Skip to main content

Advertisement

Log in

The Prospect of Purple Non-Sulfur (PNS) Photosynthetic Bacteria for Hydrogen Production: The Present State of the Art

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Hydrogen is the fuel for the future, mainly due to its recyclability and nonpolluting nature. Biological hydrogen production processes are operated at ambient temperature and atmospheric pressures, thus are less energy intensive and more environmentally friendly as compared to thermochemical and electrochemical processes. Biohydrogen processes can be broadly classified as: photofermentation and dark fermentation. Two enzymes namely, nitrogenase and hydrogenase play an important role in biohydrogen production. Photofermentation by Purple Non-Sulfur bacteria (PNS) is a major field of research through which the overall yield for biological hydrogen production can be improved significantly by optimization of growth conditions and immobilization of active cells. The purpose of this paper is to review various processes of biohydrogen production using PNS bacteria along with several current developments. However, suitable process parameters such as carbon and nitrogen ratio, illumination intensity, bioreactor configuration and inoculum age may lead to higher yields of hydrogen generation using PNS bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

B.C.-I:

Bacteriochlorophyll-I

Cyt:

Cytochrome

E eff :

Efficiency of light energy conversion (%)

Fd (ox):

Ferredoxin (oxidized form)

Fd (red):

Ferredoxin (reduced form)

ΔG o :

Gibb’s free energy (kJ mol−1)

k c :

Apparent specific growth rate (h−1)

LH-I:

Light harvesting I antenna complex

MSW:

Municipal solid wastes

PVA :

Polyvinyl alcohol

RC:

Reaction center

t :

Time (h)

x :

Cell dry mass conc (g l−1)

dx/dt :

Rate of change of cell dry mass conc (g l−1h−1)

x max :

Maximum cell dry mass conc (g l−1)

μ:

Specific growth rate (h−1)

μe :

Specific growth rate constant in exponential phase (h−1)

References

  • Adams MWW (1990) The structure and mechanism of [Fe]-hydrogenase. Bioch Biophys Acta 1020:115–145

    Article  CAS  Google Scholar 

  • Aiba S (1982) Growth kinetics of photosynthetic microorganisms. Adv Biochem Engi 23:85–156

    CAS  Google Scholar 

  • Akkerman I, Janssen M, Rocha J, Wijffels RH (2002) Photobiological hydrogen production: photochemical efficiency and bioreactor design. Int J Hydrogen Energy 27:1195–1208

    Article  CAS  Google Scholar 

  • Bagai R, Madamwar D (1999) Long-term photo-evolution of hydrogen in a packed bed reactor containing a combination of Phormidium valderianum, Halobacterium halobium and Escherichia coli immobilized in polyvinyl alcohol. Int J Hydrogen Energy 24:311–317

    Article  CAS  Google Scholar 

  • Benemann JR (1997) Feasibility analysis of photobiological hydrogen production. Int J Hydrogen Energy 22:979–987

    Article  CAS  Google Scholar 

  • Bockris JOM (1981) The economics of Hydrogen as a fuel. Int J Hydrogen Energy 6:223–241

    Article  Google Scholar 

  • Brock TD, Madigan MT, Martinko JM, Parker J (2003) Biology of microorganisms, 10th edn. Prentice Hall, New Jersey, ISBN 0-130-66271-2

  • Cammack R (1999) Hydrogenase sophistication. Nature 397:214–215

    Article  CAS  Google Scholar 

  • Chin HL, Chen ZS, Chou CP (2003) Fed batch operation using Clostridium acetobutylicum suspension culture as biocatalyst for enhancing hydrogen production. Biotechnol Progr 19:383–388

    Article  CAS  Google Scholar 

  • Claassen PAM, Vrije T de (2005) Integrated bioprocess for hydrogen production from Biomass: Hyvolution. In: Proceedings International Hydrogen Energy Congress and Exhibition IHEC 2005, Istanbul, Turkey, 13–15 July 2005

