Skip to main content

Advertisement

Log in

Novel strategies towards efficient molecular biohydrogen production by dark fermentative mechanism: present progress and future perspective

  • Critical Review
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

In the scenario of alarming increase in greenhouse and toxic gas emissions from the burning of conventional fuels, it is high time that the population drifts towards alternative fuel usage to obviate pollution. Hydrogen is an environment-friendly biofuel with high energy content. Several production methods exist to produce hydrogen, but the least energy intensive processes are the fermentative biohydrogen techniques. Dark fermentative biohydrogen production (DFBHP) is a value-added, less energy-consuming process to generate biohydrogen. In this process, biohydrogen can be produced from sugars as well as complex substrates that are generally considered as organic waste. Yet, the process is constrained by many factors such as low hydrogen yield, incomplete conversion of substrates, accumulation of volatile fatty acids which lead to the drop of the system pH resulting in hindered growth and hydrogen production by the bacteria. To circumvent these drawbacks, researchers have come up with several strategies that improve the yield of DFBHP process. These strategies can be classified as preliminary methodologies concerned with the process optimization and the latter that deals with pretreatment of substrate and seed sludge, bioaugmentation, co-culture of bacteria, supplementation of additives, bioreactor design considerations, metabolic engineering, nanotechnology, immobilization of bacteria, etc. This review sums up some of the improvement techniques that profoundly enhance the biohydrogen productivity in a DFBHP process.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

DFBHP:

Dark fermentative biohydrogen production

HY:

Hydrogen yield

SOx :

Sulfur oxides

NOx :

Nitrogen oxides

VFAs:

Volatile fatty acids

OFMSW:

Organic fraction of municipal solid waste

HPR:

Hydrogen production rate

WAS:

Waste activated sludge

HMF:

Hydroxy methyl furfural

HPr:

Propionic acid

OLRs:

Organic loading rates

COD:

Chemical oxygen demand

PFBHP:

Photo fermentative biohydrogen production process

HRT:

Hydraulic retention time

BESA:

2-Bromoethane sulfonic acid

PFOR:

Pyruvate ferredoxin oxidoreductase

Fdox :

Oxidized ferredoxin

NFOR:

NADH ferredoxin oxidoreductase

PFL:

Pyruvate formate lyase

FHL:

Formate hydrogen lyase

Pts:

Phosphotransferase system

CCR:

Carbon catabolite repression

NPs:

Nanoparticles

FOCNPs:

Ferric oxide/carbon nanoparticles

HPB:

Hydrogen-producing bacteria

AgNPs:

Silver nanoparticles

HTs:

Hydrotalcites

TAC:

Treated activated carbon

TS:

Total solids

EGSB:

Expanded granular sludge bed reactor

CSTR:

Continuous stirred tank reactor

FBRs:

Fixed bed reactor

PVC:

Polyvinyl chloride

AC:

Activated carbon

CPE:

Chlorinated polyethylene

LS:

Loofah sponge

AnSBR:

Anaerobic sequencing bioreactor

PBF:

Packed biofilter

UASB:

Upflow anaerobic sludge blanket

VHPR:

Volumetric hydrogen production rate

MWCNTs:

Multi-walled carbon nanotubes

References

  1. Perera F (2018) Pollution from fossil-fuel combustion is the leading environmental threat to global pediatric health and equity: solutions exist. Int J Environ Res Public Health. https://doi.org/10.3390/ijerph15010016

    Article  PubMed  PubMed Central  Google Scholar 

  2. Demirbas A (2009) Political, economic and environmental impacts of biofuels: a review. Appl Energy 86:S108–S117. https://doi.org/10.1016/j.apenergy.2009.04.036

    Article  CAS  Google Scholar 

  3. Basak N, Jana AK, Das D, Saikia D (2014) Photofermentative molecular biohydrogen production by purple-non-sulfur (PNS) bacteria in various modes: the present progress and future perspective. Int J Hydrogen Energy 39:6853–6871. https://doi.org/10.1016/j.ijhydene.2014.02.093

    Article  CAS  Google Scholar 

  4. Basak N, Jana AK, Das D (2016) CFD modeling of hydrodynamics and optimization of photofermentative hydrogen production by Rhodopseudomonas palustris DSM 123 in annular photobioreactor. Int J Hydrogen Energy 41:7301–7317. https://doi.org/10.1016/j.ijhydene.2016.02.126

    Article  CAS  Google Scholar 

  5. Basak N, Jana AK, Das D (2021) Photofermentative biohydrogen generation from organic acids by Rhodobacter sphaeroides OU 001: Computational fluid dynamics modeling of hydrodynamics and temperature. Biotechnol Appl Biochem. https://doi.org/10.1002/bab.2151

    Article  PubMed  Google Scholar 

  6. Barsanti N, Matteucci F (1854) Obtaining motive power by the explosion of gases, 1072, Patent B, Patent Express, The British Library, London

  7. Das SR, Basak N (2020) Molecular biohydrogen production by dark and photo fermentation from wastes containing starch: recent advancement and future perspective. Bioprocess Biosyst Eng 44:1–25. https://doi.org/10.1007/s00449-020-02422-5

    Article  CAS  PubMed  Google Scholar 

  8. Rao R, Basak N (2021) Process optimization and mathematical modelling of photo-fermentative hydrogen production from dark fermentative cheese whey effluent by Rhodobacter sphaeroides OU 001 in 2-L cylindrical bioreactor. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-021-01377-1

    Article  Google Scholar 

  9. Rao R, Basak N (2021) Fermentative molecular biohydrogen production from cheese whey: present prospects & future strategy. Appl Biochem Biotechnol 193:2297–2330. https://doi.org/10.1007/s12010-021-03528-6

    Article  CAS  PubMed  Google Scholar 

  10. Ghimire A, Frunzo L, Pirozzi F, Trably E, Escudie R, Lens PNL, Esposito G (2015) A review on dark fermentative biohydrogen production from organic biomass: process parameters and use of by-products. Appl Energy 144:73–95. https://doi.org/10.1016/j.apenergy.2015.01.045

    Article  CAS  Google Scholar 

  11. Rao R, Basak N (2021) Optimization and modelling of dark fermentative hydrogen production from cheese whey by Enterobacter aerogenes 2822. Int J Hydrogen Energy 46:1777–1800. https://doi.org/10.1016/j.ijhydene.2020.10.142

    Article  CAS  Google Scholar 

  12. Das SR, Basak N (2022) Optimization of process parameters for enhanced biohydrogen production using potato waste as substrate by combined dark and photo fermentation. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-022-02588-w

    Article  Google Scholar 

  13. Reaño RL (2020) Assessment of environmental impact and energy performance of rice husk utilization in various biohydrogen production pathways. Bioresour Technol. https://doi.org/10.1016/j.biortech.2019.122590

    Article  PubMed  Google Scholar 

  14. Reaño RL, Halog A (2020) Analysis of carbon footprint and energy performance of biohydrogen production through gasification of different waste agricultural biomass from the Philippines. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-020-01151-9

    Article  Google Scholar 

  15. Jung K-W, Kim D-H, Kim S-H, Shin H-S (2011) Bioreactor design for continuous dark fermentative hydrogen production. Bioresour Technol 102:8612–8620. https://doi.org/10.1016/j.biortech.2011.03.056

    Article  CAS  PubMed  Google Scholar 

  16. Brar KK, Cortez AA, Pellegrini VOA, Amulya K, Polikarpov I, Magdouli S, Kumar M, Yang Y-H, Bhatia SK, Brar SK (2022) An overview on progress, advances, and future outlook for biohydrogen production technology. Int J Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2022.01.156

    Article  Google Scholar 

  17. Lin C-Y, Lay C-H, Sen B, Chu C-Y, Kumar G, Chen C-C, Chang J-S (2012) Fermentative hydrogen production from wastewaters: A review and prognosis. Int J Hydrogen Energy 37:15632–15642. https://doi.org/10.1016/j.ijhydene.2012.02.072

    Article  CAS  Google Scholar 

  18. Park J-H, Chandrasekhar K, Jeon B-H, Jang M, Liu Y, Kim S-H (2021) State-of-the-art technologies for continuous high-rate biohydrogen production. Bioresour Technol. https://doi.org/10.1016/j.biortech.2020.124304

    Article  PubMed  Google Scholar 

  19. Bakonyi P, Peter J, Koter S, Mateos R, Kumar G, Koók L, Rózsenberszki T, Pientka Z, Kujawski W, Kim S-H, Nemestóthy N, Bélafi-Bakó K, Pant D (2020) Possibilities for the biologically-assisted utilization of CO2-rich gaseous waste streams generated during membrane technological separation of biohydrogen. J CO2 Util 36:231–243. https://doi.org/10.1016/j.jcou.2019.11.008

    Article  CAS  Google Scholar 

  20. Lepage T, Kammoun M, Schmetz Q, Richel A (2021) Biomass-to-hydrogen: a review of main routes production, processes evaluation and techno-economical assessment. Biomass Bioenerg. https://doi.org/10.1016/j.biombioe.2020.105920

    Article  Google Scholar 

  21. Lee D-J, Show K-Y, Su A (2011) Dark fermentation on biohydrogen production: pure culture. Bioresour Technol 102:8393–8402. https://doi.org/10.1016/j.biortech.2011.03.041

    Article  CAS  PubMed  Google Scholar 

  22. Han W, Hu YY, Li SY, Li FF, Tang JH (2016) Biohydrogen production from waste bread in a continuous stirred tank reactor: a techno-economic analysis. Biores Technol 221:318–323. https://doi.org/10.1016/j.biortech.2016.09.055

    Article  CAS  Google Scholar 

  23. Li Y-C, Liu Y-F, Chu C-Y, Chang P-L, Hsu C-W, Wu S-Y (2012) Techno-economic evaluation of biohydrogen production from wastewater and agricultural waste. Int J Hydrogen Energy 37:15704–15710. https://doi.org/10.1016/j.ijhydene.2012.05.043

