Skip to main content

Advertisement

Log in

The role of arbuscular mycorrhizas in decreasing aluminium phytotoxicity in acidic soils: a review

  • Review
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Soil acidity is an impediment to agricultural production on a significant portion of arable land worldwide. Low productivity of these soils is mainly due to nutrient limitation and the presence of high levels of aluminium (Al), which causes deleterious effects on plant physiology and growth. In response to acidic soil stress, plants have evolved various mechanisms to tolerate high concentrations of Al in the soil solution. These strategies for Al detoxification include mechanisms that reduce the activity of Al3+ and its toxicity, either externally through exudation of Al-chelating compounds such as organic acids into the rhizosphere or internally through the accumulation of Al–organic acid complexes sequestered within plant cells. Additionally, root colonization by symbiotic arbuscular mycorrhizal (AM) fungi increases plant resistance to acidity and phytotoxic levels of Al in the soil environment. In this review, the role of the AM symbiosis in increasing the Al resistance of plants in natural and agricultural ecosystems under phytotoxic conditions of Al is discussed. Mechanisms of Al resistance induced by AM fungi in host plants and variation in resistance among AM fungi that contribute to detoxifying Al in the rhizosphere environment are considered with respect to altering Al bioavailability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdel Latef AA, Chaoxing H (2011) Effect of arbuscular mycorrhizal fungi of growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress. Sci Hort 127:228–233

    Article  CAS  Google Scholar 

  • Aguilera P, Borie F, Seguel A, Cornejo P (2011) Fluorescence detection of aluminum in arbuscular mycorrhizal fungal structures and glomalin using confocal laser scanning microscopy. Soil Biol Biochem 43:2427–2431

    Article  CAS  Google Scholar 

  • Ahn SJ, Matsumoto H (2006) The role of the plasma membrane in the response of plants roots to aluminum toxicity. Plant Signal Behav 1:37–45

    Article  PubMed  Google Scholar 

  • Ahonen-Jonnarth U, Goransson A, Finlay RD (2003) Growth and nutrient uptake of ectomycorrhizal Pinus sylvestris seedlings in a natural substrate treated with elevated Al concentrations. Tree Physiol 23:157–167

    Article  PubMed  CAS  Google Scholar 

  • Andrade SAL, Mazzafera P, Schiavinato MA, Silveira APD (2009) Arbuscular mycorrhizal association in coffee. J Agric Sci 147:105–115

    Article  Google Scholar 

  • Arriagada CA, Herrera MA, Borie F, Ocampo JA (2007) Contribution of arbuscular mycorrhizal and saprobe fungi to the aluminum resistance of Eucalyptus globulus. Water Air Soil Pollut 182:383–394

    Article  CAS  Google Scholar 

  • Ashen J, Goff L (2000) Molecular and ecological evidence for species specificity and coevolution in a group of marine algal–bacterial symbiosis. Appl Environ Microbiol 66:3024–3030

    Article  PubMed  CAS  Google Scholar 

  • Avio L, Cristani C, Giovannetti SP (2009) Genetic and phenotypic diversity of geographically different isolates of Glomus mosseae. Can J Microbiol 55:242–253

    Article  PubMed  CAS  Google Scholar 

  • Barceló J, Poschenrieder C (2002) Fast root growth responses, root exudates, and internal detoxification as clues to the mechanisms of aluminium toxicity and resistance: a review. Environ Exp Bot 48:75–92

    Article  Google Scholar 

  • Bartolome-Esteban H, Schenck NC (1994) Spore germination and hyphal growth of arbuscular mycorrhizal fungi in relation to soil aluminum saturation. Mycologia 86:217–226

    Article  CAS  Google Scholar 

  • Bedini S, Avio L, Argese E, Giovannetti M (2007) Effects of long-term land use on arbuscular mycorrhizal fungi and glomalin-related soil protein. Agr Ecosyst Environ 120:463–466

    Article  CAS  Google Scholar 

  • Bedini S, Pellegrino E, Avio L et al (2009) Changes in soil aggregation and glomalin-related soil protein content as affected by the arbuscular mycorrhizal fungal species Glomus mosseae and Glomus intraradices. Soil Biol Biochem 41:1491–1496

    Article  CAS  Google Scholar 

  • Berliner R, Torrey JG (1989) On tripartite Frankia–mycorrhizal associations in the Myricaceae. Can J Bot 67:1708–1712

    Article  Google Scholar 

  • Bever JD, Morton J (1999) Heritable variation and mechanisms of inheritance of spore shape within a population of Scutellospora pellucida, an arbuscular mycorrhizal fungus. Am J Bot 86:1209–1216

    Article  PubMed  CAS  Google Scholar 

  • Bever JD, Schultz P, Pringle A, Morton J (2001) Arbuscular mycorrhizal fungi: more diverse than meets the age, and the ecological tale of why. Bioscience 51:923–931

    Article  Google Scholar 

  • Blancaflor EB, Jones DL, Gilroy S (1998) Alterations in the cytoskeleton accompany aluminum-induced growth inhibition and morphological changes in primary roots of maize. Plant Physiol 118:159–172

    Article  PubMed  CAS  Google Scholar 

  • Bolan NS, Adriano D, Curtin D (2003) Soil acidification and liming interactions with nutrient and heavy metal transformation and bioavailability. Adv Agron 78:215–272

