Skip to main content
Log in

Electrochemical determination of lead(II) and copper(II) by using phytic acid and polypyrrole functionalized metal-organic frameworks

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A glassy carbon electrode (GCE) was modified with a composite prepared from phytic acid, polypyrrole and a ZIF type metal-organic framework (PA/PPy)/ZIF-8@ZIF-67). The nanocomposite was prepared by in-situ chemical polymerization in the presence of ferric chloride and subsequently functionalized with PA to form PA/PPy/ZIF-8@ZIF-67. The materials were characterized by XRD, FT-IR, BET, XPS, SEM and TEM. The modified GCE was applied to individual and simultaneous detection of Pb(II) and Cu(II), with peak voltages of −0.6 and − 0.1 V, respectively (vs. SCE). The amount of PPy, the ZIF-8@ZIF-67 concentration, polymerization potential, polymerization time and pH value were optimized. Under optimized conditions, the calibration plots have two linear ranges. These are from 0.02 to 200 μM and from 200 to 600 μM for Pb(II), and from 0.2 to 200 μM and 200 to 600 μM for Cu(II). The detection limits are 2.9 nM and 14.8 nM, respectively. Simultaneous detection of Pb(II) and Cu(II) is also demonstrated. The good performance of the electrode is attributed to the large surface area of ZIF-8@ZIF-67, the good electrical conductivity of PPy, and the metal complexation power of PA. The modified GCE was successfully applied to the determination of Pb(II) and Cu(II) in real samples and gave satisfactory recoveries.

Schematic presentation of the construction process of PA/PPy/ZIF-8@ZIF-67/GCE sensor, and the mechanism of Pb(II) and Cu(II) at the prepared sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Su X, Kushima A, Halliday C, Zhou J, Li J, Hatton TA (2018) Electrochemically-mediated selective capture of heavy metal chromium and arsenic oxyanions from water. Nat Commun 9:4701. https://doi.org/10.1038/s41467-018-07159-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Barton J, García MBG, Santos DH, Fanjul-Bolado P, Ribotti A, McCaul M, Diamondm D, Magni P (2016) Screen-printed electrodes for environmental monitoring of heavy metal ions: a review. Microchim Acta 183:503–517

    Article  CAS  Google Scholar 

  3. Khazaeli S, Nezamabadi N, Rabani M, Panahi HA (2013) A new functionalized resin and its application in flame atomic absorption spectrophotometric determination of trace amounts of heavy metal ions after solid phase extraction in water samples. Microchem J 106:147–153

    Article  CAS  Google Scholar 

  4. Su S, Chen B, He M, Hu B (2014) Graphene oxide-silica composite coating hollow fiber solid phase microextraction online coupled with inductively coupled plasma mass spectrometry for the determination of trace heavy metals in environmental water samples. Talanta 123:1–9

    Article  CAS  Google Scholar 

  5. Liang C, Xiao H, Hu Z, Zhang X, Hu J (2018) Uptake, transportation, and accumulation of C60 fullerene and heavy metal ions (Cd, Cu and Pb) in rice plants grown in an agricultural soil. Environ Pollut 235:330–338

    Article  CAS  Google Scholar 

  6. Guselnikova O, Postnikov P, Erzina M, Kalachyova Y, Švorčík V, Lyutakov O (2017) Pretreatment-free selective and reproducible SERS-based detection of heavy metal ions on DTPA functionalized plasmonic platform. Sensor Actuat B-Chem 253:830–838

    Article  CAS  Google Scholar 

  7. Wang X, Yang C, Zhu S, Yan M, Ge S, Yu J (2017) 3D origami electrochemical device for sensitive Pb2+ testing based on DNA functionalized iron-porphyrinic metal-organic framework. Biosens Bioelectron 87:108–115

    Article  CAS  Google Scholar 

  8. Kanyong P, Rawlinson S, Davis J (2016) Gold nanoparticle modified screen-printed carbon arrays for the simultaneous electrochemical analysis of lead and copper in tap water. Microchim Acta 183:2361–2368

    Article  CAS  Google Scholar 

  9. Song Y, Guo C, Ji H, Zhang S, Wang M, He L, Peng D, Zhang Z (2018) CuxO@DNA sphere-based electrochemical bioassay for sensitive detection of Pb2+. Microchim Acta 185:186