    Article  CAS  Google Scholar 

  24. Guo XM, Trably E, Latrille E, Carrere H, Steyer J-P (2014) Predictive and explicative models of fermentative hydrogen production from solid organic waste: role of butyrate and lactate pathways. Int J Hydrogen Energy 39:7476–7485. https://doi.org/10.1016/j.ijhydene.2013.08.079

    Article  CAS  Google Scholar 

  25. Vendruscolo F (2014) Starch: a potential substrate for biohydrogen production. Int J Energy Res 39:293–302. https://doi.org/10.1002/er.3224

    Article  CAS  Google Scholar 

  26. Rao R, Basak N (2020) Development of novel strategies for higher fermentative biohydrogen recovery along with novel metabolites from organic wastes: the present state of the art. Biotechnol Appl Biochem 68:421–444. https://doi.org/10.1002/bab.1964

    Article  CAS  PubMed  Google Scholar 

  27. Aruwajoye GS, Kassim A, Saha AK, Kana EBG (2020) Prospects for the improvement of bioethanol and biohydrogen production from mixed starch-based agricultural wastes. Energies 13:6609. https://doi.org/10.3390/en13246609

    Article  CAS  Google Scholar 

  28. Łukajtis R, Hołowacz I, Kucharska K, Glinka M, Rybarczyk P, Przyjazny A, Kamiński M (2018) Hydrogen production from biomass using dark fermentation. Renew Sustain Energy Rev 91:665–694. https://doi.org/10.1016/j.rser.2018.04.043

    Article  CAS  Google Scholar 

  29. Soares JF, Confortin TC, Todero I, Mayer FD, Mazutti MA (2020) Dark fermentative biohydrogen production from lignocellulosic biomass: technological challenges and future prospects. Renew Sustain Energy Rev. https://doi.org/10.1016/j.rser.2019.109484

    Article  Google Scholar 

  30. Ergal İ, Fuchs W, Hasibar B, Thallinger B, Bochmann G, Rittmann SK-MR (2018) The physiology and biotechnology of dark fermentative biohydrogen production. Biotechnol Adv 36:2165–2186. https://doi.org/10.1016/j.biotechadv.2018.10.005

    Article  CAS  PubMed  Google Scholar 

  31. Sivagurunathan P, Sen B, Lin C-Y (2014) Overcoming propionic acid inhibition of hydrogen fermentation by temperature shift strategy. Int J Hydrogen Energy 39:19232–19241. https://doi.org/10.1016/j.ijhydene.2014.03.260

    Article  CAS  Google Scholar 

  32. Paz-Mireles CL, Razo-Flores E, Trejo G, Cercado B (2019) Inhibitory effect of ethanol on the experimental electrical charge and hydrogen production in microbial electrolysis cells (MECs). J Electroanal Chem 835:106–113. https://doi.org/10.1016/j.jelechem.2019.01.028

    Article  CAS  Google Scholar 

  33. Tang J, Yuan Y, Guo W-Q, Ren N-Q (2012) Inhibitory effects of acetate and ethanol on biohydrogen production of Ethanoligenens harbinense B49. Int J Hydrogen Energy 37:741–747. https://doi.org/10.1016/j.ijhydene.2011.04.067

    Article  CAS  Google Scholar 

  34. Tondro H, Musivand S, Zilouei H, Bazarganipour M, Zargoosh K (2020) Biological production of hydrogen and acetone- butanol-ethanol from sugarcane bagasse and rice straw using co-culture of Enterobacter aerogenes and Clostridium acetobutylicum. Biomass Bioenerg. https://doi.org/10.1016/j.biombioe.2020.105818

    Article  Google Scholar 

  35. Zhang T, Jiang D, Zhang H, Jing Y, Tahir N, Zhang Y, Zhang Q (2020) Comparative study on bio-hydrogen production from corn stover: photo-fermentation, dark-fermentation and dark-photo co-fermentation. Int J Hydrogen Energy 45:3807–3814. https://doi.org/10.1016/j.ijhydene.2019.04.170

    Article  CAS  Google Scholar 

  36. Chandrasekhar K, Mohan SV (2014) Bio-electrohydrolysis as a pretreatment strategy to catabolize complex food waste in closed circuitry: function of electron flux to enhance acidogenic biohydrogen production. Int J Hydrogen Energy 39:11411–11422. https://doi.org/10.1016/j.ijhydene.2014.05.035

    Article  CAS  Google Scholar 

  37. Hallenbeck PC, Ghosh D (2009) Advances in fermentative biohydrogen production: the way forward? Trends Biotechnol 27:287–297. https://doi.org/10.1016/j.tibtech.2009.02.004

    Article  CAS  PubMed  Google Scholar 

  38. Basak B, Fatima A, Jeon B-H, Ganguly A, Chatterjee PK, Dey A (2018) Process kinetic studies of biohydrogen production by co-fermentation of fruit-vegetable wastes and cottage cheese whey. Energy Sustain Dev 47:39–52. https://doi.org/10.1016/j.esd.2018.08.004

    Article  Google Scholar 

  39. Yang C-Y, Fang TJ (2014) Combination of ultrasonic irradiation with ionic liquid pretreatment for enzymatic hydrolysis of rice straw. Biores Technol 164:198–202. https://doi.org/10.1016/j.biortech.2014.05.004

    Article  CAS  Google Scholar 

  40. Kaur K, Phutela UG (2018) Morphological and structural changes in paddy straw influenced by alkali and microbial pretreatment. Detritus. https://doi.org/10.31025/2611-4135/2018.13686

    Article  Google Scholar 

  41. Singh T, Alhazmi A, Mohammad A, Srivastava N, Haque S, Sharma S, Singh R, Yoon T, Gupta VK (2021) Integrated biohydrogen production via lignocellulosic waste: opportunity, challenges & future prospects. Biores Technol. https://doi.org/10.1016/j.biortech.2021.125511

    Article  Google Scholar 

  42. Zhang J, Kong C, Yang M, Zang L (2020) Comparison of calcium oxide and calcium peroxide pretreatments of wheat straw for improving biohydrogen production. ACS Omega 5:9151–9161. https://doi.org/10.1021/acsomega.9b04368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kiran EU, Trzcinski AP, Ng WJ, Liu Y (2014) Bioconversion of food waste to energy: a review. Fuel 134:389–399. https://doi.org/10.1016/j.fuel.2014.05.074

    Article  CAS  Google Scholar 

  44. Alibardi L, Cossu R (2016) Effects of carbohydrate, protein and lipid content of organic waste on hydrogen production and fermentation products. Waste Manag 47:69–77. https://doi.org/10.1016/j.wasman.2015.07.049

    Article  CAS  PubMed  Google Scholar 

  45. Gadhe A, Sonawane SS, Varma MN (2014) Evaluation of ultrasonication as a treatment strategy for enhancement of biohydrogen production from complex distillery wastewater and process optimization. Int J Hydrogen Energy 39:10041–10050. https://doi.org/10.1016/j.ijhydene.2014.04.153

    Article  CAS  Google Scholar 

  46. Gadhe A, Sonawane SS, Varma MN (2015) Enhanced biohydrogen production from dark fermentation of complex dairy wastewater by sonolysis. Int J Hydrogen Energy 40:9942–9951. https://doi.org/10.1016/j.ijhydene.2015.06.098

    Article  CAS  Google Scholar 

  47. Saleem A, Umar H, Shah TA, Tabassum R (2020) Fermentation of simple and complex substrates to biohydrogen using pure Bacillus cereus RTUA and RTUB strains. Environ Technol Innov. https://doi.org/10.1016/j.eti.2020.100704

    Article  Google Scholar 

  48. Wang H, Fang M, Fang Z, Bu H (2010) Effects of sludge pretreatments and organic acids on hydrogen production by anaerobic fermentation. Biores Technol 101:8731–8735. https://doi.org/10.1016/j.biortech.2010.06.131

    Article  CAS  Google Scholar 

  49. Rossi DM, da Costa JB, de Souza EA, Peralba MdCR, Samios D, Ayub MAZ (2011) Comparison of different pretreatment methods for hydrogen production using environmental microbial consortia on residual glycerol from biodiesel. Int J Hydrogen Energy 36:4814–4819. https://doi.org/10.1016/j.ijhydene.2011.01.005

    Article  CAS  Google Scholar 

  50. Wang D, Wang Y, Liu X, Xu Q, Yang Q, Li X, Zhang Y, Liu Y, Wang Q, Ni B-J, Li H (2019) Heat pretreatment assists free ammonia to enhance hydrogen production from waste activated sludge. Biores Technol 283:316–325. https://doi.org/10.1016/j.biortech.2019.03.090

    Article  CAS  Google Scholar 

  51. Pachapur VL, Kutty P, Pachapur P, Brar SK, Bihan YL, Galvez-Cloutier R, Buelna G (2019) Seed pretreatment for increased hydrogen production using mixed-culture systems with advantages over pure-culture systems. Energies. https://doi.org/10.3390/en12030530

    Article  Google Scholar 

  52. Karim A, Islam MA, Mishra P, Yousuf A, Faizal CKM, Khan I (2021) Technical difficulties of mixed culture driven waste biomass-based biohydrogen production: Sustainability of current pretreatment techniques and future prospective. Renew Sustain Energy Rev. https://doi.org/10.1016/j.rser.2021.111519

    Article  Google Scholar 

  53. Mori K, Tsurumaru H, Harayama S (2010) Iron corrosion activity of anaerobic hydrogen-consuming microorganisms isolated from oil facilities. J Biosci Bioeng 110:426–430. https://doi.org/10.1016/j.jbiosc.2010.04.012