    Article  CAS  Google Scholar 

  • Bonfante P, Genre A (2008) Plants and arbuscular mycorrhizal fungi: an evolutionary-developmental perspective. Trends Plant Sci 13:492–498

    Article  PubMed  CAS  Google Scholar 

  • Borie F, Rubio R (1999) Effects of arbuscular mycorrhizae and liming on growth and mineral acquisition of Al-tolerant barley cultivars. J Plant Nutr 22:121–137

    Article  CAS  Google Scholar 

  • Borie F, Rubio R, Rouanet JL, Morales A, Borie G, Rojas C (2006) Effect of tillage systems on soil characteristics, glomalin and mycorrhizal propagules in a Chilean Ultisol. Soil Tillage Res 88:253–261

    Article  Google Scholar 

  • Bose J, Babourina O, Shabala S, Rengel Z (2010) Aluminium induced ion transport in Arabidopsis: the relationship between Al tolerance and root ion flux. J Exp Bot 61:3163–3175

    Article  PubMed  CAS  Google Scholar 

  • Campos-Soriano L, Garcí-Garrido JM, San Segundo B (2010) Activation of basal defense mechanisms of rice plants by Glomus intraradices does not affect the arbuscular mycorrhizal symbiosis. New Phytol 188:597–614

    Article  PubMed  CAS  Google Scholar 

  • Cardoso IM, Kuyper TW (2006) Mycorrhizas and tropical soil fertility. Agr Ecosyst Environ 116:72–84

    Article  Google Scholar 

  • Cavagnaro TR (2008) The role of arbuscular mycorrhizas in improving plant zinc nutrition under low soil zinc concentrations: a review. Plant Soil 304:315–325

    Article  CAS  Google Scholar 

  • Cavallazzi J, Filho O, Stuermer S, Rygiewicz P, de Mendonca M (2007) Screening and selecting arbuscular mycorrhizal fungi for inoculating micropropagated apple rootstocks in acid soils. Plant Cell Tiss Org Cult 90:117–129

    Article  Google Scholar 

  • Charlet P, Deloume JP, Duc G, Thomas-Davis G (1984) Chelation des ions Al (3+) par la acides succinique, aspartique, glutarique et l’histidine. Etude potentiometrique. Bull Soc Chim France 7–8:222–226

    Google Scholar 

  • Clair TA, Hindar A (2005) Liming for the mitigation of acid rain effects in freshwaters: a review of recent results. Environ Rev 13:91–128

    Article  CAS  Google Scholar 

  • Clark R (1997) Arbuscular mycorrhizal adaptation, spore germination, root colonization, and host plant growth and mineral acquisition at low pH. Plant Soil 192:15–22

    Article  CAS  Google Scholar 

  • Clark RB, Zeto SK, Zobel RW (1999) Arbuscular mycorrhizal fungal isolate effectiveness on growth and root colonization of Panicum virgatum in acidic soil. Soil Biol Biochem 31:1757–1763

    Article  CAS  Google Scholar 

  • Cornejo P, Meier S, Borie G, Rillig M, Borie F (2008) Glomalin-related soil protein in a Mediterranean ecosystem affected by a copper smelter and its contribution to Cu and Zn sequestration. Sci Total Environ 406:154–160

    Article  PubMed  CAS  Google Scholar 

  • Cuenca G, de Andrade Z, Meneses E (2001) The presence of aluminum in arbuscular mycorrhizas of Clusia multiflora exposed to increased acidity. Plant Soil 231:233–241

    Article  CAS  Google Scholar 

  • Cumming JR, Ning J (2003) Arbuscular mycorrhizal fungi enhance aluminium resistance of broomsedge (Andropogon virginicus L.). J Exp Bot 54:1447–1459

    Article  PubMed  CAS  Google Scholar 

  • Cumming J, Weinstein L (1990) Aluminium–mycorrhizal interactions in the physiology of pitch pine seedlings. Plant Soil 125:7–18

    Article  CAS  Google Scholar 

  • Dahlgren RA, Saigusa M, Ugolini FC (2004) The nature properties and management of volcanic soils. Adv Agron 82:113–182

    Article  CAS  Google Scholar 

  • de Wit H, Eldhuset T, Mulder J (2010) Dissolved Al reduces Mg uptake in Norway spruce forest: results from a long-term field manipulation experiment in Norway. Forest Ecol Manag 259:2072–2082

    Article  Google Scholar 

  • Delhaize E, Ryan PR (1995) Aluminum toxicity and tolerance in plants. Plant Physiol 107:315–321

    PubMed  CAS  Google Scholar 

  • Delhaize E, Ryan PR, Randall PJ (1993) Aluminum tolerance in wheat (Triticum aestivum L.): II. Aluminum stimulated excretion of malic acid from root apices. Plant Physiol 103:695–702

    PubMed  CAS  Google Scholar 

  • Denny HJ, Wilkins DA (1987) Zinc tolerance in Betula spp. III. Variations in response to zinc among ectomycorrhizal associates. New Phytol 106:535–544

    CAS  Google Scholar 

  • Desai S (2012) Physiological and genetic changes in poplar during mycorrhizal colonization under phosphorus limitation. Dissertation, West Virginia University

  • Diehl P, Mazzarino MJ, Fontenla S (2008) Plant limiting nutrients in Andean-Patagonian woody species: effects of interannual rainfall variation, soil fertility and mycorrhizal infection. For Ecol Manag 255:2973–2980