    Article  Google Scholar 

  10. Han X, Meng Z, Zhang H, Zheng J (2018) Fullerene-based anodic stripping voltammetry for simultaneous determination of Hg(II), Cu(II), Pb(II) and Cd(II) in foodstuff. Microchim Acta 185:274

    Article  Google Scholar 

  11. Hassan KM, Elhaddad GM, AbdelAzzem M (2019) Voltammetric determination of cadmium(II), lead(II) and copper(II) with a glassy carbon electrode modified with silver nanoparticles deposited on poly(1,8-diaminonaphthalene). Microchim Acta 186:440

    Article  Google Scholar 

  12. Wu W, Jia M, Wang Z, Zhang W, Zhang Q, Liu G, Zhang Z, Li P (2019) Simultaneous voltammetric determination of cadmium(II), lead(II), mercury(II), zinc(II), and copper(II) using a glassy carbon electrode modified with magnetite (Fe3O4) nanoparticles and fluorinated multiwalled carbon nanotubes. Microchim Acta 186:97

    Article  Google Scholar 

  13. Vajedi F, Dehghani H (2019) The characterization of TiO2-reduced graphene oxide nanocomposites and their performance in electrochemical determination for removing heavy metals ions of cadmium(II), lead(II) and copper(II). Mat Sci Eng B-Adv 243:189–198

    Article  CAS  Google Scholar 

  14. Cui L, Wu J, Ju H (2015) Electrochemical sensing of heavy metal ions with inorganic, organic and bio-materials. Biosens Bioelectron 63:276–286

    Article  CAS  Google Scholar 

  15. Shi E, Yu G, Lin H, Liang C, Zhang T, Zhang F, Qu F (2019) The incorporation of bismuth(III) into metal-organic frameworks for electrochemical detection of trace cadmium(II) and lead(II). Microchim Acta 186:451

    Article  Google Scholar 

  16. Tu X, Xie Y, Ma X, Gao F, Gong L, Wang D, Lu L, Liu G, Yu Y, Huang X (2019) Highly stable reduced graphene oxide-encapsulated Ce-MOF composite as sensing material for electrochemically detecting dichlorophen. J Electroanal Chem 848:113268

    Article  CAS  Google Scholar 

  17. Cai XC, Deng XR, Xie ZX, Shi YS, Pang ML, Lin J (2019) Controllable synthesis of highly monodispersed nanoscale Fe-soc-MOF and the construction of Fe-soc-MOF@Polypyrrole core-shell nanohybrids for cancer therapy. Chem Eng J 358:369–378

    Article  CAS  Google Scholar 

  18. Zhang W, Zong L, Liu S, Pei S, Zhang Y, Ding X, Jiang B, Zhang Y (2019) An electrochemical sensor based on electro-polymerization of caffeic acid and Zn/Ni-ZIF-8-800 on glassy carbon electrode for the sensitive detection of acetaminophen. Biosens Bioelectron 131:200–206

    Article  CAS  Google Scholar 

  19. Ding M, Shi W, Guo L, Leong ZY, Baji A, Yang HY (2017) Bimetallic metal-organic framework derived porous carbon nanostructures for high performance membrane capacitive desalination. J Mater Chem A 5:6113–6121

    Article  CAS  Google Scholar 

  20. Matatagui D, Sainz-Vidal A, Gràcia I, Figueras E, Cané C, Saniger JM (2018) Chemoresistive gas sensor based on ZIF-8/ZIF-67 nanocrystals. Sensor Actuat B-Chem 274:601–608

    Article  CAS  Google Scholar 

  21. Zhang W, Zong L, Geng G, Li Y, Zhang Y (2018) Enhancing determination of quercetin in honey samples through electrochemical sensors based on highly porous polypyrrole coupled with nanohybrid modified GCE. Sensor Actuat B-Chem 257:1099–1109

    Article  CAS  Google Scholar 

  22. Huang H, Zhu W, Gao X, Liu X, Ma H (2016) Synthesis of a novel electrode material containing phytic acid-polyaniline nanofibers for simultaneous determination of cadmium and lead ions. Anal Chim Acta 947:32–41