  • Das D, Veziroglu TN (2001) Hydrogen production by biological processes: a survey of literature. Int J Hydrogen Energy 26:13–28

    Article  CAS  Google Scholar 

  • Eroglu I, Aslan K, Gunduz U, Yucel M, Turker L (1998) Continuous hydrogen production by Rhodobacter sphaeroides O.U. 001. In: Zaborsky OR (ed) Biohydrogen held in London. Plenum press. pp 143–151. ISBN 0-306-46057-2

  • Eroglu I, Aslan K, Gunduz U, Yucel M, Turker L (1999) Substrate consumption rates for hydrogen production by Rhodobacter sphaeroides in a column photobioreactor. J␣Biotechnol 70:103–113

    Article  CAS  Google Scholar 

  • Fascetti E, Todini O (1995) Rhodobacter sphaeroides RV cultivation and hydrogen production in one and two-stage chemostat. Appl Microbiol Biotechnol 44:300–305

    Article  CAS  Google Scholar 

  • Fascetti E, D’addario E, Todini O, Robertiello A (1998) Photosynthetic hydrogen evolution with volatile organic acids derived from the fermentation of source selected municipal solid wastes. Int J Hydrogen Energy 23:753–760

    Article  CAS  Google Scholar 

  • Fibler J, Kohring GW, Giffhorn F (1995) Enhanced hydrogen production from aromatic acids by immobilized cells of Rhodopseudomonas palustris. Appl Microbiol Biotechnol 44:43–46

    Article  Google Scholar 

  • Gaffron H, Rubin J (1992) Fermentative and photochemical production of hydrogen by algae. J Gen Physiol 26:219–240

    Article  Google Scholar 

  • Ghasem N, Syahidah K, Ismail K, Younesi H, Mohamed AR, Kamaruddin AH (2004) Hydrogen as clean fuel via continuous fermentation by anaerobic photosynthetic bacteria, Rhodospirillum rubrum. Afr J Biotechnol 3:503–507

    Google Scholar 

  • Gordon JM (2002) Tailoring optical systems to optimized photobioreactors. Int J Hydrogen Energy 27:1175–1184

    Article  CAS  Google Scholar 

  • Hai T, Ahlers H, Gorenflo V, Steinbuchel A (2000) Axenic cultivation of anoxygenic phototrophic bacteria, cyanobacteria and microalgae in new closed tubular glass photobioreactor. Appl Microbiol Biotechnol 53:383–389

    Article  CAS  Google Scholar 

  • Hall DO, Markov SA, Watanable Y, Rao KK (1995) The potential applications of cyanobacterial photosynthesis for clean technologies. Photosynth Res 46:159–167

    Article  CAS  Google Scholar 

  • Hallenbeck PC, Benemann JR (2002) Biological hydrogen production; fundamentals and limiting processes. Int J Hydrogen Energy 27:1185–1193

    Article  CAS  Google Scholar 

  • Hillmer P, Gest H (1977) H2 metabolism in photosynthetic bacterium Rhodopseudomonas capsulatus: H2 production by growing cultures. J Bacteriol 129:724–731

    CAS  Google Scholar 

  • Jee HS, Ohashi T, Nishizawa Y, Nagai S (1987) Limiting factor of nitrogenase system mediating hydrogen production of Rhodobacter sphaeroides. Sci J Fermentation Technol 65:153–158

    Article  CAS  Google Scholar 

  • Koku H, Gunduz U, Yucel M, Turker L (2003) Kinetics of biological hydrogen production by the photosynthetic bacterium Rhodobacter sphaeroides O.U.001. Int J Hydrogen Energy 28:381–388

    Article  CAS  Google Scholar 

  • Lee CM, Chen PC, Wang CC, Tung YC (2002) Photohydrogen production using purple non-sulfur bacteria with hydrogen fermentation reactor effluent. Int J Hydrogen Energy 27:1308–1314