    Article  Google Scholar 

  • Driscoll CT, Lawrence GB, Bulger AJ, Butler TJ et al (2001) Acidic deposition in the northeastern United States: sources and inputs, ecosystem effects, and management strategies. BioScience 51:180–198

    Article  Google Scholar 

  • Driver J, Holben W, Rillig M (2005) Characterization of glomalin as a hyphal wall component of arbuscular mycorrhizal fungi. Soil Biol Biochem 37:101–106

    Article  CAS  Google Scholar 

  • Eldhuset TD, Swensen B, Wickstrom T, Wollebeak G (2007) Organic acids in root exudates from Picea abies seedlings influenced by mycorrhiza and aluminum. J Plant Nutr Soil Sci 170(5):645–648

    Article  CAS  Google Scholar 

  • Etcheverría P (2009) Glomalin in evergreen forest associations, deciduous forest and a plantation of Pseudotsuga menziesii in the X Región, Chile. PhD dissertation, Universidad de La Frontera

  • Evangelou VP (1995) Pyrite oxidation and its control: solution chemistry, surface chemistry, acid mine drainage (AMD), molecular oxidation mechanisms, microbial role, kinetics, control, ameliorates and limitations, microencapsulation. CRC/Lewis, Boca Raton

    Google Scholar 

  • Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot-London 104:1263–1280

    Article  CAS  Google Scholar 

  • Fageria NK, Baligar VC (2003) Fertility management of tropical acid soils for sustainable crop production. In: Rengel Z (ed) Handbook of soil acidity. Marcel Dekker, New York, pp 359–385

    Google Scholar 

  • Fageria NK, Baligar VC (2008) Aminorating soil acidity of tropical oxisols by liming for sustainable crop production. Adv Agron 99:345–399

    Article  CAS  Google Scholar 

  • Frazer L (2001) Probing the depths of a solution for acid mine drainage. Environ Health Perspect 109:486–489

    Article  Google Scholar 

  • Foy CD, Chaney RL, White MC (1978) The physiology of metal Al-toxicity in plants. Annu Rev Plant Physiol 29:511–566

    Google Scholar 

  • Gamalero E, Lingua G, Berta G, Glick BR (2009) Beneficial role of plant growth promoting bacteria and arbuscular mycorrhizal fungi on plant responses to heavy metal stress. Can J Microbiol 55:501–514

    Article  PubMed  CAS  Google Scholar 

  • Garg N, Manchanda G (2009) Role of arbuscular mycorrhizae in the alleviation of ionic, osmotic and oxidative stresses induced by salinity in Cajanus cajans (L.) Millsp. (pigeonpea). J Agron Crop Sci 195:110–123

    Article  CAS  Google Scholar 

  • Gianinazzi S, Gollotte A, Binet MN, van Tuinen D, Redecker D, Wipf D (2010) Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20:519–530

    Article  PubMed  Google Scholar 

  • Godbold DL, Jentschke G, Winter S, Marschner P (1998) Ectomycorrhizas and amelioration of metal stress in forest trees. Chemosphere 36:757–762

    Article  CAS  Google Scholar 

  • Gohre V, Paszkowski U (2006) Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta 223:1115–1122

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Chávez MC, Carrillo-Gonzalez M, Wright SF, Nichols KA (2004) The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environ Pollut 130:317–323

    Article  PubMed  CAS  Google Scholar 

  • González-Guerrero M, Melville LH, Ferrol N et al (2008) Ultrastructural localization of heavy metals in the extraradical mycelium and spores of the arbuscular mycorrhizal fungus Glomus intraradices. Can J Microbiol 54:103–110

    Article  PubMed  CAS  Google Scholar 

  • Goodwin SB, Sutter TR (2009) Microarray analysis of Arabidopsis genome response to aluminum stress. Biol Plant 53:85–99

    Article  CAS  Google Scholar 

  • Griffiths RP, Baham JE, Caldwell BA (1994) Soil solution chemistry of ectomycorrhizal mats in forest soil. Soil Biol Biochem 26:331–337

    Article  CAS  Google Scholar 

  • Guo P, Bai G, Carver B, Li R, Bernardo A, Baum M (2007) Transcriptional analysis between two wheat near-isogenic lines contrasting in aluminum tolerance under aluminum stress. Mol Genet Genom 277:1–12

    Article  CAS  Google Scholar 

  • Heijne B, van Dam D, Heil CW, Bobbink R (1996) Acidification effects on mycorrhizal vesicular–arbuscular (VAM) infection, growth and nutrient uptake of established heathland herb species. Plant Soil 179:197–206

    Article  CAS  Google Scholar 

  • Hoekenga OA, Maron LG, Piñeros MA et al (2006) AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis. Proc Natl Acad Sci USA 103:9738–9743

    Article  PubMed  CAS  Google Scholar 

  • Hohnjec N, Henckel K, Bekel T, Gouzy J, Dondrup M, Goesmann A, Kuster H (2007) Transcriptional snapshots provide insights into the molecular basis of arbuscular mycorrhiza in the model legume Medicago truncatula. Funct Plant Biol 33:737–748

    Article  Google Scholar 

  • Horst WJ, Schmohl N, Kollmeier M, Baluska F, Sivaguru M (1999) Does aluminium affect root growth of maize through interaction with the cell wall-plasma membrane-cytoskeleton continuum? Plant Soil 215:163–174

