Skip to main content

Advertisement

Log in

Process optimization and mathematical modelling of photo-fermentative hydrogen production from dark fermentative cheese whey effluent by Rhodobacter sphaeroides O.U.001 in 2-L cylindrical bioreactor

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

In this study, organic acids present in dark fermentative cheese whey effluent (DFCWE) were utilized to produce biological hydrogen via photo fermentation by R. sphaeroides O.U.001 cells in 2-L double-walled cylindrical PBR with a working volume of 1.5 L. Plackett-Burman design-based analysis revealed organic acid concentration (OA), temperature, and light intensity as the most significant variables. Experiments were performed at different conditions of (OA, 8–16 g L−1), temperature (25–37 °C), and light intensity (8–12 klx). Optimum values were obtained by Box-Behnken design matrix (BBD) based on the impact on hydrogen production rate (HPR) and under optimum values (OA concentration, 12 g L−1; temperature, 31 °C; and light intensity, 10 klx); HPR of 41.94 mL L−1 h−1 was obtained, which lies in close proximity with the predicted production rate of 41.65 mL L−1 h−1 with the correlation coefficient (R2) and coefficient of variance as 0.9801 and 0.0521, respectively. PBR performance for treating DFCWE was checked by performing mathematical modelling using four models. Kinetic study of DFCWE consumption and growth profile of the bacterial cell were investigated by fitting experimental values into Monod and logistic equations, respectively. Parameters of the modified Gompertz equation and Luedeking-Piret models gave proper simulated fitting with experimental H2 production obtained under optimized bioprocess variables. Metabolite analysis revealed that acetic and lactic acids were utilized to produce biohydrogen under uncontrolled pH. Findings of the current investigation could be a promising strategy for obtaining better hydrogen productivity in photo fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Arregi A, Amutio M, Lopez G, Bilbao J, Olazar M (2018) Evaluation of thermochemical routes for hydrogen production from biomass: a review. Energy Convers Manag 165:696–719. https://doi.org/10.1016/j.enconman.2018.03.089

    Article  Google Scholar 

  2. Li Y, Zhang Z, Zhang Q, Tahir N, Jing Y, Xia C, Zhu S, Zhang X (2020) Enhancement of bio-hydrogen yield and pH stability in photo fermentation process using dark fermentation effluent as succedaneum. Bioresour Technol 297:122–504. https://doi.org/10.1016/j.biortech.2019.122504

    Article  Google Scholar 

  3. Basak N, Jana AK, Das D, Saikia D (2014) Photofermentative molecular biohydrogen production by purple-non-sulfur (PNS) bacteria in various modes: the present progress and future perspective. Int J Hydrog Energy 39:6853–6871. https://doi.org/10.1016/j.ijhydene.2014.02.093

    Article  Google Scholar 

  4. Zhang T, Jiang D, Zhang H, Jing Y, Tahir N, Zhang Y, Zhang Q (2020) Comparative study on bio-hydrogen production from corn stover: photo-fermentation, dark-fermentation and dark-photo co-fermentation. Int J Hydrog Energy 45:3807–3814. https://doi.org/10.1016/j.ijhydene.2019.04.170

    Article  Google Scholar 

  5. Phan PT, Nguyen B-S, Nguyen T-A, Kumar A, Nguyen V-H (2020) Lignocellulose-derived monosugars: a review of biomass pre-treating techniques and post-methods to produce sustainable biohydrogen. Biomass Convers Biorefin:1–15. https://doi.org/10.1007/s13399-020-01161-7

  6. Dębowski M, Korzeniewska E, Filipkowska Z, Zieliński M, Kwiatkowski R (2014) Possibility of hydrogen production during cheese whey fermentation process by different strains of psychrophilic bacteria. Int J Hydrog Energy 39:1972–1978. https://doi.org/10.1016/j.ijhydene.2013.11.082

    Article  Google Scholar 

  7. Ghimire A, Luongo V, Frunzo L, Pirozzi F, Lens PN, Esposito G (2017) Continuous biohydrogen production by thermophilic dark fermentation of cheese whey: use of buffalo manure as buffering agent. Int J Hydrog Energy 42:4861–4869. https://doi.org/10.1016/j.ijhydene.2016.11.185

    Article  Google Scholar 

  8. M’Arimi M, Kiprop A, Ramkat R, Kiriamiti H (2020) Progress in applications of advanced oxidation processes for promotion of biohydrogen production by fermentation processes. Biomass Convers Biorefin:1–25. https://doi.org/10.1007/s13399-020-01019-y

