective detection of cysteine over homocysteine and glutathione in aqueous solution

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

We have developed a colorimetric chemosensor for the selective and sensitive detection of Cys based on the complex (CA-2Pb2+) between a commercially available natural organic dye, carminic acid (CA) and Pb2+ in pure aqueous solution at physiological pH. The addition of Cys to the CA-2Pb2+ solution resulted in a distinct color change from purple to red together with a remarkable absorption spectral change by the restoration of CA through a displacement mechanism with formation of the Cys-Pb2+ complex, whereas other amino acids and glutathione induce no or minimal spectral and color changes. Moreover, the other amino acids and GSH do not affect the detection ability of CA-2Pb2+ for Cys. The reversibility even through several cycles was established for practical applications. The results indicate that CA-2Pb2+ may be useful as a potential colorimetric and naked-eye chemosensor for Cys over Hcy and GSH in aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cooper, A.J.: Biochemistry of sulfur containing amino acids. Ann. Rev. Biochem. 52, 187–222 (1983)

    Article  CAS  Google Scholar 

  2. Wood, Z.A., Schroder, E., Harris, J.R., Poole, L.B.: Structure, mechanism and regulation of peroxiredoxins. Trends Biochem. Sci. 28, 32–40 (2003)

    Article  CAS  Google Scholar 

  3. Lill, R., Mühlenhoff, U.: Iron–sulfur protein biogenesis in eukaryotes: components and mechanisms. Annu. Rev. Cell Dev. Biol. 22, 457–486 (2006)

    Article  CAS  Google Scholar 

  4. Weerapana, E., Wang, C., Simon, G.M., Richter, F., Khare, S., Dillon, M.B.D., Bachovchin, D.A., Mowen, K., Baker, D., Cravatt, B.F.: Quantitative reactivity profiling predicts functional cysteines in proteomes. Nature. 468, 790–795 (2010)

    Article  CAS  Google Scholar 

  5. Dalton, T.P., Shertzer, H.G., Puga, A.: Regulation of gene expression by reactive oxygen. Annu. Rev. Pharmacol. Toxicol. 39, 67–101 (1999)

    Article  CAS  Google Scholar 

  6. Chai, G.S., Jiang, X., Ni, Z.F., Xie, A.J., Cheng, X.S., Wang, Q., Wang, J.Z., Liu, G.P.: Betaine attenuates alzheimer-like pathological changes and memory deficits induced by homocysteine. J. Neurochem. 124, 388–396 (2013)

    Article  CAS  Google Scholar 

  7. Wang, X.F., Cynader, M.S.: Pyruvate released by astrocytes protects neurons from copper-catalyzed cysteine neurotoxicity. J Neurosci. 21, 3322–3331 (2001)

    CAS  Google Scholar 

  8. Go, Y.M., Jones, D.P.: Cysteine/cystine redox signaling in cardiovascular disease. Free Radic. Biol. Med. 50, 495–509 (2011)

    Article  CAS  Google Scholar 

  9. Moreira, P.I., Harris, P.L.R., Zhu, X.W., Santos, M.S., Oliveira, C.R., Smith, M.A., Perry, G.: Lipoic acid and N-acetyl cysteine decrease mitochondrial-related oxidative stress in Alzheimer disease patient fibroblasts. J. Alzheimer’s Dis. 12, 195–206 (2007)

    Article  CAS  Google Scholar 

  10. Ahmed, K.B.A., Sengan, M., Kumar, S., Veerappan, A.: Highly selective colorimetric cysteine sensor based on the formation of cysteine layer on copper nanoparticles. Sens. Actuators B. 233, 431–437 (2016)

    Article  Google Scholar 

  11. Tcherkas, Y.V., Denisenko, A.D.: Simultaneous determination of several amino acids, including homocysteine, cysteine and glutamic acid, in human plasma by isocratic reversed-phase high-performance liquid chromatography with fluorimetric detection. J. Chromatogr. A. 913, 309–313 (2001)

    Article  CAS  Google Scholar 

  12. Kataoka, H., Takagi, K., Makita, M.: Determination of total plasma homocysteine and related aminothiols by gas chromatography with flame photometric detection. J. Chromatogr. B. 664, 421–425 (1995)

    Article  CAS  Google Scholar 

  13. Ge, S., Yan, M., Lu, J., Zhang, M., Yu, F., Yu, J., Song, X., Yu, S.: Electrochemical biosensor based on graphene oxide—Au nanoclusters composites for l-cysteine analysis. Biosens. Bioelectron. 31, 49–54 (2012)

    Article  CAS  Google Scholar 

  14. Vieira, I.C., Filho, O.F.: L-Cysteine determination using a polyphenol oxidase-based inhibition flow injection procedure. Anal. Chim. Acta. 399, 287–293 (1999)

    Article  CAS  Google Scholar 

  15. Guo, H., Jing, Y., Yuan, X., Ji, S., Zhao, J., Li, X., Kan, Y.: Highly selective fluorescent OFF-ON thiol probes based on dyads of BODIPY and potent intramolecular electron sink 2,4-dinitrobenzenesulfonyl subunits. Org. Biomol. Chem. 9, 3844–3853 (2011)

    Article  CAS  Google Scholar 

  16. Yan, Z., Guang, S., Xu, H., Liu, X.: An effective real-time colorimetric sensor for sensitive and selective detection of cysteine under physiological conditions. Analyst. 136, 1916–1921 (2011)

    Article  CAS  Google Scholar 

  17. Kim, Y.S., Park, G.J., Lee, S.A., Kim, C.: A colorimetric chemosensor for the sequential detection of copper ion and amino acids (cysteine and histidine) in aqueous solution. RSC Adv. 5, 31179–31188 (2015)

