Skip to main content

Advertisement

Log in

The role of arbuscular mycorrhizas in improving plant zinc nutrition under low soil zinc concentrations: a review

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Many of the world’s soils are zinc (Zn) deficient. Consequently, many crops experience reduced growth, yield and tissue Zn concentrations. Reduced concentrations of Zn in the edible portions of crops have important implications for human Zn nutrition; this is a cause of global concern. Most terrestrial plant species form arbuscular mycorrhizas (AM) with a relatively limited number of specialized soil fungi. Arbuscular mycorrhizal fungi (AMF) can take up nutrients, including Zn, and transfer them to the plant, thereby enhancing plant nutrition. Under high soil Zn concentrations the formation of AM can also ‘protect’ against the accumulation of Zn in plant tissues to high concentrations. Here, a short review focusing on the role of AM in enhancing plant Zn nutrition, principally under low soil Zn concentrations, is presented. Effects of Zn on the colonisation of roots by AMF, direct uptake of Zn by AMF, the role of AM in the Zn nutrition of field grown plants, and emerging aspects of Zn molecular physiology of AM, are explored. Emergent knowledge gaps are identified and discussed in the context of potential future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AM:

Arbuscular mycorrhizas

AMF:

Arbuscular mycorrhizal fungi

CDF:

cation diffusion facilitators

rmc :

reduced mycorrhizal colonisation tomato mutant

ZIP:

Zrt-Irt-like proteins

References

  • Audet P, Charest C (2006) Effects of AM colonization on ‘wild tobacco’ plants grown in zinc-contaminated soil. Mycorrhiza 16:277–283

    Article  PubMed  CAS  Google Scholar 

  • Baon JB, Smith SE, Alston AM, Wheeler RD (1992) Phosphorus efficiency of three cereals as related to indigenous mycorrhizal infection. Aust J Agric Res 43:479–491

    Article  CAS  Google Scholar 

  • Barker SJ, Stummer B, Gao L, Dispain I, O, Connor PJ, Smith SE (1998) A mutant in Lycopersicon esculentum Mill. with highly reduced VA mycorrhizal colonization, isolation and preliminary characterisation. Plant J 15:791–797

    Article  CAS  Google Scholar 

  • Bi YL, Li XL, Christie P (2003) Influence of early stages of arbuscular mycorrhiza on uptake of zinc and phosphorus by red clover from a low-phosphorus soil amended with zinc and phosphorus. Chemosphere 50:831–837

    Article  PubMed  CAS  Google Scholar 

  • Bolan NS, Robson AD, Barrow NJ (1984) Increasing phosphorus supply can increase the infection of plant roots by vesicular–arbuscular mycorrhizal fungi. Soil Biol Biochem 16:419–420

    Article  CAS  Google Scholar 

  • Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173:667–702

    Article  CAS  Google Scholar 

  • Brown KH, Wuehler SE (2000) Zinc and human health: results of recent trials and implications for program interventions and research. International Development Research Centre, Ottawa, Canada

    Google Scholar 

  • Bruce A, Smith SE, Tester M (1994) The development of mycorrhizal infection in cucumber: effects of P supply on root growth, formation of entry points and growth of infection units. New Phytol 127:507–514

    Article  Google Scholar 

  • Bürkert B, Robson A (1994) 65Zn uptake in subterranean clover (Trifolium subterraneum L.) by 3 vesicular arbuscular mycorrhizal fungi in a root-free sandy soil. Soil Biol Biochem 26:1117–1124

    Article  Google Scholar 

  • Burleigh SH, Kristensen BK, Bechmann IE (2003) A plasma membrane zinc transporter from Medicago truncatula is up-regulated in roots by Zn fertilization, yet down-regulated by arbuscular mycorrhizal colonization. Plant Mol Biol 52:1077–1088

    Article  PubMed  CAS  Google Scholar 

  • Cardoso IM, Kuyper TW (2006) Mycorrhizas and tropical soil fertility. Agric Ecosyst Environ 116:72–84

    Article  Google Scholar 

  • Cavagnaro TR, Jackson LE (2007) Isotopic fractionation of zinc in field grown tomato. Can J Bot 85:230–235

    Article  CAS  Google Scholar 

  • Cavagnaro TR, Smith FA, Smith SE, Jakobsen I (2005) Functional diversity in arbuscular mycorrhizas: exploitation of soil patches with different phosphate enrichment differs among fungal species. Plant Cell Environ 164:485–491

    Google Scholar 

  • Cavagnaro TR, Jackson LE, Six J, Ferris H, Goyal S, Asami D, Scow KM (2006) Arbuscular mycorrhizas, microbial communities, nutrient availability, and soil aggregates in organic tomato production. Plant Soil 282:209–225

