Skip to main content
Log in

The incorporation of bismuth(III) into metal-organic frameworks for electrochemical detection of trace cadmium(II) and lead(II)

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The first example of metallic bismuth encapsulated into a mesoporous metal-organic framework of the type MIL-101(Cr) matrix is presented. Bi(III)-impregnated MIL-101(Cr) (Bi(III)/MIL-101(Cr)) was dropped onto a conductive carbon cloth electrode (CCE). Then, bismuth was generated by electrochemical reduction of the Bi(III)/MIL-101(Cr) supported on CCE (Bi/MIL-101(Cr)/CCE). The resulting Bi/MIL-101(Cr)/CCE display impressive performance in terms of peak currents for the ions Cd(II) and Pb(II) when compared to the single-component counterparts. Differential pulse anodic stripping voltammetry (DPASV) enabled sensing of the two ions over linear working range of 0.1 to 30 μg L−1 and 30 to 90 μg L−1. The parameters are refined before the detection of two metal ions, including the amount of bismuth in MIL-101(Cr), optimum pH (5.0), deposition potential (−1.2 V) and deposition time (600 s). The respective detection limits are 60 and 70 ng L−1 (at S/N = 3). This is strikingly lower than the guideline values of domestic water given by the WHO which are 3 μg L−1 for Cd(II) and 10 μg L−1 for Pb(II). The Bi/MIL-101(Cr) onto CCE is fairly specific for Cd(II) (at around −0.76 V) and Pb(II) (at around −0.54 V), well reproducible and has excellent recovery in real water analysis.

Schematic illustration of the preparation of a Bi(III)/MIL-101(Cr) metal-organic framework, its deposition on a carbon cloth electrode (CCE), and its application for detection of Cd(II) and Pb(II) by differential pulse adsorptive stripping voltammetry (DPASV).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Li H, Eddaoudi M, O'Keeffe M, Yaghi OM (1999) Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402:276–279

    Article  CAS  Google Scholar 

  2. Panella B, Hirscher M (2005) Hydrogen physisorption in metal-organic porous crystals. Adv Mater 17:538–541

    Article  CAS  Google Scholar 

  3. Chughtai AH, Ahmad N, Younus HA, Laypkov A, Verpoort F (2015) Metal-organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations. Chem Soc Rev 44:6804–6849

    Article  CAS  Google Scholar 

  4. Stavila V, Talin AA, Allendorf MD (2014) MOF-based electronic and opto-electronic devices. Chem Soc Rev 43:5994–6010

    Article  CAS  Google Scholar 

  5. Kumar P, Deep A, Kim KH (2015) Metal organic frameworks for sensing applications. TrAC Trends Anal Chem 73:39–53

    Article  CAS  Google Scholar 

  6. Zhou J, Li X, Yang L, Yan S, Wang M, Cheng D, Chen Q, Dong Y, Liu P, Cai W, Zhang C (2015) The Cu-MOF-199/single-walled carbon nanotubes modified electrode for simultaneous determination of hydroquinone and catechol with extended linear ranges and lower detection limits. Anal Chim Acta 899:57–65

    Article  CAS  Google Scholar 

  7. Lantao L, Yanli Z, Shuang L, Maotian X (2018) The applications of metal−organic frameworks in electrochemical sensors. ChemElectroChem 5:6–19

    Article  Google Scholar 

  8. Shi E, Lin H, Wang Q, Zhang F, Shi S, Zhang T, Li X, Niu H, Qu F (2017) Synergistic effect of the composite films formed by zeolitic imidazolate framework 8 (ZIF-8) and porous nickel films for enhanced amperometric sensing of hydrazine. Dalton Trans 46:554–563

    Article  CAS  Google Scholar 

  9. Anik Ü, Timur S, Dursun Z (2019) Metal organic frameworks in electrochemical and optical sensing platforms: a review. Microchim Acta 186:196