    Article  CAS  PubMed  Google Scholar 

  54. Liou JS-C, Madsen EL (2008) Microbial ecological processes: aerobic/anaerobic. Encycl Ecol. https://doi.org/10.1016/B978-008045405-4.00254-8

    Article  Google Scholar 

  55. Borja R (2011) Biogas production. Compr Biotechnol 2:785–798. https://doi.org/10.1016/B978-0-08-088504-9.00126-4

    Article  Google Scholar 

  56. Su X, Zhao W, Xia D (2018) The diversity of hydrogen-producing bacteria and methanogens within an in situ coal seam. Biotechnol Biofuels. https://doi.org/10.1186/s13068-018-1237-2

    Article  PubMed  PubMed Central  Google Scholar 

  57. Montecchio D, Yuan Y, Malpei F (2018) Hydrogen production dynamic during cheese whey dark fermentation: new insights from modelization. Int J Hydrogen Energy 43:17488–17601. https://doi.org/10.1016/j.ijhydene.2018.07.146

    Article  CAS  Google Scholar 

  58. Wan J, Jing Y, Zhang S, Angelidaki I, Luo G (2016) Mesophilic and thermophilic alkaline fermentation of waste activated sludge for hydrogen production: focusing on homoacetogenesis. Water Res 102:524–532. https://doi.org/10.1016/j.watres.2016.07.002

    Article  CAS  PubMed  Google Scholar 

  59. Behera S, Arora R, Nandhagopal N, Kumar S (2014) Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renew Sustain Energy Rev 36:91–106. https://doi.org/10.1016/j.rser.2014.04.047

    Article  CAS  Google Scholar 

  60. Gonzales RR, Sivagurunathan P, Parthiban A, Kim S-H (2016) Optimization of substrate concentration of dilute acid hydrolyzate of lignocellulosic biomass in batch hydrogen production. Int Biodeterior Biodegrad 113:22–27. https://doi.org/10.1016/j.ibiod.2016.04.016

    Article  CAS  Google Scholar 

  61. Quéméneur M, Hamelin J, Barakat A, Steyer J-P, Carrère H, Trably E (2012) Inhibition of fermentative hydrogen production by lignocellulose-derived compounds in mixed cultures. Int J Hydrogen Energy 37:3150–3159. https://doi.org/10.1016/j.ijhydene.2011.11.033

    Article  CAS  Google Scholar 

  62. Muñoz-Páez KM, Alvarado-Michi EL, Buitrón G, Valdez-Vazquez I (2019) Distinct effects of furfural, hydroxymethylfurfural and its mixtures on dark fermentation hydrogen production and microbial structure of a mixed culture. Int J Hydrogen Energy 44:2289–2297. https://doi.org/10.1016/j.ijhydene.2018.04.139

    Article  CAS  Google Scholar 

  63. Khalaf RA, Alhusban AA, Al-Shalabi E, Al-Sheikh I, Sabbah DA (2019) Isolation and structure elucidation of bioactive polyphenols. Stud Nat Prod Chem. https://doi.org/10.1016/B978-0-12-817901-7.00010-1

    Article  Google Scholar 

  64. Lin R, Cheng J, Ding L, Song W, Zhou J, Cen K (2015) Inhibitory effects of furan derivatives and phenolic compounds on dark hydrogen fermentation. Biores Technol 196:250–255. https://doi.org/10.1016/j.biortech.2015.07.097

    Article  CAS  Google Scholar 

  65. Sharma P, Melkania U (2018) Effect of phenolic compounds on hydrogen production from municipal solid waste. Waste Manag 78:115–123. https://doi.org/10.1016/j.wasman.2018.05.039

    Article  CAS  PubMed  Google Scholar 

  66. Palomo-Briones R, Trably E, López-Lozano NE, Celis LB, Méndez-Acosta HO, Bernet N, Razo-Flores E (2018) Hydrogen metabolic patterns driven by Clostridium-Streptococcus community shifts in a continuous stirred tank reactor. Appl Microbiol Biotechnol 102:2465–2475. https://doi.org/10.1007/s00253-018-8737-7

    Article  CAS  PubMed  Google Scholar 

  67. Antonopoulou G, Gavala HN, Skiadas IV, Lyberatos G (2011) Effect of substrate concentration on fermentative hydrogen production from sweet sorghum extract. Int J Hydrogen Energy 36:4843–4851. https://doi.org/10.1016/j.ijhydene.2011.01.077

    Article  CAS  Google Scholar 

  68. Jayasinghearachchi HS, Singh S, Sarma PM, Aginihotri A, Lal B (2010) Fermentative hydrogen production by new marine Clostridium amygdalinum strain C9 isolated from offshore crude oil pipeline. Int J Hydrogen Energy 35:6665–6673. https://doi.org/10.1016/j.ijhydene.2010.04.034

    Article  CAS  Google Scholar 

  69. Lin C-Y, Shei S-H (2008) Heavy metal effects on fermentative hydrogen production using natural mixed microflora. Int J Hydrogen Energy 33:587–593. https://doi.org/10.1016/j.ijhydene.2007.09.030

    Article  CAS  Google Scholar 

  70. Ghimire A, Valentino S, Frunzo L, Trably E, Escudié R, Pirozzi F, Lens PNL, Esposito G (2015) Biohydrogen production from food waste by coupling semi-continuous dark-photofermentation and residue post-treatment to anaerobic digestion: a synergy for energy recovery. Int J Hydrogen Energy 40:16045–16055. https://doi.org/10.1016/j.ijhydene.2015.09.117

    Article  CAS  Google Scholar 

  71. Basak B, Jeon B-H, Kim TH, Lee J-C, Chatterjee PK, Lim H (2020) Dark fermentative hydrogen production from pretreated lignocellulosic biomass: effects of inhibitory byproducts and recent trends in mitigation strategies. Renew Sustain Energy Rev. https://doi.org/10.1016/j.rser.2020.110338

    Article  Google Scholar 

  72. Mishra P, Thakur S, Singh L, Wahid ZA, Sakinah M (2016) Enhanced hydrogen production from palm oil mill effluent using two stage sequential dark and photo fermentation. Int J Hydrogen Energy 41:18431–18440. https://doi.org/10.1016/j.ijhydene.2016.07.138

    Article  CAS  Google Scholar 

  73. Yin Y, Wang J (2019) Optimization of fermentative hydrogen production by Enterococcus faecium INET2 using response surface methodology. Int J Hydrogen Energy 44:1483–1491. https://doi.org/10.1016/j.ijhydene.2018.11.154

    Article  CAS  Google Scholar 

  74. Mamimin C, Prasertsan P, Kongjan P, O-Thong S (2017) Effects of volatile fatty acids in biohydrogen effluent on biohythane production from palm oil mill effluent under thermophilic condition. Electron J Biotechnol 29:78–85. https://doi.org/10.1016/j.ejbt.2017.07.006

    Article  CAS  Google Scholar 

  75. Saleem M, Lavagnolo MC, Spagni A (2018) Biological hydrogen production via dark fermentation by using a side-stream dynamic membrane bioreactor: effect of substrate concentration. Chem Eng J 349:719–727. https://doi.org/10.1016/j.cej.2018.05.129

    Article  CAS  Google Scholar 

  76. Adessi A, De Philippis R, Hallenbeck PC (2011) Combined systems for maximum substrate conversion. In: Hallenbeck PC (ed) Microbial technologies in advanced biofuels production. Springer Science + Business Media, New York. https://doi.org/10.1007/978-1-4614-1208-3_7

    Chapter  Google Scholar 

  77. Ye R, Jin Q, Bohannan B, Keller JK, Bridgham SD (2014) Homoacetogenesis: A potentially underappreciated carbon pathway in peatlands. Soil Biol Biochem 68:385–391. https://doi.org/10.1016/j.soilbio.2013.10.020

    Article  CAS  Google Scholar 

  78. Cappai G, Gioannis GD, Muntoni A, Spiga D, Boni MR, Polettini A, Pomi R, Rossi A (2018) Biohydrogen production from food waste: influence of the inoculum-to-substrate ratio. Sustainability. https://doi.org/10.3390/su10124506

    Article  Google Scholar 

  79. Luo G, Karakashev D, Xie L, Zhou Q, Angelidaki I (2011) Long-term effect of inoculum pretreatment on fermentative hydrogen production by repeated batch cultivations: homoacetogenesis and methanogenesis as competitors to hydrogen production. Biotechnol Bioeng 108:1816–1827. https://doi.org/10.1002/bit.23122

    Article  CAS  PubMed  Google Scholar 

  80. Cripa FB, Arantes MK, Sequinel R, Fiorini A, Rosado FR, Alves HJ (2020) Poultry slaughterhouse anaerobic ponds as a source of inoculum for biohydrogen production. J Biosci Bioeng 129:77–85. https://doi.org/10.1016/j.jbiosc.2019.07.006

    Article  CAS  PubMed  Google Scholar 

  81. Chaganti SR, Kim D-H, Lalman JA (2011) Flux balance analysis of mixed anaerobic microbial communities: effects of linoleic acid (LA) and pH on biohydrogen production. Int J Hydrogen Energy 36:14141–14152. https://doi.org/10.1016/j.ijhydene.2011.04.161

    Article  CAS  Google Scholar 

  82. Lazaro CZ, Perna V, Etchebehere C, Varesche MBA (2014) Sugarcane vinasse as substrate for fermentative hydrogen production: the effects of temperature and substrate concentration. Int J Hydrogen Energy 39:6407–6418. https://doi.org/10.1016/j.ijhydene.2014.02.058

    Article  CAS  Google Scholar 

  83. Dessì P, Porca E, Waters NR, Lakaniemi A-M, Collins G, Lens PNL (2018) Thermophilic versus mesophilic dark fermentation in xylose-fed fluidised bed reactors: biohydrogen production and active microbial community. Int J Hydrogen Energy 43:5473–5485. https://doi.org/10.1016/j.ijhydene.2018.01.158