    Article  CAS  Google Scholar 

  • Hossain MA, Mohd Razi I, Ashrafuzzaman M, Koyama H (2011) Reduction of Al-induced oxidative damage in wheat. Aust J Crop Sci 5:1157–1162

    CAS  Google Scholar 

  • Howeler RH, Sieverding E, Saif SR (1987) Practical aspects of mycorrhizal technology in some tropical crops and pastures. Plant Soil 100:249–283

    Article  Google Scholar 

  • Huang JW, Grunes DL, Kochian LV (1992a) Aluminum effects on the kinetics of calcium uptake into cells of the wheat root apex. Quantification of calcium fluxes using a calcium-selective vibrating microelectrode. Planta 188:414–421

    Article  CAS  Google Scholar 

  • Huang JW, Shaff JE, Grunes DL, Kochian LV (1992b) Aluminum effects on calcium fluxes at the root apex of aluminum-tolerant and aluminum-sensitive wheat cultivars. Plant Physiol 98:230–237

    Article  PubMed  CAS  Google Scholar 

  • Hue NV, Craddock GR, Adams F (1986) Effect of organic acids on aluminum toxicity in subsoils. Soil Sci Soc Am J 50:28–34

    Article  CAS  Google Scholar 

  • Inostroza-Blancheteau C, Rengel Z, Alberdi M, Mora ML, Aquea F, Arce-Johnson P, Reyes-Díaz M (2012) Molecular and physiological strategies to increase aluminum resistance in plants. Mol Biol Rep 39:2069–2079

    Article  PubMed  CAS  Google Scholar 

  • Janouskova M, Pavlikova D, Macek T, Vosatka M (2005) Arbuscular mycorrhiza decreases cadmium phytoextraction by transgenic tobacco with inserted metallothionein. Plant Soil 272:29–40

    Article  CAS  Google Scholar 

  • Javaid A (2009) Arbuscular mycorrhizal mediated nutrition in plants. J Plant Nutr 32:1595–1618

    Article  CAS  Google Scholar 

  • Javot H, Penmetsa R, Terzaghi N, Cook D, Harrison M (2007) A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis. P Natl Acad Sci USA 104:1720–1725

    Article  CAS  Google Scholar 

  • Jeffries P, Gianinazzi S, Perotto S, Turnau K, Barea J (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fertil Soils 37:1–16

    Google Scholar 

  • Joner E, Briones R, Leyval C (2000) Metal-binding capacity of arbuscular mycorrhizal mycelium. Plant Soil 226:227–234

    Article  CAS  Google Scholar 

  • Jones MD, Hutchinson TC (1988) Nickel toxicity in mycorrhizal birch seedlings infected with Lactarius rufus or Scleroderma flaidum. I. Effects on growth, photosynthesis, respiration and transpiration. New Phytol 108:451–459

    Article  CAS  Google Scholar 

  • Jones DL, Gilroy S, Larsen PB, Howell SH, Kochian LV (1998) Effect of aluminum on cytoplasmic Ca2+ homeostasis in root hairs of Arabidopsis thaliana (L.). Planta 206:378–387

    Article  PubMed  CAS  Google Scholar 

  • Jones DL, Blancaflor EB, Kochian LV, Gilroy S (2006) Spatial coordination of aluminum uptake, production of reactive oxygen species, callosa production and wall rigidification in maize roots. Plant Cell Environ 29:1309–1318

    Article  PubMed  CAS  Google Scholar 

  • Karimi A, Khodaverdiloo H, Sepehri M, Sadaghiani MR (2011) Arbuscular mycorrhizal fungi and heavy metal contaminated soils. Afr J Microbiol Res 5:1571–1576

    CAS  Google Scholar 

  • Kaschuk G, Kuyper TW, Leffelaar PA, Hungria M, Giller KE (2009) Are the rates of photosynthesis stimulated by the carbon sink strength of rhizobial and arbuscular mycorrhizal symbioses? Soil Biol Biochem 41:1233–1244

    Article  CAS  Google Scholar 

  • Kelly CN, Morton JB, Cumming JR (2005) Variation in aluminum resistance among arbuscular mycorrhizal fungi. Mycorrhiza 15:193–201

    Article  PubMed  CAS  Google Scholar 

  • Kidd P, Llugany M, Poschenrieder C, Gunse B, Barcelo J (2001) The role of root exudates in aluminium resistance and silicon-induced amelioration of aluminium toxicity in three varieties of maize (Zea mays L.). J Exp Bot 52:1339–1352

    Article  PubMed  CAS  Google Scholar 

  • Kinraide T (1997) Reconsidering the rhizotoxicity of hydroxyl, sulphate, and fluoride complexes of aluminium. J Exp Bot 48:1115–1124

    Article  CAS  Google Scholar 

  • Kinraide TB, Pedler JF, Parker DR (2004) Relative effectiveness of calcium and magnesium in the alleviation of rhizotoxicity in wheat induced by copper, zinc, aluminum, sodium, and low pH. Plant Soil 259:201–208

    Article  CAS  Google Scholar 

  • Klug B, Horst WJ (2010) Oxalate exudation into the root-tip water free space confers protection from Al toxicity and allows Al accumulation in the symplast in buckwheat (Fagopyrum esculentum). New Phytol 187:380–391