  9. Rao R, Basak N (2020) Optimization and modelling of dark fermentative hydrogen production from cheese whey by Enterobacter aerogenes 2822. Int J Hydrog Energy 46:1777–1800. https://doi.org/10.1016/j.ijhydene.2020.10.142

    Article  Google Scholar 

  10. Baeyens J, Zhang H, Nie J, Appels L, Dewil R, Ansart R, Deng Y (2020) Reviewing the potential of bio-hydrogen production by fermentation. Renew Sust Energ Rev 131:110023. https://doi.org/10.1016/j.rser.2020.110023

    Article  Google Scholar 

  11. Bundhoo ZM (2019) Potential of bio-hydrogen production from dark fermentation of crop residues: a review. Int J Hydrog Energy 44:17346–17362. https://doi.org/10.1016/j.ijhydene.2018.11.098

    Article  Google Scholar 

  12. Bao M, Su H, Tan T (2013) Dark fermentative bio-hydrogen production: effects of substrate pre-treatment and addition of metal ions or L-cysteine. Fuel 112:38–44. https://doi.org/10.1016/j.fuel.2013.04.063

    Article  Google Scholar 

  13. Rao R, Basak N (2020) Development of novel strategies for higher fermentative biohydrogen recovery along with novel metabolites from organic wastes: the present state of the art. Biotechnol Appl Biochem. https://doi.org/10.1002/bab.1964

  14. Osman AI, Deka TJ, Baruah DC, Rooney DW (2020) Critical challenges in biohydrogen production processes from the organic feedstocks. Biomass Convers Biorefin:1–19. https://doi.org/10.1007/s13399-020-00965-x

  15. Argun H, Kargi F (2011) Bio-hydrogen production by different operational modes of dark and photo-fermentation: an overview. Int J Hydrog Energy 36:7443–7459. https://doi.org/10.1016/j.ijhydene.2011.03.116

    Article  Google Scholar 

  16. Uyar B, Eroglu I, Yücel M, Gündüz U (2009) Photofermentative hydrogen production from volatile fatty acids present in dark fermentation effluents. Int J Hydrog Energy 34:4517–4523. https://doi.org/10.1016/j.ijhydene.2008.07.057

    Article  Google Scholar 

  17. Koku H, Eroğlu İ, Gündüz U, Yücel M, Türker L (2002) Aspects of the metabolism of hydrogen production by Rhodobacter sphaeroides. Int J Hydrog Energy 27:1315–1329. https://doi.org/10.1016/S0360-3199(02)00127-1

    Article  Google Scholar 

  18. Argun H, Kargi F (2010) Photo-fermentative hydrogen gas production from dark fermentation effluent of ground wheat solution: effects of light source and light intensity. Int J Hydrog Energy 35:1595–1603. https://doi.org/10.1016/j.ijhydene.2009.12.040

    Article  Google Scholar 

  19. Das SR, Basak N (2020) Molecular biohydrogen production by dark and photo fermentation from wastes containing starch: recent advancement and future perspective. Bioprocess Biosyst Eng 44:1–25. https://doi.org/10.1007/s00449-020-02422-5

    Article  Google Scholar 

  20. Basak N, Das D (2007) The prospect of purple non-sulfur (PNS) photosynthetic bacteria for hydrogen production: the present state of the art. World J Microbiol Biotechnol 23:31–42. https://doi.org/10.1007/s11274-006-9190-9

    Article  Google Scholar 

  21. Hitam C, Jalil A (2020) A review on biohydrogen production through photo-fermentation of lignocellulosic biomass. Biomass Convers Biorefin:1–19. https://doi.org/10.1007/s13399-020-01140-y

  22. Sybounya S, Nitisoravut R (2020) Hybrid composite of modified commercial activated carbon and Zn-Ni hydrotalcite for fermentative hydrogen production. J Environ Chem Eng:104801. https://doi.org/10.1016/j.jece.2020.104801

  23. Castillo-Moreno P, Serrato JC, Willison JC, Magnin J-P (2018) Photohydrogen production from lactose and lactate by recombinant strains of Rhodobacter capsulatus: modeling and optimization. Int J Hydrog Energy 43:21231–21245. https://doi.org/10.1016/j.ijhydene.2018.09.038