    Article  CAS  Google Scholar 

  84. Menezes CAd, Silva EL (2019) Hydrogen production from sugarcane juice in expanded granular sludge bed reactors under mesophilic conditions: the role of homoacetogenesis and lactic acid production. Ind Crops Prod. https://doi.org/10.1016/j.indcrop.2019.111586

    Article  Google Scholar 

  85. Buitrón G, Muñoz-Páez KM, Hernández-Mendoza CE (2019) Biohydrogen production using a granular sludge membrane bioreactor. Fuel 241:954–961. https://doi.org/10.1016/j.fuel.2018.12.104

    Article  CAS  Google Scholar 

  86. Cazier EA, Trably E, Steyer JP, Escudie R (2015) Biomass hydrolysis inhibition at high hydrogen partial pressure in solid-state anaerobic digestion. Biores Technol 190:106–113. https://doi.org/10.1016/j.biortech.2015.04.055

    Article  CAS  Google Scholar 

  87. Ciranna A, Pawar SS, Santala V, Karp M, Niel EMV (2014) Assessment of metabolic flux distribution in the thermophilic hydrogen producer Caloramator celer as affected by external pH and hydrogen partial pressure. Microb Cell Fact. https://doi.org/10.1186/1475-2859-13-48

    Article  PubMed  PubMed Central  Google Scholar 

  88. Laurent B, Serge H, Julien M, Christopher H, Philippe T (2012) Effects of hydrogen partial pressure on fermentative biohydrogen production by a chemotropic Clostridium bacterium in a new horizontal rotating cylinder reactor. Energy Proc 29:34–41. https://doi.org/10.1016/J.EGYPRO.2012.09.006

    Article  Google Scholar 

  89. Ramírez-Morales JE, Tapia-Venegas E, Toledo-Alarcón J, Ruiz-Filippi G (2015) Simultaneous production and separation of biohydrogen in mixed culture systems by continuous dark fermentation. Water Sci Technol 71:1271–1285. https://doi.org/10.2166/wst.2015.104

    Article  CAS  PubMed  Google Scholar 

  90. Abreu AA, Tavares F, Alves MM, Pereira MA (2016) Boosting dark fermentation with co-cultures of extreme thermophiles for biohythane production from garden waste. Biores Technol 219:132–138. https://doi.org/10.1016/j.biortech.2016.07.096

    Article  CAS  Google Scholar 

  91. Sivalingam V, Haugen T, Wentzel A, Dinamarca C (2021) Effect of elevated hydrogen partial pressure on mixed culture homoacetogenesis. Chem Eng Sci X. https://doi.org/10.1016/j.cesx.2021.100118

    Article  Google Scholar 

  92. Rao R, Basak N (2022) Sequential dark-photo batch fermentation and kinetic modelling for biohydrogen production using cheese whey as a feedstock. Appl Biochem Biotechnol. https://doi.org/10.1007/s12010-022-03958-w

    Article  PubMed  PubMed Central  Google Scholar 

  93. Li X, Guo L, Liu Y, Wang Y, She Z, Gao M, Zhao Y (2020) Effect of salinity and pH on dark fermentation with thermophilic bacteria pretreated swine wastewater. J Environ Manage. https://doi.org/10.1016/j.jenvman.2020.111023

    Article  PubMed  Google Scholar 

  94. Luo G, Xie L, Zou Z, Zhou Q, Wang J-Y (2010) Fermentative hydrogen production from cassava stillage by mixed anaerobic microflora: effects of temperature and pH. Appl Energy 87:3710–3717. https://doi.org/10.1016/j.apenergy.2010.07.004

    Article  CAS  Google Scholar 

  95. Pakarinen O, Lehtomäki A, Rintala J (2008) Batch dark fermentative hydrogen production from grass silage: the effect of inoculum, pH, temperature and VS ratio. Int J Hydrogen Energy 33:594–601. https://doi.org/10.1016/j.ijhydene.2007.10.008

    Article  CAS  Google Scholar 

  96. Abdallah R, Djelal H, Amrane A, Sayed W, Fourcade F, Thierry L, Geneste F, Taha S, Floner D (2016) Dark fermentative hydrogen production by anaerobic sludge growing on glucose and ammonium resulting from nitrate electroreduction. Int J Hydrogen Energy 41:5445–5455. https://doi.org/10.1016/j.ijhydene.2016.02.030

    Article  CAS  Google Scholar 

  97. Elreedy A, Tawfik A (2015) Effect of hydraulic retention time on hydrogen production from the dark fermentation of petrochemical effluents contaminated with ethylene glycol. Energy Procedia 74:1071–1078. https://doi.org/10.1016/j.egypro.2015.07.746

    Article  CAS  Google Scholar 

  98. Ghimire A, Sposito F, Frunzo L, Trably E, Escudie R, Pirozzi F, Lens PNL, Esposito G (2016) Effects of operational parameters on dark fermentative hydrogen production from biodegradable complex waste biomass. Waste Manag 50:55–64. https://doi.org/10.1016/j.wasman.2016.01.044

    Article  CAS  PubMed  Google Scholar 

  99. Guellout Z, Clion V, Benguerba Y, Dumas C, Ernst B (2018) Study of the dark fermentative hydrogen production using modified ADM1 models. Biochem Eng J 132:9–19. https://doi.org/10.1016/j.bej.2017.12.015

    Article  CAS  Google Scholar 

  100. Yang G, Wang J (2019) Changes in microbial community structure during dark fermentative hydrogen production. Int J Hydrogen Energy 44:25541–25550. https://doi.org/10.1016/j.ijhydene.2019.08.039

    Article  CAS  Google Scholar 

  101. Du Y, Zou W, Zhang K, Ye G, Yang J (2020) Advances and applications of Clostridium co-culture systems in biotechnology. Front Microbiol. https://doi.org/10.3389/fmicb.2020.560223.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Park J-H, Kim D-H, Baik J-H, Park J-H, Yoon J-J, Lee C-Y, Kim S-H (2021) Improvement in H2 production from Clostridium butyricum by co-culture with Sporolactobacillus vineae. Fuel. https://doi.org/10.1016/j.fuel.2020.119051

    Article  Google Scholar 

  103. Hasibar B, Ergal İ, Moser S, Bochmann G, Rittmann SK-MR, Fuchs W (2020) Increasing biohydrogen production with the use of a co-culture inside a microbial electrolysis cell. Biochem Eng J. https://doi.org/10.1016/j.bej.2020.107802

    Article  Google Scholar 

  104. Pachapur VL, Sarma SJ, Brar SK, Bihan YL, Buelna G, Soccol CR (2015) Evidence of metabolic shift on hydrogen, ethanol and 1,3-propanediol production from crude glycerol by nitrogen sparging under micro-aerobic conditions using co-culture of Enterobacter aerogenes and Clostridium butyricum. Int J Hydrogen Energy 40:8669–8676. https://doi.org/10.1016/j.ijhydene.2015.05.024

    Article  CAS  Google Scholar 

  105. Diamantis V, Khan A, Ntougias S, Stamatelatou K, Kapagiannidis AG, Aivasidis A (2012) Continuous biohydrogen production from fruit wastewater at low pH conditions. Bioprocess Biosyst Eng 36:965–974. https://doi.org/10.1007/s00449-012-0832-z

    Article  CAS  PubMed  Google Scholar 

  106. Argun H, Kargi F (2009) Effects of sludge pre-treatment method on bio-hydrogen production by dark fermentation of waste ground wheat. Int J Hydrogen Energy 34:8543–8548. https://doi.org/10.1016/j.ijhydene.2009.08.049

    Article  CAS  Google Scholar 

  107. Bouwer EJ, McCarty PL (1983) Effects of 2-bromoethanesulfonic acid and 2- chloroethanesulfonic acid on acetate utilization in a continuous-flow methanogenic fixed-film column. Appl Environ Microbiol 45:1408–1410. https://doi.org/10.1128/aem.45.4.1408-1410.1983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ghimire A, Frunzo L, Pontoni L, d’Antonio G, Lens PNL, Esposito G, Pirozzi F (2015) Dark fermentation of complex waste biomass for biohydrogen production by pretreated thermophilic anaerobic digestate. J Environ Manag 152:43–48. https://doi.org/10.1016/j.jenvman.2014.12.049

    Article  CAS  Google Scholar 

  109. Srivastava N, Srivastava M, Kushwaha D, Gupta VK, Manikanta A, Ramteke PW, Mishra PK (2017) Efficient dark fermentative hydrogen production from enzyme hydrolyzed rice straw by Clostridium pasteurianum (MTCC116). Bioresour Technol 238:552–558. https://doi.org/10.1016/j.biortech.2017.04.077

    Article  CAS  PubMed  Google Scholar 

  110. Sinha P, Roy S, Das D (2016) Genomic and proteomic approaches for dark fermentative biohydrogen production. Renew Sustain Energy Rev 56:1308–1321. https://doi.org/10.1016/j.rser.2015.12.035

    Article  CAS  Google Scholar 

  111. Sivagurunathan P, Kumar G, Pugazhendhi A, Zhen G, Kobayashi T, Xu K (2017) Biohydrogen production from wastewaters. In: Biological wastewater treatment and resource recovery IntechOpen Book Series. https://doi.org/10.5772/65891

  112. Mohanraj S, Pandey A, Mohan SV, Anbalagan K, Kodhaiyolii S, Pugalenthi V (2019) Metabolic engineering and molecular biotechnology of biohydrogen production. In: Biomass, biofuels, biochemicals, 2 ed. https://doi.org/10.1016/B978-0-444-64203-5.00017-4.