    Article  PubMed  CAS  Google Scholar 

  • Klugh K, Cumming J (2007) Variations in organic acid exudation and aluminum resistance among arbuscular mycorrhizal species colonizing Liriodendron tulipifera. Tree Physiol 27:1103–1112

    Article  PubMed  CAS  Google Scholar 

  • Klugh-Stewart K, Cumming J (2009) Organic acid exudation by mycorrhizal Andropogon virginicus L. (broomsedge) roots in response to aluminum. Soil Biol Biochem 41:367–373

    Article  CAS  Google Scholar 

  • Kochian L, Hoekenga O, Piñeros M (2004) How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu Rev Plant Biol 55:459–493

    Article  PubMed  CAS  Google Scholar 

  • Kochian L, Pineros M, Hoekenga O (2005) The physiology, genetics and molecular biology of plant aluminum resistance and toxicity. Plant Soil 274:175–195

    Article  CAS  Google Scholar 

  • Kollmeier M, Dietrich P, Bauer CS, Horst WJ, Hedrich R (2001) Aluminum activates a citrate-permeable anion channel in the aluminum-sensitive zone of the maize root apex. A comparison between an aluminum sensitive and an aluminum-resistant cultivar. Plant Physiol 126:397–410

    Article  PubMed  CAS  Google Scholar 

  • Lambais MR, Cardoso E (1989) Germinacao de esporos d crescimento do tubo germinativo de fungos micorrizicos vesiculo-arbusculares em diferentes concentracoes de aluminio (Effects of aluminum on germination of spores and germ tube growth of VAM fungi). Rev Bras Cienc Solo 13:151–154

    CAS  Google Scholar 

  • Larsen PB, Geisler MJB, Jones CA, Williams KM, Cancel JD (2005) ALS3 encodes a phloem-localized ABC transporter-like protein that is required for aluminum tolerance in Arabidopsis. Plant J 41:353–363

    Article  PubMed  CAS  Google Scholar 

  • Lee YJ, George E (2005) Contributions of mycorrhizal hyphae to the uptake of metal cations by cucumber plants at two levels of phosphorus supply. Plant Soil 278:361–370

    Article  CAS  Google Scholar 

  • Li XL, George E, Marschner H (1991) Extension of the phosphorus depletion zone in VA mycorrhizal white clover in a calcareous soil. Plant Soil 136:41–48

    Article  Google Scholar 

  • Li XF, Ma JF, Matsumoto H (2000) Pattern of aluminum induced secretion of organic acids differs between rye and wheat. Plant Physiol 123:1537–1543

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Jurandir VM, Jon S, Leon VK (2009) Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance. Plant J 57:389–399

    Article  PubMed  CAS  Google Scholar 

  • Lovelock CE, Wright SF, Nichols KA (2004) Soil stocks of glomalin produced by arbuscular mycorrhizal fungi across a tropical rain forest landscape. J Ecol 92:278–287

    Article  CAS  Google Scholar 

  • Lux H, Cumming J (2001) Mycorrhizae confer aluminum resistance to tulip-poplar seedlings. Can J For Res 31:694–702

    CAS  Google Scholar 

  • Ma JF (2007) Syndrome of aluminum toxicity and diversity of aluminum resistance in higher plants. Int Rev Cytol 264:225–253

    Article  PubMed  CAS  Google Scholar 

  • Ma JF, Hiradate S, Nomoto K, Iwashita T, Matsumoto H (1997) Internal detoxification mechanism of Al in hydrangea. Identification of Al form in the leaves. Plant Physiol 113:1033–1039

    Google Scholar 

  • Ma JF, Ryan PR, Delhaize E (2001) Aluminium tolerance in plants and the complexing role of organic acids. Trends Plant Sci 6:273–278

    Article  PubMed  CAS  Google Scholar 

  • Ma B, Gao L, Zhang H, Cui J, Shen Z (2012) Aluminum-induced oxidative stress and changes in antioxidant defenses in the roots of rice varieties differing in Al tolerance. Plant Cell Rep 31:687–696

    Article  PubMed  CAS  Google Scholar 

  • Maki T, Nomachi M, Yoshida S, Ezawa T (2008) Plant symbiotic microorganisms in acid sulfate soil: significance in the growth of pioneer plants. Plant Soil 310:55–65

    Article  CAS  Google Scholar 

  • Malajczuk N, Cromack K (1982) Accumulation of calcium oxalate in the mantle of ectomycorrhizal roots of Pinus radiata and Eucalyptus marginata. New Physiol 92:527–531

    Article  CAS  Google Scholar 

  • Malcová R, Rydlová J, Vosátka M (2003) Metal-free cultivation of Glomus sp. BEG 140 isolated from Mn-contaminated soil reduces tolerance to Mn. Mycorrhiza 13:151–157

    Article  PubMed  CAS  Google Scholar 

  • Marmeisse R, Guidot A, Gay G, Lambilliotte R et al (2004) Hebeloma cylindrosporum—a model species to study ectomycorrhizal symbiosis from gene to ecosystem. New Phytol 163:481–498

    Article  CAS  Google Scholar 

  • Maron LG, Pineros MA, Guimaraes CT, Magalhaes JV, Pleiman JK, Mao CZ, Shaff J, Belicuas SNJ, Kochian LV (2010) Two functionally distinct members of the MATE (multi-drug and toxic compound extrusion) family of transporters potentially underlie two major aluminum tolerance QTLs in maize. Plant J 61:728–740