    Article  Google Scholar 

  24. Dolly S, Pandey A, Pandey BK, Gopal R (2015) Process parameter optimization and enhancement of photo-biohydrogen production by mixed culture of Rhodobacter sphaeroides NMBL-02 and Escherichia coli NMBL-04 using Fe-nanoparticle. Int J Hydrog Energy 40:16010–16020. https://doi.org/10.1016/j.ijhydene.2015.09.089

    Article  Google Scholar 

  25. Laocharoen S, Reungsang A (2014) Isolation, characterization and optimization of photo-hydrogen production conditions by newly isolated Rhodobacter sphaeroides KKU-PS5. Int J Hydrog Energy 39:10870–10882. https://doi.org/10.1016/j.ijhydene.2014.05.055

    Article  Google Scholar 

  26. Li Y, Zhang Z, Jing Y, Ge X, Wang Y, Lu C, Zhou X, Zhang Q (2017) Statistical optimization of simultaneous saccharification fermentative hydrogen production from Platanus orientalis leaves by photosynthetic bacteria HAU-M1. Int J Hydrog Energy 42:5804–5811. https://doi.org/10.1016/j.ijhydene.2016.11.182

    Article  Google Scholar 

  27. Liu H, Zhang Z, Zhang Q, Tahir N, Jing Y, Li Y, Lu C (2019) Optimization of photo fermentation in corn stalk through phosphate additive. Bioresour Technol Rep 7:100278. https://doi.org/10.1016/j.biteb.2019.100278

    Article  Google Scholar 

  28. Valentin JD, Qin X-H, Fessele C, Straub H, van der Mei HC, Buhmann MT, Maniura-Weber K, Ren Q (2019) Substrate viscosity plays an important role in bacterial adhesion under fluid flow. J Colloid Interface Sci 552:247–257. https://doi.org/10.1016/j.jcis.2019.05.043

    Article  Google Scholar 

  29. Asunis F, De Gioannis G, Isipato M, Muntoni A, Polettini A, Pomi R, Rossi A, Spiga D (2019) Control of fermentation duration and pH to orient biochemicals and biofuels production from cheese whey. Bioresour Technol 289:121722. https://doi.org/10.1016/j.biortech.2019.121722

    Article  Google Scholar 

  30. Chandrasekhar K, Lee Y-J, Lee D-W (2015) Biohydrogen production: strategies to improve process efficiency through microbial routes. Int J Mol Sci 16:8266–8293. https://doi.org/10.3390/ijms16048266

    Article  Google Scholar 

  31. Özgür E, Uyar B, Öztürk Y, Yücel M, Gündüz U, Eroğlu I (2010) Biohydrogen production by Rhodobacter capsulatus on acetate at fluctuating temperatures. Resour Conserv Recycl 54:310–314. https://doi.org/10.1016/j.resconrec.2009.06.002

    Article  Google Scholar 

  32. Lazaro CZ, Varesche MBA, Silva EL (2015) Effect of inoculum concentration, pH, light intensity and lighting regime on hydrogen production by phototrophic microbial consortium. Renew Energy 75:1–7. https://doi.org/10.1016/j.renene.2014.09.034

    Article  Google Scholar 

  33. Basak N, Jana AK, Das D (2014) Optimization of molecular hydrogen production by Rhodobacter sphaeroides OU 001 in the annular photobioreactor using response surface methodology. Int J Hydrog Energy 39:11889–11901. https://doi.org/10.1016/j.ijhydene.2014.05.108

    Article  Google Scholar 

  34. Androga DD, Sevinç P, Koku H, Yücel M, Gündüz U, Eroglu I (2014) Optimization of temperature and light intensity for improved photofermentative hydrogen production using Rhodobacter capsulatus DSM 1710. Int J Hydrog Energy 39:2472–2480. https://doi.org/10.1016/j.ijhydene.2013.11.114

    Article  Google Scholar 

  35. Al-Mohammedawi HH, Znad H, Eroglu E (2018) Synergistic effects and optimization of photo-fermentative hydrogen production of Rhodobacter sphaeroides DSM 158. Int J Hydrog Energy 43:15823–15834. https://doi.org/10.1016/j.ijhydene.2018.06.140

    Article  Google Scholar 

  36. Shi X-Y, Li W-W, Yu H-Q (2014) Optimization of H2 photo-fermentation from benzoate by Rhodopseudomonas palustris using a desirability function approach. Int J Hydrog Energy 39:4244–4251. https://doi.org/10.1016/j.ijhydene.2014.01.016