  113. Son Y-S, Jeon J-M, Kim D-H, Yang Y-H, Jin Y-S, Cho B-K, Kim S-H, Kumar S, Lee B-D, Yoon J-J (2021) Improved bio-hydrogen production by overexpression of glucose-6-phosphate dehydrogenase and FeFe hydrogenase in Clostridium acetobutylicum. Int J Hydrogen Energy 46:36687–36695. https://doi.org/10.1016/j.ijhydene.2021.08.222

    Article  CAS  Google Scholar 

  114. Wu Y, Hao Y, Wei X, Shen Q, Ding X, Wang L, Zhao H, Lu Y (2017) Impairment of NADH dehydrogenase and regulation of anaerobic metabolism by the small RNA RyhB and NadE for improved biohydrogen production in Enterobacter aerogenes. Biotechnol Biofuels. https://doi.org/10.1186/s13068-017-0938-2

    Article  PubMed  PubMed Central  Google Scholar 

  115. Liu D, Sun Y, Li Y, Lu Y (2017) Perturbation of formate pathway and NADH pathway acting on the biohydrogen production. Nat Sci Rep. https://doi.org/10.1038/s41598-017-10191-7

    Article  Google Scholar 

  116. Zhang Q, You S, Li Y, Qu X, Jiang H (2020) Enhanced biohydrogen production from cotton stalk hydrolysate of Enterobacter cloacae WL1318 by overexpression of the formate hydrogen lyase activator gene. Biotechnol Biofuels. https://doi.org/10.1186/s13068-020-01733-9

    Article  PubMed  PubMed Central  Google Scholar 

  117. Balderas-Hernandez VE, Maldonado KPL, Sanchez A, Smolinski A, Rodriguez ADL (2019) Improvement of hydrogen production by metabolic engineering of Escherichia coli: Modification on both the PTS system and central carbon metabolism. Int J Hydrogen Energy 49:5687–5696. https://doi.org/10.1016/j.ijhydene.2019.01.162

    Article  CAS  Google Scholar 

  118. Jawed M, Jian P, Li X, Yan Y (2016) Enhanced biohydrogen production by overexpression of hycE AND hycG in Enterobacter aerogenes AB91102. Int J Biomed Eng Sci. https://doi.org/10.5121/ijbes.2016.3202

    Article  Google Scholar 

  119. Pugazhendhi A, Shobana S, Nguyen DD, Banu JR, Sivagurunathan P, Chang SW, Ponnusamy VK, Kumar G (2019) Application of nanotechnology (nanoparticles) in dark fermentative hydrogen production. Int J Hydrogen Energy 44:1431–1440. https://doi.org/10.1016/j.ijhydene.2018.11.114

    Article  CAS  Google Scholar 

  120. Gadhe A, Sonawane SS, Varma MN (2015) Enhancement effect of hematite and nickel nanoparticles on biohydrogen production from dairy wastewater. Int J Hydrogen Energy 40:4502–4511. https://doi.org/10.1016/j.ijhydene.2015.02.046

    Article  CAS  Google Scholar 

  121. Mullai P, Yogeswari MK, Sridevi K (2013) Optimisation and enhancement of biohydrogen production using nickel nanoparticles—a novel approach. Bioresour Technol 141:212–219. https://doi.org/10.1016/j.biortech.2013.03.082

    Article  CAS  PubMed  Google Scholar 

  122. Zhang J, Fan C, Zhang H, Wang Z, Zhang J, Song M (2018) Ferric oxide/carbon nanoparticles enhanced bio-hydrogen production from glucose. Int J Hydrogen Energy 43:8729–8738. https://doi.org/10.1016/j.ijhydene.2018.03.143

    Article  CAS  Google Scholar 

  123. Hussain I, Singh NB, Singh A, Singh H, Singh SC (2015) Green synthesis of nanoparticles and its potential application. Biotech Lett 38:545–560. https://doi.org/10.1007/s10529-015-2026-7

    Article  CAS  Google Scholar 

  124. Junior JRN, Torres LAZ, Medeiros ABP, Woiciechowski AL, Martinez-Burgos WJ, Soccol CR (2021) Enhancement of biohydrogen production in industrial wastewaters with vinasse pond consortium using lignin-mediated iron nanoparticles. Int J Hydrogen Energy 46:27431–27443. https://doi.org/10.1016/j.ijhydene.2021.06.009

    Article  CAS  Google Scholar 

  125. Zhang Q, Xu S, Li Y, Ding P, Zhang Y, Zhao P (2021) Green-synthesized nickel oxide nanoparticles enhances biohydrogen production of Klebsiella sp. WL1316 using lignocellulosic hydrolysate and its regulatory mechanism. Fuel. https://doi.org/10.1016/j.fuel.2021.121585

    Article  Google Scholar 

  126. Pugazhendhi A, Prabakar D, Jacob JM, Karuppusamy I, Saratale RG (2018) Synthesis and characterization of silver nanoparticles using Gelidium amansii and its antimicrobial property against various pathogenic bacteria. Microb Pathog 114:41–45. https://doi.org/10.1016/j.micpath.2017.11.013

    Article  CAS  PubMed  Google Scholar 

  127. Khan I, Anburajan P, Kumar G, Yoon J-J, Bahuguna A, Moura AGLd, Pugazhendhi A, Kim S-H, Kang S-C (2020) Comparative effect of silver nanoparticles (AgNPs) derived from actinomycetes and henna on biohydrogen production by Clostridium beijerinckii (KTCC1737). Int J Energy Res 45:17269–17278. https://doi.org/10.1002/er.6076

    Article  CAS  Google Scholar 

  128. Elreedy A, Fujii M, Koyama M, Nakasaki K, Tawfik A (2019) Enhanced fermentative hydrogen production from industrial wastewater using mixed culture bacteria incorporated with iron, nickel, and zinc-based nanoparticles. Water Res 151:349–361. https://doi.org/10.1016/j.watres.2018.12.043

    Article  CAS  PubMed  Google Scholar 

  129. Liska M, Wilson A, Bensted J (2019) Special cements. In: Lea's chemistry of cement and concrete, 5 ed. https://doi.org/10.1016/B978-0-08-100773-0.00013-7.

  130. Wimonsong P, Llorca J, Nitisoravut R (2013) Catalytic activity and characterization of Fe–Zn–Mg–Al hydrotalcites in biohydrogen production. Int J Hydrogen Energy 38:10284–10292. https://doi.org/10.1016/j.ijhydene.2013.06.066

    Article  CAS  Google Scholar 

  131. Le DTH, Nitisoravut R (2015) Ni-Mg-Al hydrotalcite for improvement of dark fermentative hydrogen production. Energy Proc 79:301–306. https://doi.org/10.1016/j.egypro.2015.11.491

    Article  CAS  Google Scholar 

  132. Wimonsong P (2021) Carbon—Zn hydrotalcite hybrid catalyst for fermentative hydrogen production. Int J Hydrogen Energy 46:3704–3715. https://doi.org/10.1016/j.ijhydene.2020.10.249

    Article  CAS  Google Scholar 

  133. Yang G, Wang J (2018) Various additives for improving dark fermentative hydrogen production: a review. Renew Sustain Energy Rev 95:130–146. https://doi.org/10.1016/j.rser.2018.07.029

    Article  CAS  Google Scholar 

  134. Bao MD, Su HJ, Tan TW (2013) Dark fermentative bio-hydrogen production: Effects of substrate pre-treatment and addition of metal ions or L-cysteine. Fuel 112:38–44. https://doi.org/10.1016/j.fuel.2013.04.063

    Article  CAS  Google Scholar 

  135. Yuan Z, Yang H, Zhi X, Shen J (2008) Enhancement effect of l-cysteine on dark fermentative hydrogen production. Int J Hydrogen Energy 33:6535–6540. https://doi.org/10.1016/j.ijhydene.2008.07.065

    Article  CAS  Google Scholar 

  136. Zhao X, Ye S, Qi N, Li X, Bao N, Xing D, Ren N (2019) Mechanisms of enhanced bio-H2 production in Ethanoligenens harbinense by l-cysteine supplementation: Analyses at growth and gene transcription levels. Fuel 252:143–147. https://doi.org/10.1016/j.fuel.2019.04.037

    Article  CAS  Google Scholar 

  137. Guo W-Q, Ding J, Cao G-L, Chen C, Zhou X-J, Ren N-Q (2013) Accelerated startup of hydrogen production expanded granular sludge bed with l-Cysteine supplementation. Energy 60:94–98. https://doi.org/10.1016/j.energy.2013.08.025

    Article  CAS  Google Scholar 

  138. Nakama Y (2017) Chapter 15—Surfactants. Cosmetic science and technology-theoretical principles and applications. https://doi.org/10.1016/B978-0-12-802005-0.00015-X.