    Article  PubMed  CAS  Google Scholar 

  • Martell AE, Smith RM (1977) Critical stability constants, other organic ligands. Plenum, New York, 496 p

    Google Scholar 

  • Martens D (2001) Nitrogen cycling under different soil management systems. Adv Agron 70:143–189

    Article  Google Scholar 

  • Meier S, Bolan N, Borie F, Cornejo P (2012) Phytoremediation of metal polluted soils by arbuscular mycorrhizal fungi. Crit Rev Environ Sci Tecnol 42:741–775

    Article  CAS  Google Scholar 

  • Morton JB, Bentivenga SP, Wheeler WW (1993) Germplasm in the international collection of arbuscular and vesicular-arbuscular mycorrhizal fungi (INVAM) and procedures for culture development, documentation and storage. Mycotaxon 48:491–528

    Google Scholar 

  • Moyer-Henry K, Silva I, Macfall J et al (2005) Accumulation and localization of aluminium in root tips of loblolly pine seedlings and the associated ectomycorrhiza Pisolithus tinctorius. Plant Cell Environ 28:111–120

    Article  CAS  Google Scholar 

  • Naik D, Smith E, Cumming JR (2009) Rhizosphere carbon deposition, oxidative stress and nutritional changes in two poplar species exposed to aluminium. Tree Physiol 29:423–436

    Article  PubMed  CAS  Google Scholar 

  • Norton SA, Veselý J (2004) Acidification and acid rain. In: Turekian KK (ed) Treatise on geochemistry, vol 9. Holland HD, Amsterdam, pp 367–406

  • Ofei-Manu P, Wagatsuma T, Ishikawa S, Tawaraya K (2001) The plasma membrane strength of the root-tip cells and root phenolic compounds are correlated with al tolerance in several common woody plants. Soil Sci Plant Nutr 47:359–376

    Article  CAS  Google Scholar 

  • Öpik M, Moora M, Liira J, Zobel M (2006) Composition of root-colonizing arbuscular mycorrhizal fungal communities in different ecosystems around the globe. J Ecol 94:778–790

    Article  Google Scholar 

  • Ouziad F, Hildebrandt U, Schmelzer E, Bothe H (2005) Differential gene expressions in arbuscular mycorrhizal-colonized tomato grown under heavy metal stress. J Plant Physiol 162:634–649

    Article  PubMed  CAS  Google Scholar 

  • Panda S, Matsumoto H (2007) Molecular physiology of aluminum toxicity and tolerance in plants. Bot Rev 73:326–347

    Article  Google Scholar 

  • Pawlowski L (1998) Chemistry for the protection of the environment 3. Springer, New York, 344 p

    Google Scholar 

  • Peipp H, Maier W, Schmith J et al (1997) Arbuscular mycorrhizal fungus-induced changes in the accumulation of secondary compounds in barley roots. Phytochemistry 44:581–587

    Article  CAS  Google Scholar 

  • Piñeros M, Magalhaes J, Alves V, Kochian L (2002) The physiology and biophysics of an aluminum tolerance mechanism based on root citrate exudation in maize. Plant Physiol 129:1194–1206

    Article  PubMed  CAS  Google Scholar 

  • Pintro J, Barloy J, Fallavier P, Calba H (1998) Effects of different calcium and sulfate concentrations in nutrient solutions on ionic strength values, aluminium activity, and root growth of maize plants. J Plant Nutr 21:2381–2387

    Article  CAS  Google Scholar 

  • Plassard C, Dell B (2010) Phosphorus nutrition of mycorrhizal trees. Tree Physiol 30:1129–1139

    Article  PubMed  CAS  Google Scholar 

  • Podila GK, Sreedasyam A, Muratet MA (2009) Populus rhizosphere and the ectomycorrhizal interactome. Crit Rev Plant Sci 28:359–367

    Article  CAS  Google Scholar 

  • Postma J, Olsson PA, Falkengren-Grerup U (2007) Colonisation of arbuscular mycorrhizal, fine and dark septate endophytic fungi in forbs of acid decideous forests. Soil Biol Biochem 39:400–408

    Article  CAS  Google Scholar 

  • Recorbet G, Valot B, Robert F, Gianinazzi-Pearson V, Dumas-Gaudot E (2010) Identification of in planta-expressed arbuscular mycorrhizal fungal proteins up on comparison of the root proteomes of Medicago truncatula colonised with two Glomus species. Fungal Genet Biol 47:608–618

    Article  PubMed  CAS  Google Scholar 

  • Rengel Z, Zhang W (2003) Role of dynamics of intracellular calcium in aluminium-toxicity syndrome. Review. New Phytol 159:295–314

    Article  CAS  Google Scholar 

  • Rengel Z, Pineros M, Tester M (1995) Transmembrane calcium fluxes during Al stress. Plant Soil 171:125–130

    Article  CAS  Google Scholar 

  • Repetto O, Bestel-Corre G, Dumas-Gaudot E, Berta G, Gianinazzi-Pearson V, Gianinazzi S (2002) Targeted proteomics to identify cadmium-induced protein modifications in Glomus mosseae-inoculated pea roots. New Phytol 157:555–567

    Article  Google Scholar 

  • Rillig M, Mummey D (2006) Mycorrhizas and soil structure. New Phytol 171:41–53

    Article  PubMed  CAS  Google Scholar 

  • Rillig MC, Wright SF, Nichols KA, Schmidt WF, Torn MS (2001) Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils. Plant Soil 233:167–177