    Article  Google Scholar 

  10. Fei-Yan Y, Rui Z, Hailong W, Li-Feng C, Lei H, Hai-Long J, Qiang X (2017) Metal–organic frameworks and their composites: synthesis and electrochemical applications. Small Methods 1:1700187

    Article  Google Scholar 

  11. Zhang L, Liu H, Shi W, Cheng P (2019) Synthesis strategies and potential applications of metal-organic frameworks for electrode materials for rechargeable lithium ion batteries. Coord Chem Rev 388:293–309

    Article  CAS  Google Scholar 

  12. Moon HR, Lim D-W, Suh MP (2013) Fabrication of metal nanoparticles in metal–organic frameworks. Chem Soc Rev 42:1807–1824

    Article  CAS  Google Scholar 

  13. Shi L, Zhu X, Liu T, Zhao H, Lan M (2016) Encapsulating cu nanoparticles into metal-organic frameworks for nonenzymatic glucose sensing. Sensors Actuators B Chem 227:583–590

    Article  CAS  Google Scholar 

  14. Samadi-Maybodi A, Ghasemi S, Ghaffari-Rad H (2015) Ag-doped zeolitic imidazolate framework-8 nanoparticles modified CPE for efficient electrocatalytic reduction of H2O2. Electrochim Acta 163:280–287

    Article  CAS  Google Scholar 

  15. Hosseini H, Ahmar H, Dehghani A, Bagheri A, Fakhari AR, Amini MM (2013) Au-SH-SiO2 nanoparticles supported on metal-organic framework (Au-SH-SiO2@Cu-MOF) as a sensor for electrocatalytic oxidation and determination of hydrazine. Electrochim Acta 88:301–309

    Article  CAS  Google Scholar 

  16. Yuan B, Zhang J, Zhang R, Shi H, Wang N, Li J, Ma F, Zhang D (2016) Cu-based metal–organic framework as a novel sensing platform for the enhanced electro-oxidation of nitrite. Sensors Actuators B Chem 222:632–637

    Article  CAS  Google Scholar 

  17. Song Y, Xu M, Gong C, Shen Y, Wang L, Xie Y, Wang L (2018) Ratiometric electrochemical glucose biosensor based on GOD/AuNPs/Cu-BTC MOFs/macroporous carbon integrated electrode. Sensors Actuators B Chem 257:792–799

    Article  CAS  Google Scholar 

  18. Roushani M, Valipour A, Saedi Z (2016) Electroanalytical sensing of Cd2+ based on metal–organic framework modified carbon paste electrode. Sensors Actuators B Chem 233:419–425

    Article  CAS  Google Scholar 

  19. Wang X, Yang C, Zhu S, Yan M, Ge S, Yu J (2017) 3D origami electrochemical device for sensitive Pb2+ testing based on DNA functionalized iron-porphyrinic metal-organic framework. Biosens Bioelectron 87:108–115

    Article  CAS  Google Scholar 

  20. Cobbina SJ, Chen Y, Zhou Z, Wu X, Zhao T, Zhang Z, Feng W, Wang W, Li Q, Wu X, Yang L (2015) Toxicity assessment due to sub-chronic exposure to individual and mixtures of four toxic heavy metals. J Hazard Mater 294:109–120

    Article  CAS  Google Scholar 

  21. Gumpu MB, Sethuraman S, Krishnan UM, Rayappan JBB (2015) A review on detection of heavy metal ions in water – an electrochemical approach. Sensors Actuators B Chem 213:515–533

    Article  CAS  Google Scholar 

  22. Cui L, Wu J, Ju H (2015) Electrochemical sensing of heavy metal ions with inorganic, organic and bio-materials. Biosens Bioelectron 63:276–286

    Article  CAS  Google Scholar 

  23. Chen C, Niu X, Chai Y, Zhao H, Lan M (2013) Bismuth-based porous screen-printed carbon electrode with enhanced sensitivity for trace heavy metal detection by stripping voltammetry. Sensors Actuators B Chem 178:339–342