  139. Elsamadony M, Tawfik A, Suzuki M (2015) Surfactant-enhanced biohydrogen production from organic fraction of municipal solid waste (OFMSW) via dry anaerobic digestion. Appl Energy 149:272–282. https://doi.org/10.1016/j.apenergy.2015.03.127

    Article  CAS  Google Scholar 

  140. Pachapur VL, Sarma SJ, Brar SK, Bihan YL, Buelna G, Verma M (2016) Surfactant mediated enhanced glycerol uptake and hydrogen production from biodiesel waste using co-culture of Enterobacter aerogenes and Clostridium butyricum. Renew Energy 95:542–551. https://doi.org/10.1016/j.renene.2016.03.097

    Article  CAS  Google Scholar 

  141. Leaño EP, Babel S (2012) The influence of enzyme and surfactant on biohydrogen production and electricity generation using Palm Oil Mill Effluent. J Clean Prod 31:91–99. https://doi.org/10.1016/j.jclepro.2012.02.026

    Article  CAS  Google Scholar 

  142. Santos FM, Gonçalves AL, Pires JCM (2019) Negative emission technologies. In: Bioenergy with carbon capture and storage. Academic Press. https://doi.org/10.1016/B978-0-12-816229-3.00001-6

  143. Bu J, Wei H-L, Wang Y-T, Cheng J-R, Zhu M-J (2021) Biochar boosts dark fermentative H2 production from sugarcane bagasse by selective enrichment/colonization of functional bacteria and enhancing extracellular electron transfer. Water Res. https://doi.org/10.1016/j.watres.2021.117440

    Article  PubMed  Google Scholar 

  144. Sunyoto NMS, Zhu M, Zhang Z, Zhang D (2018) Effect of biochar addition and temperature on hydrogen production from the first phase of two-phase anaerobic digestion of carbohydrates food waste. J Energy Resour Technol. https://doi.org/10.1115/1.4039318

    Article  Google Scholar 

  145. Sugiarto Y, Sunyoto NMS, Zhu M, Jones I, Zhang D (2021) Effect of biochar in enhancing hydrogen production by mesophilic anaerobic digestion of food wastes: the role of minerals. Int J Hydrogen Energy 46:3695–3703. https://doi.org/10.1016/j.ijhydene.2020.10.256

    Article  CAS  Google Scholar 

  146. Zhao L, Wang Z, Ren H-Y, Chen C, Nan J, Cao G-L, Yang S-S, Ren N-Q (2021) Residue cornstalk derived biochar promotes direct bio-hydrogen production from anaerobic fermentation of cornstalk. Bioresour Technol. https://doi.org/10.1016/j.biortech.2020.124338

    Article  PubMed  Google Scholar 

  147. Sharma P, Melkania U (2017) Biochar-enhanced hydrogen production from organic fraction of municipal solid waste using co-culture of Enterobacter aerogenes and E. coli. Int J Hydrogen Energy 42:18865–18874. https://doi.org/10.1016/j.ijhydene.2017.06.171

    Article  CAS  Google Scholar 

  148. Wu J, Dong L, Zhou C, Liu B, Xing D, Feng L, Wu X, Wang Q, Cao G (2019) Enhanced butanol-hydrogen coproduction by Clostridium beijerinckii with biochar as cell’s carrier. Biores Technol. https://doi.org/10.1016/j.biortech.2019.122141

    Article  Google Scholar 

  149. Basak N, Das D (2007) The prospect of purple non-sulfur (PNS) photosynthetic bacteria for hydrogen production: the present state of the art. World J Microbiol Biotechnol 23:31–42. https://doi.org/10.1007/s11274-006-9190-9

    Article  CAS  Google Scholar 

  150. Basak N, Das D (2009) Photofermentative hydrogen production using purple non-sulfur bacteria Rhodobacter sphaeroides OU 001 in an annular photobioreactor: a case study. Biomass Bioenergy 33:911–919. https://doi.org/10.1016/j.biombioe.2009.02.007

    Article  CAS  Google Scholar 

  151. Bakonyi P, Nemestóthy N, Lankó J, Rivera I, Buitrón G, Bélafi-Bakó K (2015) Simultaneous biohydrogen production and purification in a double-membrane bioreactor system. Int J Hydrogen Energy 40:1690–1697. https://doi.org/10.1016/j.ijhydene.2014.12.002

    Article  CAS  Google Scholar 

  152. Wainaina S, Parchami M, Mahboubi A, Horváth IS, Taherzadeh MJ (2019) Food waste-derived volatile fatty acids platform using an immersed membrane bioreactor. Bioresour Technol 274:329–334. https://doi.org/10.1016/j.biortech.2018.11.104

    Article  CAS  PubMed  Google Scholar 

  153. Al-Zuhair S, Al-Hosany M, Zooba Y, Al-Hammadi A, Al-Kaabi S (2013) Development of a membrane bioreactor for enzymatic hydrolysis of cellulose. Renew Energy 56:85–89. https://doi.org/10.1016/j.renene.2012.09.044

    Article  CAS  Google Scholar 

  154. Noblecourt A, Christophe G, Larroche C, Santa-Cataline G, Trably E, Fontanille P (2017) High hydrogen production rate in a submerged membrane anaerobic bioreactor. Int J Hydrogen Energy 42:24656–24666. https://doi.org/10.1016/j.ijhydene.2017.08.037

    Article  CAS  Google Scholar 

  155. Ramírez-Morales JE, Tapia-Venegas E, Campos JL, Ruiz-Filippi G (2019) Operational behavior of a hydrogen extractive membrane bioreactor (HEMB) during mixed culture acidogenic fermentation. Int J Hydrogen Energy 44:25565–25574. https://doi.org/10.1016/j.ijhydene.2019.08.077

    Article  CAS  Google Scholar 

  156. Lima DMF, Moriera WK, Zaiat M (2013) Comparison of the use of sucrose and glucose as a substrate for hydrogen production in an upflow anaerobic fixed-bed reactor. Int J Hydrogen Energy 38:15074–15083. https://doi.org/10.1016/j.ijhydene.2013.09.003

    Article  CAS  Google Scholar 

  157. Zhao C, Zhang N, Zheng H, Zhu Q, Utsumi M, Yang Y (2019) Effective and long-term continuous bio-hydrogen production by optimizing fixed-bed material in the bioreactor. Process Biochem 83:55–63. https://doi.org/10.1016/j.procbio.2019.04.021

    Article  CAS  Google Scholar 

  158. Muñoz-Páez KM, Alvarado-Michi EL, Moreno-Andrade I, Buitrón G, Valdez-Vazquez I (2020) Comparison of suspended and granular cell anaerobic bioreactors for hydrogen production from acid agave bagasse hydrolyzates. Int J Hydrogen Energy 45:275–285. https://doi.org/10.1016/j.ijhydene.2019.10.232

    Article  CAS  Google Scholar 

  159. Chu C-Y, Hastuti ZD, Dewi EL, Purwanto WW, Priyanto U (2016) Enhancing strategy on renewable hydrogen production in a continuous bioreactor with packed biofilter from sugary wastewater. Int J Hydrogen Energy 41:4404–4412. https://doi.org/10.1016/j.ijhydene.2015.06.132

    Article  CAS  Google Scholar 

  160. Mandal B, Nath K, Das D (2006) Improvement of biohydrogen production under decreased partial pressure of H2 by Enterobacter cloacae. Biotech Lett 28:831–835. https://doi.org/10.1007/s10529-006-9008-8

    Article  CAS  Google Scholar 

  161. Lee KS, Tseng T-S, Liu Y-W, Hsiao Y-D (2012) Enhancing the performance of dark fermentative hydrogen production using a reduced pressure fermentation strategy. Int J Hydrogen Energy 37:15556–15562. https://doi.org/10.1016/j.ijhydene.2012.04.039

    Article  CAS  Google Scholar 

  162. Rajhi H, Puyol D, Martinez MC, Diaz EE, Sanz JL (2016) Vacuum promotes metabolic shifts and increases biogenic hydrogen production in dark fermentation systems. Front Environ Sci Eng 10:513–521. https://doi.org/10.1007/s11783-015-0777-y

    Article  CAS  Google Scholar 

  163. Kisielewska M, Dębowski M, Zieliński M (2015) Improvement of biohydrogen production using a reduced pressure fermentation. Bioprocess Biosyst Eng 38:1925–1933. https://doi.org/10.1007/s00449-015-1434-3

    Article  CAS  PubMed  Google Scholar 

  164. Ramkumar N, Anupama PD, Nayak T, Subudhi S (2021) Scale up of biohydrogen production by a pure strain; Clostridium butyricum TM-9A at regulated pH under decreased partial pressure. Renew Energy. https://doi.org/10.1016/j.renene.2021.01.106

    Article  Google Scholar 

  165. Kirli B, Kapdan IK (2016) Selection of microorganism immobilization particle for dark fermentative biohydrogen production by repeated batch operation. Renewable Energy 87:697–702. https://doi.org/10.1016/j.renene.2015.11.003

    Article  CAS  Google Scholar 

  166. Zhao L, Cao G-L, Sheng T, Ren H-Y, Wang A-J, Zhang J, Zhong Y-J, Ren N-Q (2017) Bio-immobilization of dark fermentative bacteria for enhancing continuous hydrogen production from cornstalk hydrolysate. Biores Technol 243:548–555. https://doi.org/10.1016/j.biortech.2017.06.161

    Article  CAS  Google Scholar 

  167. Karapinar I, Yildiz PG, Pamuk RT, Georgec FK (2020) The effect of hydraulic retention time on thermophilic dark fermentative biohydrogen production in the continuously operated packed bed bioreactor. Int J Hydrogen Energy 45:3524–3531. https://doi.org/10.1016/j.ijhydene.2018.12.195

    Article  CAS  Google Scholar 

  168. Han J, Lee D, Cho J, Lee J, Kim S (2011) Hydrogen production from biodiesel byproduct by immobilized Enterobacter aerogenes. Bioprocess Biosyst Eng 35:151–157. https://doi.org/10.1007/s00449-011-0593-0

    Article  CAS  PubMed  Google Scholar 

  169. Khan MBH, Kana EBG (2016) Design, implementation and assessment of a novel bioreactor for fermentative biohydrogen process development. Int J Hydrogen Energy 41:10136–10144. https://doi.org/10.1016/j.ijhydene.2016.04.208

    Article  CAS  Google Scholar 

  170. Singh L, Wahid ZA (2014) Enhancement of hydrogen production from palm oil mill effluent via cell immobilisation technique. Int J Energy Res 39:215–222. https://doi.org/10.1002/er.3231

    Article  CAS  Google Scholar 

  171. Rai P, Pandey A, Pandey A (2022) Evaluation of low cost immobilized support matrices in augmentation of biohydrogen potential in dark fermentation process using B. licheniformis. Fuel. https://doi.org/10.1016/j.fuel.2021.122275