    Google Scholar 

  • Markov SA, Bazin MJ, Hall DO (1996) Efficiency of light energy conversion in hydrogen production by cyanobacterium Anabaena variabilis. J Marine Biotechnol 4:57–60

    CAS  Google Scholar 

  • Mitsui A, Ohta Y, Frank J, Kumazawa S, Hill C, Rosner D, Barciella S, Greenbaum J, Griard P (1980) Photosynthetic bacteria as alternative energy sources: overview on hydrogen production research. Alternative Energy Res 61:157–162

    Google Scholar 

  • Miyake J, Kawamura S (1987) Efficiency of light energy conversion to hydrogen by photosynthetic bacteria Rhodobacter sphaeroides. Int J Hydrogen Energy 12:147–149

    Article  CAS  Google Scholar 

  • Miyake J (1990) Application of photosynthetic systems for energy conversion. In: Veziroglu TN, Takashashi PK (eds) Hydrogen energy progress VIII. Proceedings 8th WHEC held in Hawaii. New York, Elsevier Science Pub Co., pp␣755–764. ISBN 0-080-40408-1

  • Nandi R, Sengupta S (1998) Microbial production of hydrogen: an overview. Crit Rev Microbiol 24:61–84

    Article  CAS  Google Scholar 

  • Nath K, Das D (2004) Improvement of fermentative hydrogen production: various approaches. Appl Microbiol Biotechnol 65:520–529

    Article  CAS  Google Scholar 

  • Nath K, Kumar A, Das D (2005) Hydrogen production by Rhodobacter sphaeroides strain O.U.001 using spent media of Enterobacter cloacae strain DM11. Appl Microbiol Biotechnol 66:533–541

    Article  CAS  Google Scholar 

  • Ooshima H, Takakuwa S, Katsuda T, Okuda M, Shirasawa T, Azuma M, Kato J (1998) Production of Hydrogen by a Hydrogenase deficient mutant of Rhodobacter capsulatus. J␣Fermentation Bioeng 85:470–475

    Article  CAS  Google Scholar 

  • Planchard A, Mignot L, Jouenne T, Junter GA (1989) Photoproduction of molecular hydrogen by Rhodospirillum rubrum immobilized in composite agar layer/microporous membrane structures. Appl Environ Microbiol 31:49–54

    CAS  Google Scholar 

  • Sasikala K, Ramana ChV, Subrahmanyam M (1991a) Photo-production of hydrogen from wastewater of a lactic acid fermentation plant by a purple non-sulfur photosynthetic bacterium Rhodobacter sphaeroides O.U. 001. Indian J Exp Biol 29:74–75

    CAS  Google Scholar 

  • Sasikala K, Ramana ChV, Rao PR (1991b) Environmental regulation for optimal biomass yields and photo production of hydrogen by Rhodobacter sphaeroides O.U.001. Int J Hydrogen Energy 16:597–601

    Article  CAS  Google Scholar 

  • Sasikala K, Ramana ChV, Rao PR, Kovacs KL (1993) Anoxygenic phototropic bacteria: physiology and advances in hydrogen technology. Adv Appl Microbiol 10:211–215

    Article  Google Scholar 

  • Sasikala K, Ramana ChV, Rao PR (1995) Regulation of simultaneous hydrogen photoproduction during growth by pH and glutamate in Rhodobacter sphaeroides O.U.001. Int J Hydrogen Energy 20:123–126

    Article  CAS  Google Scholar 

  • Scott DS (2004) Okay! But tell me about cost. Int J Hydrogen Energy 29:563–567

    Article  CAS  Google Scholar 

  • Singh A, Pandey KD, Dubey RS (1999) Enhanced hydrogen production by coupled system of Halobacterium halobium and chloroplast after entrapment within reverse micelles. Int J Hydrogen Energy 24:693–698