    Article  Google Scholar 

  37. Mishra P, Singh L, Ab Wahid Z, Krishnan S, Rana S, Islam MA, Sakinah M, Ameen F, Syed A (2018) Photohydrogen production from dark-fermented palm oil mill effluent (DPOME) and statistical optimization: renewable substrate for hydrogen. J Clean Prod 199:11–17. https://doi.org/10.1016/j.jclepro.2018.07.028

    Article  Google Scholar 

  38. Wang R, Wen H, Cui C (2019) Bio-hydrogen production by a new isolated strain Rhodopseudomonas sp. WR-17 using main metabolites of three typical dark fermentation type. Int J Hydrog Energy 44:25145–25150. https://doi.org/10.1016/j.ijhydene.2019.04.143

    Article  Google Scholar 

  39. Lin R, Cheng J, Yang Z, Ding L, Zhang J, Zhou J, Cen K (2016) Enhanced energy recovery from cassava ethanol wastewater through sequential dark hydrogen, photo hydrogen and methane fermentation combined with ammonium removal. Bioresour Technol 214:686–691. https://doi.org/10.1016/j.biortech.2016.05.037

    Article  Google Scholar 

  40. Nasr M, Tawfik A, Ookawara S, Suzuki M, Kumari S, Bux F (2015) Continuous biohydrogen production from starch wastewater via sequential dark-photo fermentation with emphasize on maghemite nanoparticles. J Ind Eng Chem 21:500–506. https://doi.org/10.1016/j.jiec.2014.03.011

    Article  Google Scholar 

  41. Moreno R, Escapa A, Cara J, Carracedo B, Gómez X (2015) A two-stage process for hydrogen production from cheese whey: integration of dark fermentation and biocatalyzed electrolysis. Int J Hydrog Energy 40:168–175. https://doi.org/10.1016/j.ijhydene.2014.10.120

    Article  Google Scholar 

  42. Rai PK, Singh S, Asthana R (2012) Biohydrogen production from cheese whey wastewater in a two-step anaerobic process. Appl Biochem Biotechnol 167:1540–1549. https://doi.org/10.1007/s12010-011-9488-4

    Article  Google Scholar 

  43. Alvarez-Guzmán CL, Cisneros-de la Cueva S, Balderas-Hernández VE, Smoliński A, De León-Rodríguez A (2020) Biohydrogen production from cheese whey powder by Enterobacter asburiae: effect of operating conditions on hydrogen yield and chemometric study of the fermentative metabolites. Energy Rep 6:1170–1180. https://doi.org/10.1016/j.egyr.2020.04.038

    Article  Google Scholar 

  44. Seifert K, Waligorska M, Laniecki M (2010) Hydrogen generation in photobiological process from dairy wastewater. Int J Hydrog Energy 35:9624–9629

    Article  Google Scholar 

  45. Rai PK, Asthana R, Singh S (2014) Optimization of photo-hydrogen production based on cheese whey spent medium. Int J Hydrog Energy 39:7597–7603. https://doi.org/10.1016/j.ijhydene.2013.09.011

    Article  Google Scholar 

  46. Fang F, Mu Y, Sheng G-P, Yu H-Q, Li Y-Y, Kubota K, Harada H (2013) Kinetic analysis on gaseous and aqueous product formation by mixed anaerobic hydrogen-producing cultures. Int J Hydrog Energy 38:15590–15597. https://doi.org/10.1016/j.ijhydene.2013.03.157

    Article  Google Scholar 

  47. Nath K, Das D (2011) Modeling and optimization of fermentative hydrogen production. Bioresour Technol 102:8569–8581. https://doi.org/10.1016/j.biortech.2011.03.108

    Article  Google Scholar 

  48. Rasdi Z, Mumtaz T, Hassan MA (2012) Kinetic analysis of biohydrogen production from anaerobically treated POME in bioreactor under optimized condition. Int J Hydrog Energy 37:17724–17730. https://doi.org/10.1016/j.ijhydene.2012.08.095

    Article  Google Scholar 

  49. Blanco V, Oliveira G, Zaiat M (2019) Dark fermentative biohydrogen production from synthetic cheese whey in an anaerobic structured-bed reactor: performance evaluation and kinetic modeling. Renew Energy 139:1310–1319. https://doi.org/10.1016/j.renene.2019.03.029