    Article  CAS  Google Scholar 

  • Cavagnaro TR, Jackson LE, Scow KM, Hristova KR (2007) Effects of arbuscular mycorrhizas on ammonia oxidizing bacteria in an organic farm soil. Microb Ecol 54:618–626

    Article  PubMed  CAS  Google Scholar 

  • Chen BD, Li XL, Tao HQ, Christie P, Wong MH (2003) The role of arbuscular mycorrhiza in zinc uptake by red clover growing in a calcareous soil spiked with various quantities of zinc. Chemosphere 50:839–846

    Article  PubMed  CAS  Google Scholar 

  • Chen BD, Shen H, Li XL, Feng G, Christie P (2004) Effects of EDTA application and arbuscular mycorrhizal colonization on growth and zinc uptake by maize (Zea mays L.) in soil experimentally contaminated with zinc. Plant Soil 261:219–229

    Article  CAS  Google Scholar 

  • Christie P, Li XL, Chen BD (2004) Arbuscular mycorrhiza can depress translocation of zinc to shoots of host plants in soils moderately polluted with zinc. Plant Soil 261:209–217

    Article  CAS  Google Scholar 

  • Cooper KM, Tinker PB (1978) Translocation and transfer of nutrients in vesicular–arbuscular mycorrhizas. II Uptake and translocation of phosphorus, zinc and sulphur. New Phytol 81:43–52

    Article  CAS  Google Scholar 

  • Díaz G, Azcón-Aguilar C, Honrubia M (1996) Influence of arbuscular mycorrhizae on heavy metal (Zn and Pb) uptake and growth of Lygeum spartum and Anthyllis cytisoides. Plant Soil 180:241–249

    Article  Google Scholar 

  • Ezawa T, Smith SE, Smith FA (2002) P metabolism and transport in AM fungi. Plant Soil 244:221–230

    Article  CAS  Google Scholar 

  • Facelli E, Facelli JM (2002) Soil phosphorus heterogeneity and mycorrhizal symbiosis regulate plant intra-specific competition and size distribution. Oecologia 133:54–61

    Article  Google Scholar 

  • Ferrol N, Barea JM, Azcón-Aguilar C (2002) Mechanisms of nutrient transport across interfaces in arbuscular mycorrhizas. Plant Soil 244:231–237

    Article  CAS  Google Scholar 

  • Fomina M, Charnock J, Bowen AD, Gadd GM (2007) X-ray absorption spectroscopy (XAS) of toxic metal mineral transformations by fungi. Environ Microbiol 9:308–321

    Article  PubMed  CAS  Google Scholar 

  • Frey B, Schuepp H (1993) Acquisition of nitrogen by external hyphae of arbuscular mycorrhizal fungi associated with Zea mays L. New Phytol 124:221–230

    Article  Google Scholar 

  • Gao X, Kuyper TW, Zou C, Zhang F, Hoffland E (2007) Mycorrhizal responsiveness of aerobic rice genotypes is negatively correlated with their zinc uptake when nonmycorrhizal. Plant Soil 290:283–291

    Article  CAS  Google Scholar 

  • Gildon A, Tinker PB (1983) Interactions of vasicular–arbuscular mycorrhizal infection and heavy metals in plants. I. The effects of heavy metals on the developmnet of vasicular–arbuscular mycorrhizas. New Phytol 95:247–261

    Article  CAS  Google Scholar 

  • Gonzalez-Guerrero M, Azcon-Aguilar C, Mooney M, Valderas A, MacDiarmid CW, Eide DJ, Ferrol N (2005) Characterization of a Glomus intraradices gene encoding a putative Zn transporter of the cation diffusion facilitator family. Fungal Genet Biol 42:130–140

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Guerrero M, Cano C, Azcon-Aguilar C, Ferrol N (2007) GintMT1 encodes a functional metallothionein in Glomus intraradices that responds to oxidative stress. Mycorrhiza 17:327–335

    Article  PubMed  CAS  Google Scholar 

  • Hacisalihoglu G, Kochian LV (2003) How do some plants tolerate low levels of soil zinc? Mechanisms of zinc efficiency in crop plants. New Phytol 159:341–350

    Article  CAS  Google Scholar 

  • Harrison MJ (1999) Molecular and cellular aspects of the arbuscular mycorrhizal symbiosis. Annu Rev Plant Physiol Plant Mol Biol 50:361–389