    Article  Google Scholar 

  172. Gokfiliz P, Karapinar I (2017) The effect of support particle type on thermophilic hydrogen production by immobilized batch dark fermentation. Int J Hydrogen Energy 42:2553–2561. https://doi.org/10.1016/j.ijhydene.2016.03.041

    Article  CAS  Google Scholar 

  173. Boshagh F, Rostami K, Moazami N (2019) Biohydrogen production by immobilized Enterobacter aerogenes on functionalized multi-walled carbon nanotube. Int J Hydrogen Energy 44:14395–14405. https://doi.org/10.1016/j.ijhydene.2018.11.199

    Article  CAS  Google Scholar 

  174. Chen Y, Yin Y, Wang J (2021) Comparison of fermentative hydrogen production from glycerol using immobilized and suspended mixed cultures. Int J Hydrogen Energy 46:8986–8994. https://doi.org/10.1016/j.ijhydene.2021.01.003

    Article  CAS  Google Scholar 

  175. Sekoai PT, Yoro KO, Daramola MO (2016) Batch fermentative biohydrogen production process using immobilized anaerobic sludge from organic solid waste. Environments 3:38. https://doi.org/10.3390/environments3040038

    Article  Google Scholar 

  176. Seelert T, Ghosh D, Yargeau V (2015) Improving biohydrogen production using Clostridium beijerinckii immobilized with magnetite nanoparticles. Appl Microbiol Biotechnol 99:4107–4116. https://doi.org/10.1007/s00253-015-6484-6

    Article  CAS  PubMed  Google Scholar 

  177. Sekoai PT, Ayeni AO, Daramola MO (2017) Parametric optimization of biohydrogen production from potato waste and scale-up study using immobilized anaerobic mixed sludge. Waste Biomass Valoriz 10:1177–1189. https://doi.org/10.1007/s12649-017-0136-2

    Article  CAS  Google Scholar 

  178. Penniston J, Kana EBG (2017) Impact of medium pH regulation on biohydrogen production in dark fermentation process using suspended and immobilized microbial cells. Biotechnol Biotechnol Equip 32:204–212. https://doi.org/10.1080/13102818.2017.1408430

    Article  CAS  Google Scholar 

  179. Kotay SM, Das D (2009) Novel dark fermentation involving bioaugmentation with constructed bacterial consortium for enhanced biohydrogen production from pretreated sewage sludge. Int J Hydrogen Energy 34:7489–7496. https://doi.org/10.1016/j.ijhydene.2009.05.109

    Article  CAS  Google Scholar 

  180. Okonkwo O, Escudie R, Bernet N, Mangayil R, Lakaniemi A-M, Trably E (2020) Bioaugmentation enhances dark fermentative hydrogen production in cultures exposed to short-term temperature fluctuations. Appl Microbiol Biotechnol 104:439–449. https://doi.org/10.1007/s00253-019-10203-8

    Article  CAS  PubMed  Google Scholar 

  181. Okonkwo O, Papirio S, Trably E, Escudie R, Lakaniemi A-M, Esposito G (2020) Enhancing thermophilic dark fermentative hydrogen production at high glucose concentrations via bioaugmentation with Thermotoga neapolitana. Int J Hydrogen Energy 45:17241–17249. https://doi.org/10.1016/j.ijhydene.2020.04.231

    Article  CAS  Google Scholar 

  182. Poirier S, Steyer J-P, Bernet N, Trably E (2020) Mitigating the variability of hydrogen production in mixed culture through bioaugmentation with exogenous pure strains. Int J Hydrogen Energy 45:2617–2626. https://doi.org/10.1016/j.ijhydene.2019.11.116

    Article  CAS  Google Scholar 

  183. Fotidis IA, Wang H, Fiedel NR, Luo G, Karakashev DB, Angelidaki I (2014) Bioaugmentation as a solution to increase methane production from an ammonia-rich substrate. Environ Sci Technol 48:7669–7676. https://doi.org/10.1021/es5017075

    Article  CAS  PubMed  Google Scholar 

  184. Kumar G, Bakonyi P, Sivagurunathan P, Kim S-H, Nemestóthy N, Bélafi-Bakó K, Lin C-Y (2015) Enhanced biohydrogen production from beverage industrial wastewater using external nitrogen sources and bioaugmentation with facultative anaerobic strains. J Biosci Bioeng 120:155–160. https://doi.org/10.1016/j.jbiosc.2014.12.011

    Article  CAS  PubMed  Google Scholar 

  185. Sathyaprakashan P, Kannan G (2015) Economics of bio-hydrogen production. Int J Environ Sci Dev 6:352–356. https://doi.org/10.7763/IJESD.2015.V6.617

    Article  Google Scholar 

  186. Han W, Fang J, Liu Z, Tang J (2016) Techno-economic evaluation of a combined bioprocess for fermentative hydrogen production from food waste. Bioresour Technol 202:107–112. https://doi.org/10.1016/j.biortech.2015.11.072

    Article  CAS  PubMed  Google Scholar 

  187. Chang P-L, Hsu C-W (2012) Value analysis for commercialization of fermentative hydrogen production from biomass. Int J Hydrogen Energy 37:15746–15752. https://doi.org/10.1016/j.ijhydene.2012.02.113

    Article  CAS  Google Scholar 

  188. Gomez-Florez M, Nakhla G, Hafez H (2017) Hydrogen production and microbial kinetics of Clostridium termitidis in mono-culture and co-culture with Clostridium beijerinckii on cellulose. AMB Express. https://doi.org/10.1186/s13568-016-0256-2

    Article  Google Scholar 

  189. Eder AS, Magrini FE, Spengler A, Silva JTd, Beal LL, Paesi S (2020) Comparison of hydrogen and volatile fatty acid production by Bacillus cereus, Enterococcus faecalis and Enterobacter aerogenes singly, in co-cultures or in the bioaugmentation of microbial consortium from sugarcane vinasse. Environ Technol Innov. https://doi.org/10.1016/j.eti.2020.100638

    Article  Google Scholar 

  190. Zhang C, Kang X, Liang N, Abdullah A (2017) Improvement of biohydrogen production from dark fermentation by cocultures and activated carbon immobilization. Energy Fuels 31:12217–12222. https://doi.org/10.1021/acs.energyfuels.7b02035

    Article  CAS  Google Scholar 

  191. Phowan P, Reungsang A, Danvirutai P (2010) Bio-hydrogen Production from Cassava Pulp Hydrolysate using Co-culture of Clostridium butyricum and Enterobacter aerogenes. Biotechnology 9:348–354. https://doi.org/10.3923/biotech.2010.348.354

    Article  CAS  Google Scholar 

  192. Maru BT, López F, Kengen SWM, Constantí M, Medina F (2016) Dark fermentative hydrogen and ethanol production from biodiesel waste glycerol using a co-culture of Escherichia coli and Enterobacter sp. Fuel 186:375–384. https://doi.org/10.1016/j.fuel.2016.08.043

    Article  CAS  Google Scholar 

  193. Cheng J, Zhu M (2013) A novel anaerobic co-culture system for bio-hydrogen production from sugarcane bagasse. Biores Technol 144:623–631. https://doi.org/10.1016/j.biortech.2013.07.018

    Article  CAS  Google Scholar 

  194. Cui M, Shen J (2012) Effects of acid and alkaline pretreatments on the biohydrogen production from grass by anaerobic dark fermentation. Int J Hydrogen Energy 37:1120–1124. https://doi.org/10.1016/j.ijhydene.2011.02.078

    Article  CAS  Google Scholar 

  195. Zhang M-L, Fan Y-T, Xing Y, Pan C-M, Zhang G-S, Lay J-J (2007) Enhanced biohydrogen production from cornstalk wastes with acidification pretreatment by mixed anaerobic cultures. Biomass Bioenerg 31:250–254. https://doi.org/10.1016/j.biombioe.2006.08.004

    Article  CAS  Google Scholar 

  196. Ramprakash B, Muthukumar K (2014) Comparative study on the production of biohydrogen from rice mill wastewater. Int J Hydrogen Energy 39:14613–14621. https://doi.org/10.1016/j.ijhydene.2014.06.029

    Article  CAS  Google Scholar 

  197. Wongthanate J, Chinnacotpong K, Khumpong M (2014) Impacts of pH, temperature, and pretreatment method on biohydrogen production from organic wastes by sewage microflora. Int J Energy Environ Eng. https://doi.org/10.1186/2251-6832-5-6

    Article  Google Scholar 

  198. Leaño EP, Anceno AJ, Babel S (2012) Ultrasonic pretreatment of palm oil mill effluent: Impact on biohydrogen production, bioelectricity generation, and underlying microbial communities. Int J Hydrogen Energy 37:12241–12249. https://doi.org/10.1016/j.ijhydene.2012.06.007

    Article  CAS  Google Scholar 

  199. Salem AH, Brunstermann R, Mietzel T, Widmann R (2018) Effect of pre-treatment and hydraulic retention time on biohydrogen production from organic wastes. Int J Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2018.01.114

    Article  Google Scholar 

  200. Wang H, Zhi Z, Wang J, Ma S (2012) Comparison of various pretreatment methods for biohydrogen production from cornstalk. Bioprocess Biosyst Eng 35:1239–1245. https://doi.org/10.1007/s00449-012-0711-7

    Article  CAS  PubMed  Google Scholar 

  201. Cai M, Liu J, Wei Y (2004) Enhanced biohydrogen production from sewage sludge with alkaline pretreatment. Environ Sci Technol. https://doi.org/10.1021/es0349204

    Article  PubMed  PubMed Central  Google Scholar 

  202. Wong YM, Juan JC, Ting A, Wu TY (2014) High efficiency bio-hydrogen production from glucose revealed in an inoculum of heat-pretreated landfill leachate sludge. Energy 72:628–635. https://doi.org/10.1016/j.energy.2014.05.088