    Article  CAS  Google Scholar 

  23. Wang N, Dai H, Wang D, Ma H, Lin M (2017) Determination of copper ions using a phytic acid/polypyrrole nanowires modified glassy carbon electrode. Mat Sci Eng C-Mater 76:139–143

    Article  CAS  Google Scholar 

  24. Dai H, Wang N, Wang D, Ma H, Lin M (2016) An electrochemical sensor based on phytic acid functionalized polypyrrole/graphene oxide nanocomposites for simultaneous determination of Cd(II) and Pb(II). Chem Eng J 299:150–155

    Article  CAS  Google Scholar 

  25. Zhu X, Liu B, Hou H, Huang Z, Zeinu KM, Huang L, Yuan X, Guo D, Hu J, Yang J (2017) Alkaline intercalation of Ti3C2 MXene for simultaneous electrochemical detection of Cd(II), Pb(II), Cu(II) and Hg(II). Electrochim Acta 248:46–57

    Article  CAS  Google Scholar 

  26. Fu XC, Wu J, Li J, Xie CG, Liu YS, Zhong Y, Liu JH (2013) Electrochemical determination of trace copper(II) with enhanced sensitivity and selectivity by gold nanoparticle/single-wall carbon nanotube hybrids containing three-dimensional l-cysteine molecular adapters. Sensor Actuat B-Chem 182:382–389

    Article  CAS  Google Scholar 

  27. Mališić M, Janošević A, Paunković BŠ, Stojković I, Ćirić-Marjanović G (2012) Exploration of MnO2/carbon composites and their application to simultaneous electroanalytical determination of Pb(II) and Cd(II). Electrochim Acta 74:158–164

    Article  Google Scholar 

  28. Yue W, Riehl BL, Pantelic N, Schlueter KT, Johnson JM, Wilson RA, Guo X, King EE, Heineman WR (2012) Anodic stripping voltammetry of heavy metals on a metal catalyst free carbon nanotube electrode. Electroanal 24:1039–1046

    Article  CAS  Google Scholar 

  29. Promphet N, Rattanarat P, Rangkupan R, Chailapakul O, Rodthongkum N (2015) An electrochemical sensor based on graphene/polyaniline/polystyrene nanoporous fibers modified electrode for simultaneous determination of lead and cadmium. Sensor Actuat B-Chem 207:526–534

    Article  CAS  Google Scholar 

  30. Guo H, Wang D, Chen J, Weng W, Huang M, Zheng Z (2016) Simple fabrication of flake-like NH2 -MIL-53(Cr) and its application as an electrochemical sensor for the detection of Pb2+. Chem Eng J 289:479–485

    Article  CAS  Google Scholar 

  31. Lin M, Cho M, Choe WS, Son Y, Lee Y (2009) Electrochemical detection of copper ion using a modified copolythiophene electrode. Electrochim Acta 54:7012–7017

    Article  CAS  Google Scholar 

  32. Morton J, Havens N, Mugweru A, Wanekaya AK (2009) Detection of trace heavy metal ions using carbon nanotube-modified electrodes. Electroanal 21:1597–1603

    Article  CAS  Google Scholar 

  33. Wang D, Ke Y, Guo D, Guo H, Chen J, Weng W (2015) Facile fabrication of cauliflower-like MIL-100(Cr) and its simultaneous determination of Cd2+, Pb2+, Cu2+ and Hg2+ from aqueous solution. Sensor Actuat B-Chem 216:504–510

    Article  Google Scholar 

  34. Simpson A, Pandey RR, Chusuei CC, Ghosh K, Patel R, Wanekaya AK (2018) Fabrication characterization and potential applications of carbon nanoparticles in the detection of heavy metal ions in aqueous media. Carbon 127:122–130

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the China Postdoctoral Science Foundation funded project (No.2019 M652532), the Key Scientific Research Project of Colleges and Universities of Henan Province (No.20A150016), the National Natural Science Foundation of China (No.51603062) and the High-level Talents Introduction Project of Henan Institute of Science and Technology (No.210010617006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingbo Qu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1452 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Fan, S., Li, X. et al. Electrochemical determination of lead(II) and copper(II) by using phytic acid and polypyrrole functionalized metal-organic frameworks. Microchim Acta 187, 69 (2020). https://doi.org/10.1007/s00604-019-4044-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-4044-y

Keywords

Navigation