    Article  Google Scholar 

  50. Sharma Y, Li B (2009) Optimizing hydrogen production from organic wastewater treatment in batch reactors through experimental and kinetic analysis. Int J Hydrog Energy 34:6171–6180. https://doi.org/10.1016/j.ijhydene.2009.06.031

    Article  Google Scholar 

  51. Koku H, Eroǧlu İ, Gündüz U, Yücel M, Türker L (2003) Kinetics of biological hydrogen production by the photosynthetic bacterium Rhodobacter sphaeroides OU 001. Int J Hydrog Energy 28:381–388. https://doi.org/10.1016/S0360-3199(02)00080-0

    Article  Google Scholar 

  52. Biebl H, Pfennig N (1981) Isolation of members of the family Rhodospirillaceae. The prokaryotes Springer, Isolation of Members of the Family Rhodospirillaceae

  53. Basak N, Jana AK, Das D (2016) CFD modeling of hydrodynamics and optimization of photofermentative hydrogen production by Rhodopseudomonas palustris DSM 123 in annular photobioreactor. Int J Hydrog Energy 41:7301–7317. https://doi.org/10.1016/j.ijhydene.2016.02.126

    Article  Google Scholar 

  54. Nath K, Muthukumar M, Kumar A, Das D (2008) Kinetics of two-stage fermentation process for the production of hydrogen. Int J Hydrog Energy 33:1195–1203. https://doi.org/10.1016/j.ijhydene.2007.12.011

    Article  Google Scholar 

  55. Don MM, Shoparwe NF (2010) Kinetics of hyaluronic acid production by Streptococcus zooepidemicus considering the effect of glucose. Biochem Eng J 49:95–103. https://doi.org/10.1016/j.bej.2009.12.001

    Article  Google Scholar 

  56. Luedeking R, Piret EL (1959) A kinetic study of the lactic acid fermentation. Batch process at controlled pH. J Biochem Microbiol Technol Eng 1:393–412. https://doi.org/10.1002/jbmte.390010406

    Article  Google Scholar 

  57. Sangyoka S, Reungsang A, Lin C-Y (2016) Optimization of biohydrogen production from sugarcane bagasse by mixed cultures using a statistical method. Sustain Environ Res 26:235–242. https://doi.org/10.1016/j.serj.2016.05.001

    Article  Google Scholar 

  58. Saraphirom P, Reungsang A (2010) Optimization of biohydrogen production from sweet sorghum syrup using statistical methods. Int J Hydrog Energy 35:13435–13444. https://doi.org/10.1016/j.ijhydene.2009.11.122

    Article  Google Scholar 

  59. Lu C, Zhang Z, Zhou X, Hu J, Ge X, Xia C, Zhao J, Wang Y, Jing Y, Li Y (2018) Effect of substrate concentration on hydrogen production by photo-fermentation in the pilot-scale baffled bioreactor. Bioresour Technol 247:1173–1176. https://doi.org/10.1016/j.biortech.2017.07.122

    Article  Google Scholar 

  60. Ghosh D, Sobro IF, Hallenbeck PC (2012) Optimization of the hydrogen yield from single-stage photofermentation of glucose by Rhodobacter capsulatus JP91 using response surface methodology. Bioresour Technol 123:199–206. https://doi.org/10.1016/j.biortech.2012.07.061

    Article  Google Scholar 

  61. Hitit ZY, Lazaro CZ, Hallenbeck PC (2017) Hydrogen production by co-cultures of Clostridium butyricum and Rhodospeudomonas palustris: optimization of yield using response surface methodology. Int J Hydrog Energy 42:6578–6589. https://doi.org/10.1016/j.ijhydene.2016.12.122

    Article  Google Scholar 

  62. Sun Q, Xiao W, Xi D, Shi J, Yan X, Zhou Z (2010) Statistical optimization of biohydrogen production from sucrose by a co-culture of Clostridium acidisoli and Rhodobacter sphaeroides. Int J Hydrog Energy 35:4076–4084. https://doi.org/10.1016/j.ijhydene.2010.01.145

    Article  Google Scholar 

  63. Hassan N, Jalil A, Vo D, Nabgan W (2020) An overview on the efficiency of biohydrogen production from cellulose. Biomass Convers Biorefin:1–23. https://doi.org/10.1007/s13399-020-01125-x

  64. Chen C-Y, Lu W-B, Wu J-F, Chang J-S (2007) Enhancing phototrophic hydrogen production of Rhodopseudomonas palustris via statistical experimental design. Int J Hydrog Energy 32:940–949. https://doi.org/10.1016/j.ijhydene.2006.09.021