    Article  CAS  Google Scholar 

  203. Yang G, Wang J (2020) Biohydrogen production from waste activated sludge pretreated by combining sodium citrate with ultrasonic: energy conversion and microbial community. Energy Convers Manag. https://doi.org/10.1016/j.enconman.2020.113436

    Article  Google Scholar 

  204. Yang S-S, Guo W-Q, Cao G-L, Zheng H-S, Ren N-Q (2012) Simultaneous waste activated sludge disintegration and biological hydrogen production using an ozone/ultrasound pretreatment. Bioresour Technol 124:347–354. https://doi.org/10.1016/j.biortech.2012.08.007

    Article  CAS  PubMed  Google Scholar 

  205. Tran KT, Maeda T, Wood TK (2014) Metabolic engineering of Escherichia coli to enhance hydrogen production from glycerol. Appl Microbiol Biotechnol 98:4757–4770. https://doi.org/10.1007/s00253-014-5600-3

    Article  CAS  PubMed  Google Scholar 

  206. Zhao J, Song W, Cheng J, Liu M, Zhang C, Cen K (2017) Improvement of fermentative hydrogen production using genetically modified Enterobacter aerogenes. Int J Hydrogen Energy 42:3676–3681. https://doi.org/10.1016/j.ijhydene.2016.08.161

    Article  CAS  Google Scholar 

  207. Zhao H, Lu Y, Wang L, Zhang C, Yang C, Xing X (2015) Disruption of lactate dehydrogenase and alcohol dehydrogenase for increased hydrogen production and its effect on metabolic flux in Enterobacter aerogenes. Biores Technol 194:99–107. https://doi.org/10.1016/j.biortech.2015.06.149

    Article  CAS  Google Scholar 

  208. Li Y, Hu J, Qu C, Chen L, Guo X, Fu H, Wang J (2019) Engineered Thermoanaerobacterium aotearoense with nfnAB knockout for improved hydrogen production from lignocellulose hydrolysates. Biotechnol Biofuels. https://doi.org/10.1186/s13068-019-1559-8

    Article  PubMed  PubMed Central  Google Scholar 

  209. Jiang L, Wu Q, Xu Q, Zhu L, Huang H (2017) Fermentative hydrogen production from Jerusalem artichoke by Clostridium tyrobutyricum expressing exo-inulinase gene. Sci Rep. https://doi.org/10.1038/s41598-017-07207-7

    Article  PubMed  PubMed Central  Google Scholar 

  210. Taherdanak M, Zilouei H, Karimi K (2015) Investigating the effects of iron and nickel nanoparticles on dark hydrogen fermentation from starch using central composite design. Int J Hydrogen Energy 40:12956–12963. https://doi.org/10.1016/j.ijhydene.2015.08.004

    Article  CAS  Google Scholar 

  211. Cheng J, Li H, Ding L, Zhou J, Song W, Li Y-Y, Lin R (2020) Improving hydrogen and methane co-generation in cascading dark fermentation and anaerobic digestion: The effect of magnetite nanoparticles on microbial electron transfer and syntrophism. Chem Eng J. https://doi.org/10.1016/j.cej.2020.125394

    Article  PubMed  PubMed Central  Google Scholar 

  212. Han H, Cui M, Wei L, Yang H, Shen J (2011) Enhancement effect of hematite nanoparticles on fermentative hydrogen production. Bioresour Technol 102:7903–7909. https://doi.org/10.1016/j.biortech.2011.05.089

    Article  CAS  PubMed  Google Scholar 

  213. Zhao W, Zhang Y, Du B, Wei D, Wei Q, Zhao Y (2013) Enhancement effect of silver nanoparticles on fermentative biohydrogen production using mixed bacteria. Bioresour Technol 142:240–245. https://doi.org/10.1016/j.biortech.2013.05.042

    Article  CAS  PubMed  Google Scholar 

  214. Mohanraj S, Anbalagan K, Kodhaiyolii S, Pugalenthi V (2014) Comparative evaluation of fermentative hydrogen production using Enterobacter cloacae and mixed culture: Effect of Pd (II) ion and phytogenic palladium nanoparticles. J Biotechnol 192:87–95. https://doi.org/10.1016/j.jbiotec.2014.10.012

    Article  CAS  PubMed  Google Scholar 

  215. Zhang J, Li W, Yang J, Li Z, Zhang J, Zhao W, Zang L (2021) Cobalt ferrate nanoparticles improved dark fermentation for hydrogen evolution. J Clean Prod. https://doi.org/10.1016/j.jclepro.2021.128275

    Article  PubMed  PubMed Central  Google Scholar 

  216. Sybounya S, Nitisoravut R (2021) Hybrid composite of modified commercial activated carbon and Zn-Ni hydrotalcite for fermentative hydrogen production. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2020.104801

    Article  Google Scholar 

  217. Jamali NS, Rashidi NFD, Jahim JM, O-Thong S, Jehlee A, Engliman NS (2019) Thermophilic biohydrogen production from palm oil mill effluent: Effect of immobilized cells on granular activated carbon in fluidized bed reactor. Food Bioprod Process 117:231–240. https://doi.org/10.1016/j.fbp.2019.07.012

    Article  CAS  Google Scholar 

  218. Patel SKS, Gupta RK, Das D, Lee J-K, Kalia VC (2021) Continuous biohydrogen production from poplar biomass hydrolysate by a defined bacterial mixture immobilized on lignocellulosic materials under non-sterile conditions. J Clean Prod. https://doi.org/10.1016/j.jclepro.2020.125037

    Article  Google Scholar 

  219. Ma Z, Li C, Su H (2017) Dark bio-hydrogen fermentation by an immobilized mixed culture of Bacillus cereus and Brevumdimonas naejangsanensis. Renew Energy 105:458–464. https://doi.org/10.1016/j.renene.2016.12.046

    Article  CAS  Google Scholar 

  220. Jamali NS, Jahim JM, Mumtaz T, Abdul PM (2021) Dark fermentation of palm oil mill effluent by Caldicellulosiruptor saccharolyticus immobilized on activated carbon for thermophilic biohydrogen production. Environ Technol Innov. https://doi.org/10.1016/j.eti.2021.101477

    Article  Google Scholar 

  221. Sivagurunathan P, Kumar G, Sen B, Lin C-Y (2014) Development of a novel hybrid immobilization material (HY-IM) for fermentative biohydrogen production from beverage wastewater. J Chin Chem Soc 61:827–830. https://doi.org/10.1002/jccs.201300636

    Article  CAS  Google Scholar 

  222. Yang Z, Guo R, Shi X, He S, Wang L, Dai M, Qiu Y, Dang X (2016) Bioaugmentation of Hydrogenispora ethanolica LX-B affects hydrogen production through altering indigenous bacterial community structure. Bioresour Technol 211:319–326. https://doi.org/10.1016/j.biortech.2016.03.097

    Article  CAS  PubMed  Google Scholar 

  223. Villanueva-Galindo E, Moreno-Andrade I (2021) Bioaugmentation on hydrogen production from food waste. Int J Hydrogen Energy 46:25985–25994. https://doi.org/10.1016/j.ijhydene.2020.11.092

    Article  CAS  Google Scholar 

  224. Zhang K, Cao G-L, Ren N-Q (2019) Bioaugmentation with Thermoanaerobacterium thermosaccharolyticum W16 to enhance thermophilic hydrogen production using corn stover hydrolysate. Int J Hydrogen Energy 44:5821–5829. https://doi.org/10.1016/j.ijhydene.2019.01.045

    Article  CAS  Google Scholar 

  225. Sheng T, Meng Q, Wen X, Sun C, Yang L, Li L (2021) Bioaugmentation with Ruminiclostridium thermocellum M3 to enhance thermophilic hydrogen production from agricultural solid waste. J Chem Technol Biotechnol 96:1623–1631. https://doi.org/10.1002/jctb.6682

    Article  CAS  Google Scholar 

  226. Cieciura-Włoch W, Borowski S, Otlewska A (2020) Biohydrogen production from fruit and vegetable waste, sugar beet pulp and corn silage via dark fermentation. Renew Energy 153:1226–1237. https://doi.org/10.1016/j.renene.2020.02.085

    Article  CAS  Google Scholar 

  227. Elsamadony M, Tawfik A (2018) Maximization of hydrogen fermentative process from delignified water hyacinth using sodium chlorite. Energy Convers Manag 157:257–265. https://doi.org/10.1016/j.enconman.2017.12.013

    Article  CAS  Google Scholar 

  228. Baik J-H, Jung J-H, Sim Y-B, Park J-H, Kim SM, Yang J, Kim S-H (2022) High-rate biohydrogen production from xylose using a dynamic membrane bioreactor. Bioresour Technol. https://doi.org/10.1016/j.biortech.2021.126205

    Article  PubMed  Google Scholar 

  229. Jia X, Wang Y, Ren L, Li M, Tang R, Jiang Y, Hou J (2019) Early warning indicators and microbial community dynamics during unstable stages of continuous hydrogen production from food wastes by thermophilic dark fermentation. Int J Hydrogen Energy 44:30000–30013. https://doi.org/10.1016/j.ijhydene.2019.08.082

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Ministry of Education (MoE), Govt of India for bestowing the first author with the post-graduation fellowship. The authors are extremely grateful to the facilities and support provided by the Department of Biotechnology, Dr. B R Ambedkar National Institute of Technology, Jalandhar, India and the Department of Agriculture, Food, Environment and Forestry, Florence University, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitai Basak.

Ethics declarations

Conflict of interest

The authors proclaim that there are no competing financial interests or personal relationship that influence the work in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayachandran, V., Basak, N., De Philippis, R. et al. Novel strategies towards efficient molecular biohydrogen production by dark fermentative mechanism: present progress and future perspective. Bioprocess Biosyst Eng 45, 1595–1624 (2022). https://doi.org/10.1007/s00449-022-02738-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-022-02738-4

Keywords

Navigation