    Article  CAS  Google Scholar 

  • Robert M (1995) Aluminum toxicity: a major stress for microbial in the environment. In: Huang PM (ed) Environmental impact of soil components interactions: metals, other inorganic and microbial activities. McGill WB, Saskatoon, pp 227–248

    Google Scholar 

  • Rufyikiri G, Dufey JE, Nootens D, Delvaux B (2000) Effect of aluminium on bananas (Musa spp.) cultivated in acid solutions. I. Plant growth and chemical composition. Fruits 55:367–379

    CAS  Google Scholar 

  • Ryan PR, Delhaize E, Randall PJ (1995) Malate efflux from root apices and tolerance to aluminum are highly correlated in wheat. Aust J Plant Physiol 22:531–536

    Article  CAS  Google Scholar 

  • Ryan P, Delhaize E, Jones D (2001) Function and mechanism of organic anion exudation from plant roots. Annu Rev Plant Phys 52:527–560

    Article  CAS  Google Scholar 

  • Ryan MH, McCully ME, Huang CX (2003) Location and quantification of phosphorus and other elements in fully hydrated, soil-grown arbuscular mycorrhizas: a cryo-analytical scanning electron microscopy study. New Phytol 160:429–441

    Article  CAS  Google Scholar 

  • Ryan MH, McCully ME, Huang CX (2007) Relative amounts of soluble and insoluble forms of phosphorus and other elements in intraradical hyphae and arbuscules mycorrhizas. Funct Plant Biol 34:457–464

    Article  CAS  Google Scholar 

  • Sasaki T, Ezaki B, Matsumoto H (2002) A gene encoding multidrug resistance (MDR)-like protein is induced by aluminum and inhibitors of calcium flux in wheat. Plant Cell Physiol 43:177–185

    Article  PubMed  CAS  Google Scholar 

  • Ščančar J, Milačič R (2006) Aluminium speciation in environmental samples: a review. Anal Bioanal Chem 386:999–1012

    Article  PubMed  CAS  Google Scholar 

  • Seguel A, Medina J, Rubio R, Cornejo P, Borie F (2012) Effects of soil aluminum on early arbuscular mycorrhizal colonization of aluminum tolerant wheat and barley cultivars. Chil J Agric Res 72: 449–455

    Google Scholar 

  • Shen R, Ma JF, Kyo M, Iwashita T (2002) Compartmentation of aluminium in leaves of an Al-accumulator, Fagopyrum esculentum Moench. Planta 215:394–398

    Article  PubMed  CAS  Google Scholar 

  • Sieverding E (1991) Vesicular–arbuscular mycorrhiza management in tropical agrosystems. Deustche Gesellschaft Technische Zusammenarbeit (GTZ) GmbH, Eschborn

    Google Scholar 

  • Siqueira JO, Hubbell DH, Mahmud AW (1984) Effect of liming on spore germination, germ tube growth and root colonization by vesicular–arbuscular mycorrhizal fungi. Plant Soil 76:115–124

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, San Diego

    Google Scholar 

  • Smith SE, Jakobsen I, Grønlund M, Smith FA (2011) Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol 156:1050–1057

    Article  PubMed  CAS  Google Scholar 

  • St Clair SB, Sharpe WE, Lynch JP (2008) Key interactions between nutrient limitation and climatic factors in temperate forests: a synthesis of the sugar maple literature. Can J For Res 38:401–414

    Article  Google Scholar 

  • Staß A, Horst WJ (2009) Callose in abiotic stress. In: Bacic A, Fincher GB, Stone BA (eds) Chemistry, biochemistry, and biology of (13)-b-glucans and related polysaccharides. Academic, Burlington, pp 499–524

    Chapter  Google Scholar 

  • Stumm W, Morgan JJ (1996) Aquatic chemistry: chemical equilibria and rates in natural waters. Wiley, New York, 1022 p

    Google Scholar 

  • Sudová R, Jurkiewicz A, Turnau K, Vosátka M (2007) Persistence of heavy metal tolerance of the arbuscular mycorrhizal fungus Glomus intraradices under different cultivation regimes. Symbiosis 43:71–81

    Google Scholar 

  • Sumner ME, Noble AD (2003) Soil acidification: the world story. In: Rengel Z (ed) Handbook of soil acidity. Marcel Dekker, New York, pp 1–28

    Google Scholar 

  • Sun YP, Unestam T, Lucas SD, Johanson KJ, Kenne L, Finlay RD (1999) Exudation–reabsorption in mycorrhizal fungi, the dynamic interface for interaction with soil and other micro-organisms. Mycorrhiza 9:137–144

    Article  CAS  Google Scholar 

  • Sylvia DM, Williams SE (1992) Vesicular–arbuscular mycorrhizae and environmental stress. In: Bethlenfalvay GJ, Linderman RG (eds) Mycorrhizae in sustainable agriculture. American Society of Agronomy (Special Publication No. 54), Madison, pp 101–124

  • Taheri W, Bever J (2010) Adaptation of plants and arbuscular mycorrhizal fungi to coal tailings in Indiana. Appl Soil Ecol 45:138–143

    Article  Google Scholar 

  • Tanaka Y, Yano K (2005) Nitrogen delivery to maize via mycorrhizal hyphae depends on the form of N supplied. Plant Cell Environ 28:1247–1254