    Article  Google Scholar 

  65. Dasgupta CN, Gilbert JJ, Lindblad P, Heidorn T, Borgvang SA, Skjanes K, Das D (2010) Recent trends on the development of photobiological processes and photobioreactors for the improvement of hydrogen production. Int J Hydrog Energy 35:10218–10238. https://doi.org/10.1016/j.ijhydene.2010.06.029

    Article  Google Scholar 

  66. Tiang MF, Hanipa MAF, Abdul PM, Jahim JM, Mahmod SS, Takriff MS, Lay C-H, Reungsang A, Wu S-Y (2020) Recent advanced biotechnological strategies to enhance photo-fermentative biohydrogen production by purple non-sulphur bacteria: an overview. Int J Hydrog Energy:13211–13230. https://doi.org/10.1016/j.ijhydene.2020.03.033

  67. Garimella S, Vimal A, Merugu R, Kumar A (2019) Optimization for enhanced hydrogen production from Rhodobacter sphaeroides using response surface methodology. SN Appl Sci 1:156

    Article  Google Scholar 

  68. Mishra P, Ab Wahid Z, Zaid RM, Rana S, Tabassum S, Karim A, Singh L, Islam MA, Jaing X, Sakinah M (2020) Kinetics and statistical optimization study of bio-hydrogen production using the immobilized photo-bacterium. Biomass Convers Biorefin:1–12. https://doi.org/10.1007/s13399-020-00835-6

  69. Özgen C (2011) Microarray analysis of the effects of heat and cold stress on hydrogen production metabolism of Rhodobacter capsulatus. Citeseer

  70. Phadtare S (2004) Recent developments in bacterial cold-shock response. Curr Issues Mol Biol 6:125–136

    Google Scholar 

  71. Chen W-H, Chen S-Y, Khanal SK, Sung S (2006) Kinetic study of biological hydrogen production by anaerobic fermentation. Int J Hydrog Energy 31:2170–2178. https://doi.org/10.1016/j.ijhydene.2006.02.020

    Article  Google Scholar 

  72. Chen C-Y, Yeh K-L, Lo Y-C, Wang H-M, Chang J-S (2010) Engineering strategies for the enhanced photo-H2 production using effluents of dark fermentation processes as substrate. Int J Hydrog Energy 35:13356–13364. https://doi.org/10.1016/j.ijhydene.2009.11.070

    Article  Google Scholar 

  73. Han H, Liu B, Yang H, Shen J (2012) Effect of carbon sources on the photobiological production of hydrogen using Rhodobacter sphaeroides RV. Int J Hydrog Energy 37:12167–12174. https://doi.org/10.1016/j.ijhydene.2012.03.134

    Article  Google Scholar 

  74. Mullai P, Rene ER (2013) Sridevi K (2013) Biohydrogen production and kinetic modeling using sediment microorganisms of pichavaram mangroves, India. Biomed Res Int 2013:1–9. https://doi.org/10.1155/2013/265618

    Article  Google Scholar 

  75. Gadhe A, Sonawane SS, Varma MN (2014) Kinetic analysis of biohydrogen production from complex dairy wastewater under optimized condition. Int J Hydrog Energy 39:1306–1314

    Article  Google Scholar 

  76. Hu B, Li Y, Zhu S, Zhang H, Jing Y, Jiang D, He C, Zhang Z (2020) Evaluation of biohydrogen yield potential and electron balance in the photo-fermentation process with different initial pH from starch agricultural leftover. Bioresour Technol:122900. https://doi.org/10.1016/j.biortech.2020.122900

  77. Shi XY, Yu HQ (2005) Optimization of glutamate concentration and pH for H2 production from volatile fatty acids by Rhodopseudomonas capsulata. Lett Appl Microbiol 40:401–406. https://doi.org/10.1111/j.1472-765X.2005.01700.x

    Article  Google Scholar 

  78. Uyar B, Eroglu I, Yücel M, Gündüz U, Türker L (2007) Effect of light intensity, wavelength and illumination protocol on hydrogen production in photobioreactors. Int J Hydrog Energy 32:4670–4677. https://doi.org/10.1016/j.ijhydene.2007.07.002