    Article  PubMed  CAS  Google Scholar 

  • Hetrick BAD (1991) Mycorrhizas and root architecture. Experientia 47:355–362

    Article  Google Scholar 

  • Hildebrandt U, Regvar M, Bothe H (2006) Arbuscular mycorrhiza and heavy metal tollerance. Phytochem 68:139–146

    Article  CAS  Google Scholar 

  • Jackson LE, Schimel JP, Firestone MK (1989) Short-term partitioning of ammonium and nitrate between plants and microbes in an annual grassland. Soil Biol Biochem 21:409–416

    Article  Google Scholar 

  • Jackson LE, Burger M, Cavagnaro TR (2008) Roots, nitrogen transformations, and ecosystem services. Annu Rev Plant Biol 59:341–363

    PubMed  CAS  Google Scholar 

  • Jansa J, Mozafar A, Frossard E (2003) Long-distance transport of P and Zn through the hyphae of an arbuscular mycorrhizal fungus in symbiosis with maize. Agronomie 23:481–488

    Article  CAS  Google Scholar 

  • Johansen A, Jakobsen I, Jensen ES (1993) External hyphae of vesicular–arbuscular mycorrhizal fungi associated with Trifolium subterraneum. 3. Hyphal transport of 32P and 15N. New Phytol 124:61–68

    Article  CAS  Google Scholar 

  • Johnson NC, Graham JH, Smith FA (1997) Functioning of mycorrhizal associations along the mutualism–parasitism continuum. New Phytol 135:575–586

    Article  Google Scholar 

  • Johnson NC, Wolf J, Reyes M, Panter A, Koch GW, Redman A (2005) Species of plants and associated arbuscular mycorrhizal fungi mediate mycorrhizal responses to CO2 enrichment. Glob Change Biol 11:1156–1166

    Article  Google Scholar 

  • Kochian LV (2000) Molecular Physiology of Mineral Nutrients Acquisition, Transports, and Utilization. In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of plants. American Society of Plant Biologists, Rockville, MD, USA, pp 1204–1249

    Google Scholar 

  • Kothari SK, Marschner H, Romheld V (1991) Contribution of the VA mycorrhizal hyphae in acquisition of phosphorus and zinc by maize grown in a calcareous soil. Plant Soil 131:177–185

    Article  CAS  Google Scholar 

  • Lee YJ, George E (2005) Contribution of mycorrhizal hyphae to the uptake of metal cations by cucumber plants at two levels of phosphorus supply. Plant Soil 278:361–370

    Article  CAS  Google Scholar 

  • Lewis DJ, Koide RT (1990) Phosphorus supply, mycorrhizal infection and plant offspring vigour. Funct Ecol 4:695–702

    Article  Google Scholar 

  • Leyval C, Turnau K, Haselwandter K (1997) Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza 7:139–153

    Article  CAS  Google Scholar 

  • Li XL, Christie P (2001) Changes in soil solution Zn and pH and uptake of Zn by arbuscular mycorrhizal red clover in Zn-contaminated soil. Chemosphere 42:201–207

    Article  PubMed  CAS  Google Scholar 

  • Lin A-J, Zhang X-H, Wong M-H, Ye Z-H, Lou L-Q, Wang Y-S, Zhu Y-G (2007) Increase of multi-metal tolerance of three leguminous planrs by arbuscular mycorrhizal fungi colonization. Environ Geochem Health 29:473–481

    Article  PubMed  CAS  Google Scholar 

  • Liu A, Hamel C, Hamilton RI, Ma BL, Smith DL (2000) Acquisition of Cu, Zn, Mn and Fe by mycorrhizal maize (Zea mays L.) growth in soil at different P and micronutrient levels. Mycorrhiza 9:331–336

    Article  CAS  Google Scholar 

  • Maldonado-Mendoza IE, Dewbre GR, Harrison MJ (2001) A phosphate transporter gene from the extra-radical mycelium of an arbuscular mycorrhizal fungus Glomus intraradices is regulated in response to phosphate in the environment. Mol Plant-Microbe Interact 14:1140–1148

    Article  PubMed  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic, San Diego, CA, USA

    Google Scholar 

  • Marschner H, Dell B (1994) Nutrient uptake in mycorrhizal symbiosis. Plant Soil 159:89–102

    CAS  Google Scholar 

  • Mehravaran H, Mozafar A, Frossard E (2000) Uptake and partitioning of 32P and 65Zn by white clover as affected by eleven isolates of mycorrhizal fungi. J Plant Nutr 23:1385–1395

    CAS  Google Scholar 

  • Menge JA (1983) Utilization of vesicular–arbuscular mycorrhizal fungi in agriculture. Can J Bot 61:1015–1024