    Article  CAS  Google Scholar 

  24. Aragay G, Merkoçi A (2012) Nanomaterials application in electrochemical detection of heavy metals. Electrochim Acta 84:49–61

    Article  CAS  Google Scholar 

  25. Wang J, Lu J, Hocevar SB, Farias PAM, Ogorevc B (2000) Bismuth-coated carbon electrodes for anodic stripping voltammetry. Anal Chem 72:3218–3222

    Article  CAS  Google Scholar 

  26. Moor C, Lymberopoulou T, Dietrich VJ (2001) Determination of heavy metals in soils, sediments and geological materials by ICP-AES and ICP-MS. Microchim Acta 136:123–128

    Article  CAS  Google Scholar 

  27. Achterberg EP, Braungardt C (1999) Stripping voltammetry for the determination of trace metal speciation and in-situ measurements of trace metal distributions in marine waters. Anal Chim Acta 400:381–397

    Article  CAS  Google Scholar 

  28. Taillefert M, Luther GW, Nuzzio DB (2000) The application of electrochemical tools for in situ measurements in aquatic systems. Electroanalysis 12:401–412

    Article  CAS  Google Scholar 

  29. Férey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surblé S, Margiolaki I (2005) A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 309:2040–2042

    Article  Google Scholar 

  30. Yang C-X, Chen Y-J, Wang H-F, Yan XP (2011) High-performance separation of fullerenes on metal–organic framework MIL-101(Cr). Chem Eur J 17:11734–11737

    Article  CAS  Google Scholar 

  31. Wang Q, Shao L, Ma Z, Xu J, Li Y, Wang C (2018) Hierarchical porous PANI/MIL-101 nanocomposites based solid-state flexible supercapacitor. Electrochim Acta 281:582–593

    Article  CAS  Google Scholar 

  32. Khan NA, Kang IJ, Seok HY, Jhung SH (2011) Facile synthesis of nano-sized metal-organic frameworks, chromium-benzenedicarboxylate, MIL-101. Chem Eng J 166:1152–1157

    Article  CAS  Google Scholar 

  33. Gérard F, Christian S, Caroline MD, Franck M, Suzy S, Julien D, Irène M (2004) A hybrid solid with giant pores prepared by a combination of targeted chemistry, simulation, and powder diffraction. Angew Chem 116:6456–6461

    Article  Google Scholar 

  34. Abdullah AH, Abdullah EA, Zainal Z, Hussein MZ, Ban TK (2012) Adsorptive performance of penta-bismuth hepta-oxide nitrate, Bi5O7NO3, for removal of methyl orange dye. Water Sci Technol 65:1632–1638

    Article  CAS  Google Scholar 

  35. Yang F, Yang CX, Yan XP (2015) Post-synthetic modification of MIL-101(Cr) with pyridine for high-performance liquid chromatographic separation of tocopherols. Talanta 137:136–142

    Article  CAS  Google Scholar 

  36. Li S, Yang Y, Liu L, Zhao Q (2018) Electron transfer-induced catalytic enhancement over bismuth nanoparticles supported by N-doped graphene. Chem Eng J 334:1691–1698

    Article  CAS  Google Scholar 

  37. Duan S, Huang Y (2017) Electrochemical sensor using NH2-MIL-88(Fe)-rGO composite for trace Cd2+, Pb2+, and Cu2+ detection. J Electroanal Chem 807:253–260

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the National Natural Science Foundation of China (Nos. 21771047, 21403048, 21401147 and 21571045), University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province (No. UNPYSCT-2017183), Harbin Science and Technology Bureau (2016RAQXJ161), and PhD Research Startup Program of Harbin Normal University, China (No. XKB201310).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Zhang or Fengyu Qu.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 1.68 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, E., Yu, G., Lin, H. et al. The incorporation of bismuth(III) into metal-organic frameworks for electrochemical detection of trace cadmium(II) and lead(II). Microchim Acta 186, 451 (2019). https://doi.org/10.1007/s00604-019-3522-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3522-6

Keywords

Navigation