    Article  CAS  Google Scholar 

  • Singh SP, Srivastava SC, Pandey KD (1994) Hydrogen production by Rhodopseudomonas at the expense of vegetatable starch, sugar cane juice and whey. Int J Hydrogen Energy 19:437–440

    Article  CAS  Google Scholar 

  • Singleton P, Sainsbury D (2002) Dictionary of microbiology and molecular biology, 3rd edn. John Wiley & Sons Inc., New York, ISBN 0-471-49064-4

  • Tsygankov AA, Fedorov AS, Laurinavichene TV, Gogotov IN, Rao KK, Hall DO (1998) Actual and potential rates of hydrogen photoproduction by continuous culture of the Purple non-sulphur bacterium Rhodobacter capsulatus. Appl Microbiol Biotechnol 49:102–107

    Article  CAS  Google Scholar 

  • Uffen RL (1976) Anaerobic growth of a Rhodopseudomonas sp in the dark with CO2 as carbon source and energy substrate. Proce Nat Acad Sci USA 73:3298–3302

    Google Scholar 

  • Vincezini M, Materassi R, Tredici MR (1982) H2 production by immobilized cell: light dependent dissimilation of organic substance by Rhodopseudomonas palustris. Int J Hydrogen Energy 7:231–236

    Article  Google Scholar 

  • Vrati S, Verma J (1983) Production of molecular hydrogen and single cell protein by Pseudomonas capsulatus from cow dung. J Fermentation Technol 61:157–162

    CAS  Google Scholar 

  • Woodward J, Orr M, Corday K, Greenbaum E (2000) Enzymatic production of biohydrogen. Nature 405:1014–1015

    Article  CAS  Google Scholar 

  • Yamada A, Hatano T, Matsunaga T (1999) Conversion efficiencies of light energy to hydrogen by a novel Rhodovulum sp. and its uptake-hydrogenase mutant. In: Zaborsky OR (ed) Biohydrogen held in London. Plenum press, pp 167–171, ISBN 0-306-46057-2

  • Yigit DO, Gunduz U, Turker L, Yucel M, Eroglu I (1999) Identification of by-products in hydrogen producing bacteria: Rhodobacter sphaeroides O.U. 001 grown in the wastewater of a sugar refinery. J Biotechnol 70:125–131

    Article  CAS  Google Scholar 

  • Yokoi H, Mori S, Hirose J, Hayashi S, Takasaki Y (1998) H2 production from starch by a mixed culture of Clostridium butyricum and Rhodobacter sp. M-19. Biotechnol Lett 20:890–895

    Google Scholar 

  • You-Kwan Oh, Eun-Hee Seol, Mi-Sun Kim, Sunghoon Parka (2004) Photoproduction of hydrogen from acetate by a chemoheterotrophic bacterium Rhodopseudomonas palustris P4. Int J Hydrogen Energy 29:1115–1121

    Google Scholar 

  • Zhu H, Suzuki T, Tsygankov AA, Asada Y, Miyake J (1999) Hydrogen production from tofu wastewater by Rhodobacter sphaeroides immobilized in agar gels. Int J Hydrogen Energy 24:305–310

    Article  CAS  Google Scholar 

  • Zurrer H, Bachofen R (1979) Hydrogen production by the photosynthetic bacterium Rhodospirillum rubrum. Appl Environ Microbiol 37:789–793

    CAS  Google Scholar 

Download references

Acknowledgements

We would like to gratefully acknowledge especially the reviewers, who provided so many helpful and detailed comments on the manuscript. The study leave sanctioned to NB by the authority Dr. B. R. Ambedkar N.I.T. Jalandhar, India is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitai Basak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basak, N., Das, D. The Prospect of Purple Non-Sulfur (PNS) Photosynthetic Bacteria for Hydrogen Production: The Present State of the Art. World J Microbiol Biotechnol 23, 31–42 (2007). https://doi.org/10.1007/s11274-006-9190-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-006-9190-9

Keywords

Navigation