    Article  Google Scholar 

  • Oliver AJ, Smith SE, Nicholas DJD, Wallace W, Smith FA (1983) Activity of nitrate reductase in Trifolium subterraneum: effects of mycorrhizal infection and phosphate nutrition. New Phytol 94:63–79

    Article  CAS  Google Scholar 

  • Ortas I, Akpinar C (2006) Response of kidney bean to arbuscular mycorrhizal inoculation and mycorrhizal dependency in P and Zn deficient soils. Acta Agric Scand 56:101–109

    CAS  Google Scholar 

  • Ortas I, Ortakei D, Kaya Z, Çinar A, Önelge N (2002) Mycorrhizal dependency of sour orange in relation to phosphorus and zinc nutrition. J Plant Nutr 26:1263–1279

    Article  Google Scholar 

  • Ouziad F, Hildebrandt U, Schmelzer E, Bothe H (2005) Differential gene expression in arbuscular mycorrhizal-colonized tomato grown under heavy metal stress. J Plant Physiol 162:634–349

    Article  PubMed  CAS  Google Scholar 

  • Pawlowska TE, Charvat I (2004) Heavy-metal stress developmental patterns of arbuscular mycorrhizal fungi. Appl Environ Microbiol 70:6643–6649

    Article  PubMed  CAS  Google Scholar 

  • Purakayastha TJ, Chhonkar PK (2001) Influence of vesicular–arbuscular mycorrhizal fungi (Glomus etunicatum) on mobilization of zinc in wetland rice (Oryza sativa L.). Biol Fert Soil 33:323–327

    Article  CAS  Google Scholar 

  • Ryan MH, Angus JF (2003) Arbuscular mycorrhizae in wheat and field pea crops on a low P soil: increased Zn-uptake but no increase in P-uptake or yield. Plant Soil 250:225–239

    Article  CAS  Google Scholar 

  • Ryan MH, Ash A (1999) Effects of phosphorus and nitrogen on growth of pasture plants and VAM fungi in SE Australian soils with contrasting fertiliser histories (conventional and biodynamic). Agric Ecosyst Environ 73:51–62

    Article  Google Scholar 

  • Ryan MH, Norton RM, Kirkegaard JA, McCormick KM, Knights SE, Angus JF (2002) Increasing mycorrhizal colonisation does not improve growth and nutrition of wheat on Vertosols in south-eastern Australia. Aust J Agric Res 53:1173–1181

    Article  CAS  Google Scholar 

  • Seres A, Bakonyi G, Posta K (2006) Zn uptake by maize under the influence of AM-fungi and Collembola Folsomia candida. Ecol Res 21:692–697

    Article  CAS  Google Scholar 

  • Sharma AK, Sricastava PC, Johri BN (1999) Multiphasic zinc uptake system in mycorrhizal and non-mycorrhizal roots of French bean (Phaseolus vulfaris L.). Curr Sci India 76:228–230

    CAS  Google Scholar 

  • Shen H, Christie P, Li XL (2006) Uptake of zinc, cadmium and phosphorus by arbuscular mycorrhizal maize (Zea mays L.) from a low available phosphorus calcareous soil spiked with zinc and cadmium. Environ Geochem Health 28:111–119

    Article  PubMed  CAS  Google Scholar 

  • Smith SE (1982) Inflow of phosphate into mycorrhizal and non-mycorrhizal plants of Trifolium subterraneum at different levels of soil phosphate. New Phytol 90:293–303

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic, Cambridge, UK

    Google Scholar 

  • Smith SE, Smith FA, Jakobsen I (2004) Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlation with mycorrhizal responses in growth or total P uptake. New Phytol 162:511–524

    Article  Google Scholar 

  • Sorensen JN, Larsen J, Jakobsen I (2005) Mycorrhiza formation and nutrient concentration in leeks (Allium porrum) in relation to previous crop and cover crop management on high P soils. Plant Soil 273:101–114

    Article  CAS  Google Scholar 

  • St John TV, Coleman DC, Reid CPP (1983) Growth and spatial distribution of nutrient absorbing organs: selective exploitation of soil heterogeneity. Plant Soil 71:487–493

    Article  Google Scholar 

  • Thompson JP (1987) Decline of vesicular–arbuscular mycorrhizae in long fallow disorder of field crops and its expression in deficiency of sunflower. Aust J Agric Res 38:847–867

    Article  CAS  Google Scholar 

  • Thompson JP (1996) Correction of dual phosphorus and zinc deficiencies on Linseed (Linum usitatissimum L.) with cultures of vesicular–arbuscular mycorrhizal fungi. Soil Biol Biochem 28:941–951