    Article  CAS  Google Scholar 

  • Tang C, Rengel Z (2003) Role of plant cation/anion uptake ratio in soil acidification. In: Rengel Z (ed) Handbook of soil acidity. Marcel Dekker, New York, pp 57–81

    Google Scholar 

  • Tarafdar JC, Marschner H (1994) Phosphatase activity in the rhizosphere of VA-mycorrhizal wheat supplied with inorganic and organic phosphorus. Soil Biol Biochem 26:387–395

    Article  CAS  Google Scholar 

  • Toler HD, Morton JB, Cumming JR (2005) Growth and metal accumulation of mycorrhizal sorghum exposed to copper and zinc. Water Air Soil Poll 164:155–172

    Article  CAS  Google Scholar 

  • van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boiler T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72

    Article  CAS  Google Scholar 

  • Vázquez MD, Poschenrieder C, Corrales I, Barcelo J (1999) Change in apoplastic aluminum during the initial growth response to aluminum by roots of a tolerant maize variety. Plant Physiol 119:435–444

    Article  PubMed  Google Scholar 

  • Vodnik D, Grcman H, Macek I, van Elteren JT, Kovacevic M (2008) The contribution of glomalin related soil protein to Pb and Zn sequestration in polluted soil. Sci Total Environ 392:130–136

    Article  PubMed  CAS  Google Scholar 

  • Vosátka M, Batkhuugyin E, Albrechtová J (1999) Response of three arbuscular mycorrhizal fungi to simulated acid rain and aluminium stress. Biol Plant 42:289–296

    Article  Google Scholar 

  • Wagatsuma T, Ezoe Y (1985) Effect of pH on ionic species of aluminium in medium and on aluminium toxicity under solution culture. Soil Sci Plant Nutr 31:547–561

    Article  CAS  Google Scholar 

  • Wang B, Qiu Y-L (2006) Phylogenetic distribution and evolution of mycorrhizas. Mycorrhiza 16:299–363

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Raman H, Zhou M, Ryan PR, Delhaize E et al (2007) High-resolution mapping of the Alp locus and identification of a candidate gene HvMATE controlling aluminium tolerance in barley (Hordeum vulgare L.). Theor Appl Genet 115:265–276

    Article  PubMed  CAS  Google Scholar 

  • Watanabe T, Okada K (2005) Interactive effects of Al, Ca and other cations on root elongation on rice cultivars under low pH. Anna Bot 95:379–385

    Article  CAS  Google Scholar 

  • Wright S, Upadhyaya A (1996) Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi. Soil Sci 161:575–586

    Article  CAS  Google Scholar 

  • Wright DP, Read DJ, Scholes JD (1998) Mycorrhizal sink strength influences whole plant carbon balance of Trifolium repens L. Plant Cell Environ 21:881–891

    Article  Google Scholar 

  • Yamamoto Y, Yukiko Kobayashi Y, Matsumoto H (2001) Lipid peroxidation is an early symptom triggered by aluminum, but not the primary cause of elongation inhibition in pea roots. Plant Physiol 125:199–208

    Article  PubMed  CAS  Google Scholar 

  • Yamato M, Iwasaki M (2002) Morphological types of arbuscular mycorrhizal fungi in roots of forest floor plants. Mycorrhiza 12:291–296

    Article  PubMed  Google Scholar 

  • Yano K, Takaki M (2005) Mycorrhizal alleviation of acid soil stress in the sweet potato (Ipomoea batatas). Soil Biol Biochem 37:1569–1572

    Article  CAS  Google Scholar 

  • Zhang XH, Lin AJ, Gao YL, Reid RJ, Wong MH, Zhu YG (2009) Arbuscular mycorrhizal colonization increases copper binding capacity of root cell walls of Oryza sativa L. and reduces copper uptake. Soil Biol Biochem 41:930–935

    Article  CAS  Google Scholar 

  • Zhao Z, Ma JF, Sato K, Takeda K (2003) Differential Al resistance and citrate secretion in barley (Hordeum vulgare L.). Planta 217:794–800

    Article  PubMed  CAS  Google Scholar 

  • Zhen Y, Qi JL, Wang SS, Su J et al (2007) Comparative proteome analysis of differentially expressed proteins induced by Al toxicity in soybean. Physiol Plant 131:542–554

    Article  PubMed  CAS  Google Scholar 

  • Zhu X, Song F, Xu H (2010) Influence of arbuscular mycorrhiza on lipid peroxidation and antioxidant enzyme activity of maize plants under temperature stress. Mycorrhiza 20:325–332

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We greatly fully acknowledge the financial support of FONDECYT 1100642 grant (F. Borie), from Comisión Nacional de Investigación Científica y Tecnológica (CONICYT), Chile. Alex Seguel also acknowledges the financial support of CONICYT through Doctoral Fellowship Program, Project 24100181 and Internship grant BECAS CHILE to visit Dr. Cumming’s laboratory at West Virginia University, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Borie.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 65 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seguel, A., Cumming, J.R., Klugh-Stewart, K. et al. The role of arbuscular mycorrhizas in decreasing aluminium phytotoxicity in acidic soils: a review. Mycorrhiza 23, 167–183 (2013). https://doi.org/10.1007/s00572-013-0479-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-013-0479-x

Keywords

Navigation