    Article  Google Scholar 

  79. Basak N, Das D (2009) Photofermentative hydrogen production using purple non-sulfur bacteria Rhodobacter sphaeroides OU 001 in an annular photobioreactor: a case study. Biomass Bioenergy 33:911–919. https://doi.org/10.1016/j.biombioe.2009.02.007

    Article  Google Scholar 

  80. Adessi A, McKinlay JB, Harwood CS, De Philippis R (2012) A Rhodopseudomonas palustris nifA* mutant produces H2 from NH4+-containing vegetable wastes. Int J Hydrog Energy 37:15893–15900

    Article  Google Scholar 

  81. Zagrodnik R, Thiel M, Seifert K, Włodarczak M, Łaniecki M (2013) Application of immobilized Rhodobacter sphaeroides bacteria in hydrogen generation process under semi-continuous conditions. Int J Hydrog Energy 38:7632–7639. https://doi.org/10.1016/j.ijhydene.2010.07.015

    Article  Google Scholar 

  82. Cardena R, Moreno G, Valdez-Vazquez I, Buitrón G (2015) Optimization of volatile fatty acids concentration for photofermentative hydrogen production by a consortium. Int J Hydrog Energy 40:17212–17223. https://doi.org/10.1016/j.ijhydene.2015.10.020

    Article  Google Scholar 

  83. Corneli E, Adessi A, Dragoni F, Ragaglini G, Bonari E, De Philippis R (2016) Agroindustrial residues and energy crops for the production of hydrogen and poly-β-hydroxybutyrate via photofermentation. Bioresour Technol 216:941–947. https://doi.org/10.1016/j.biortech.2016.06.046

    Article  Google Scholar 

  84. Silva FTM, Moreira LR, de Souza FJ, Batista FRX, Cardoso VL (2016) Replacement of sugars to hydrogen production by Rhodobacter capsulatus using dark fermentation effluent as substrate. Bioresour Technol 200:72–80. https://doi.org/10.1016/j.biortech.2015.10.002

    Article  Google Scholar 

  85. Krujatz F, Härtel P, Helbig K, Haufe N, Thierfelder S, Bley T, Weber J (2015) Hydrogen production by Rhodobacter sphaeroides DSM 158 under intense irradiation. Bioresour Technol 175:82–90. https://doi.org/10.1016/j.biortech.2014.10.061

    Article  Google Scholar 

  86. Li X, Dai Z-Z, Wang Y-H, Zhang S-L (2011) Enhancement of phototrophic hydrogen production by Rhodobacter sphaeroides ZX-5 using fed-batch operation based on ORP level. Int J Hydrog Energy 36:12794–12802. https://doi.org/10.1016/j.ijhydene.2011.07.070

    Article  Google Scholar 

Download references

Acknowledgements

The first author, Raman Rao, wishes to thank the Ministry of Human Resource & Development, under the aegis of the Government of India for providing the fellowship. The authors are indebted to the Dr. B R Ambedkar National Institute of Technology Jalandhar (India) for providing continuous support and facilities to carry out the present research.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

RR: visualization, investigation, data curation, software, formal analysis, writing original draft. NB: conceptualization, project administration, methodology, supervision, investigation, and writing—review and editing.

Corresponding author

Correspondence to Nitai Basak.

Ethics declarations

Research involving human participants and/or animals

No

Conflict of interest

The authors declare no potential conflicts of interest concerning the research, authorship, and/or publication of this article.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Batch hydrogen production from dark fermentative cheese whey effluent in 2-L double-walled cylindrical photobioreactor;

• Total organic acid concentration, temperature, and light intensity affect hydrogen production rate;

• Fermentation experiment was designed using Box-Behnken design of RSM;

• Optimal hydrogen production rate was 41.65 mL L-1 h-1 at total organic acid concentration of 12 g L-1, temperature 31 °C, and light intensity 10 klx;

• Modelling of photo fermentation by unstructured models at statistically optimized variables gave satisfactory fitting with experimental data;

• Statistical and mathematical modelling of biohydrogen production may provide useful insights for waste to hydrogen endeavors.

Supplementary Information

ESM 1

(DOCX 28 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, R., Basak, N. Process optimization and mathematical modelling of photo-fermentative hydrogen production from dark fermentative cheese whey effluent by Rhodobacter sphaeroides O.U.001 in 2-L cylindrical bioreactor. Biomass Conv. Bioref. 13, 3929–3952 (2023). https://doi.org/10.1007/s13399-021-01377-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-01377-1

Keywords

Navigation