    Article  CAS  Google Scholar 

  • Thomson BD, Robson AD, Abbott LK (1991) Soil mediated effects of phosphorus supply on the formation of mycorrhizas by Scutellospora calospora (Nicol. & Gerd.) Walker and Sanders on subterranean clover. New Phytol 118:463–469

    Article  CAS  Google Scholar 

  • Tibbett M (2000) Roots, foraging and the exploitation of soil nutrient patches: the role of mycorrhizal symbiosis. Funct Ecol 14:397–399

    Article  Google Scholar 

  • Tinker PB, Nye PH (2000) Solute movement in the rhizosphere. Oxford University Press, Oxford, Great Britain

    Google Scholar 

  • Toler HD, Morton JB, Cumming JR (2005) Growth and metal accumulation of mycorrhizal sorghum exposed to elevated copper and zinc. Water Air Soil Pollut 164:155–172

    Article  CAS  Google Scholar 

  • Uetake Y, Kojima T, Ezawa T, Saito M (2002) Extensive tubular vacuole system in an arbuscular mycorrhizal fungus, Gigaspora margarita. New Phytol 154:761–768

    Article  Google Scholar 

  • vanVuuren MMI, Robinson D, Griffiths BS (1996) Nutrient inflow and root proliferation during the exploitation of a temporally and spatially discrete source of nitrogen in soil. Plant Soil 178:185–192

    Article  CAS  Google Scholar 

  • Vivas A, Brió B, Ruíz-Lozano JM, Barea JM, Azcón R (2006) Two bacterial strains isolated from a Zn-polluted soil enhance plant growth and mycorrhizal efficiency under Zn-toxicity. Chemosphere 62:1523–1533

    Article  PubMed  CAS  Google Scholar 

  • Weiss DJ, Mason TFD, Zhao FJ, Kirk GJD, Coles BJ, Horstwood MSA (2004) Isotopic discrimination of zinc in higher plants. New Phytol 165:703–710

    Article  CAS  Google Scholar 

  • Whitfield L, Richards AJ, Rimmer DL (2004) Relationships between soil heavy metal concentration and mycorrhizal colonisation in Thymus polytrichus in northern England. Mycorhriza 14:55–62

    Article  CAS  Google Scholar 

  • Wu FY, Ye ZH, Wu SC, Wong MH (2007) Metal accumulation and arbuscular mycorrhizal status in metallicolous and non-metallicolous populations of Pteris vittata L. and Sedum alfredii Hance. Planta 226:1363–1378

    Article  PubMed  CAS  Google Scholar 

  • Yun W, Pratt ST, Miller RM, Cai Z, Hunter DB, Jarstfer AG, Kemmer KM, Lai B, Lee H-R, Legnini DG, Rodrigues W, Smith CI (1998) X-ray imaging and microspectroscopy of plants and fungi. J Synchrotron Radiat 5:1390–1395

    Article  PubMed  CAS  Google Scholar 

  • Zhang X-H, Zhu Y-G, Chen BD, Lin A-J, Smith SE, Smith FA (2005) Arbuscular mycorrhizal fungi contribute to resistance of upland rice to combined metal contamination of soil. J Plant Nutr 28:2065–2077

    Article  CAS  Google Scholar 

  • Zhu Y-G, Christie P, Laidlaw SA (2001a) Uptake of Zn by arbuscular mycorrhizal white clover from Zn-contaminated soil. Chemosphere 42:193–199

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y-G, Smith SE, Smith FA (2001b) Plant growth and cation composition of two cultivars of spring wheat (Triticum aestivum L.) differing in P uptake efficiency. J Exp Bot 52:1277–1282

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y-G, Smith SE, Smith FA (2001c) Zinc (Zn)-phosphorus (P) interactions in two cultivars of spring wheat (Triticum aestivum L.) differing in P uptake efficiency. Ann Bot 88:941–945

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thank you to my colleagues for many valuable discussions over the years, and apologies to those whose work it was not possible to cite here. Comments and suggestions from the two anonymous reviewers are appreciated, as are those of Professor Yongguan Zhu and Dr Vanessa Carne-Cavagnaro on an earlier version of the manuscript. Thanks also to Ms Leesa Hughes for assistance in retrieving and managing references. This review was in part made possible by a Monash University, School of Biological Sciences, Small Grant, awarded to TRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy R. Cavagnaro.

Additional information

Responsible Editor: Yongguan Zhu

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cavagnaro, T.R. The role of arbuscular mycorrhizas in improving plant zinc nutrition under low soil zinc concentrations: a review. Plant Soil 304, 315–325 (2008). https://doi.org/10.1007/s11104-008-9559-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-008-9559-7

Keywords

Navigation