    Article  CAS  Google Scholar 

  18. Liu, X., Yang, D., Chen, W., Yang, L., Qi, F., Song, X.: A red-emitting fluorescent probe for specific detection of cysteine over homocysteine and glutathione with a large Stokes shift. Sens. Actuators B. 234, 27–33 (2016)

    Article  CAS  Google Scholar 

  19. Wang, F., Guo, Z., Li, X., Li, X., Zhao, C.: Development of a small molecule probe capable of discriminating cysteine, homocysteine, and glutathione with three distinct turn-on fluorescent outputs. Chem. Eur. J. 20, 11471–11478 (2014)

    Article  CAS  Google Scholar 

  20. Fan, W., Huang, X., Shi, X., Wang, Z., Lu, Z., Fan, C., Bo, Q.: A simple fluorescent probe for sensing cysteine over homocysteine and glutathione based on PET. Spectrochim Acta A. 173, 918–923 (2017)

    Article  CAS  Google Scholar 

  21. Wu, J., Kwon, B., Liu, W., Anslyn, E.V., Wang, P., Kim, J.S.: Chromogenic/fluorogenic ensemble chemosensing systems. Chem. Rev. 115, 7893–7943 (2015)

    Article  CAS  Google Scholar 

  22. Nguyen, B.T., Anslyn, E.V.: Indicator–displacement assays. Coord. Chem. Rev. 250, 3118–3127 (2006)

    Article  CAS  Google Scholar 

  23. Gil, E.S., Oliveira, S.C., Oliveira-Brett, A.M.: Hydroxyanthraquinones carminic acid and chrysazin anodic oxidation. Electroanalysis. 24, 2079–2084 (2012)

    Article  CAS  Google Scholar 

  24. Nevado, J.J.B., Cabanillas, C.G., Salcedo, A.M.C.: Simultaneous spectrophotometric determination of three food dyes by using the first derivative of ratio spectra. Talanta. 42, 2043–2051 (1995)

    Article  CAS  Google Scholar 

  25. Cabrera, R.B., Fernandez-Lahore, H.M.: Primary recovery of acid food colorant. Int. J. Food Sci. Technol. 42, 1315–1326 (2007)

    Article  CAS  Google Scholar 

  26. Wanga, F., Huanga, W., Li, K., Li, A., Gao, W., Tang, B.: Study on the fluorescence enhancement in Lanthanum(III)–carminic acid–cetyltrimethylammonium bromide system and its analytical application. Spectrochim. Acta A. 79, 1946–1951 (2011)

    Article  Google Scholar 

  27. López-Martinez, L., Guzman-Mar, J.L., Lopez-de Alba, P.L.: Simultaneous determination of uranium(VI) and thorium(IV) ions with carminic acid by bivariate calibration. J. Radioanal. Nucl. Chem. 247, 413–417 (2001)

    Article  Google Scholar 

  28. Sakamaki, M., Aikawa, S., Fukushima, Y.: Colorimetric determination of Pb2+ in perfect aqueous solution using carminic acid as a selective chemosensor. J. Fluoresc. 27, 1929–1935 (2017)

    Article  CAS  Google Scholar 

  29. Irving, H.M.N.H., Freiser, H., West, T.S.: IUPAC Compendium of Analytical Nomenclature, Definitive Rules. Pergamon Press, Oxford (1978)

    Google Scholar 

  30. Jalilehvand, F., Sisombath, N.S., Schell, A.C., Facey, G.A.: Lead(II) complex formation with L-cysteine in aqueous solution. Inorg. Chem. 54, 2160–2170 (2015)

    Article  CAS  Google Scholar 

  31. Crea, F., Falcone, G., Foti, C., Giuffre, O., Materazzi, S.: Thermodynamic data for Pb2+ and Zn2+ sequestration by biologically important S-donor ligands, at different temperatures and ionic strengths. New J. Chem. 38, 3973–3983 (2014)

    Article  CAS  Google Scholar 

  32. You, G.R., Lee, J.J., Choi, Y.W., Lee, S.Y., Kim, C.: Experimental and theoretical studies for sequential detection of copper(II) and cysteine by a colorimetric chemosensor. Tetrahedron. 72, 875–881 (2016)

    Article  CAS  Google Scholar 

  33. Lee, S.A., Lee, J.J., Shin, J.W., Min, K.S., Kim, C.: A colorimetric chemosensor for the sequential detection of copper(II) and cysteine. Dyes Pigm. 116, 131–138 (2015)

    Article  CAS  Google Scholar 

  34. Singh, Y., Arun, S., Singh, B.K., Dutta, P.K., Ghosh, T.: Colorimetric and ON–OFF–ON fluorescent chemosensor for the sequential detection of Cu(II) and cysteine and its application in imaging of living cells. RSC Adv. 6, 80268–80274 (2016)

    Article  CAS  Google Scholar 

  35. Yang, L., Qu, W., Zhang, X., Hang, Y., Hua, J.: Constructing a FRET-based molecular chemodosimeter for cysteine over homocysteine and glutathione by naphthalimide and phenazine derivatives. Analyst. 140, 182–189 (2015)

    Article  CAS  Google Scholar 

  36. Job, P.: Formation and stability of inorganic complexes in solution. Ann. Chim. Puris. 9, 113–203 (1928)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasumasa Fukushima.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inoue, K., Aikawa, S. & Fukushima, Y. Colorimetric chemosensor based on a carminic acid and Pb2+ complex for selective detection of cysteine over homocysteine and glutathione in aqueous solution. J Incl Phenom Macrocycl Chem 90, 105–110 (2018). https://doi.org/10.1007/s10847-017-0772-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-017-0772-y

Keywords

Navigation