Skip to main content
Log in

Modelling and simulation methods applied to coupled problems in porous-media mechanics

  • Review Article
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Continuum mechanics usually considers the theoretical and computational description of standard single-phasic materials in the framework of either solid mechanics, fluid mechanics or gas dynamics. However, growing complexity in material modelling combined with the request of users leads to a growing interest in porous-media mechanics, where porous solid materials with fluid or gaseous pore content are investigated on a macroscopic scale. In this regard, the present article reviews the theoretical and numerical framework for the description of geomechanical and biomechanical problems including elastic, elasto-plastic and visco-elastic solid behaviour partly combined with electro-active properties. For this purpose, the Theory of Porous Media is applied for an elegant consideration of the coupling phenomena of porous solids with pore fluids, no matter if the fluids have to be treated as inert fluids or as fluid mixtures. In the sense of a review article, different computational examples are presented to illuminate the possibilities and challenges of porous-media mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Adapted from [5]

Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Bowen, R.M.: Theory of mixtures. In: Eringen, A.C. (ed.) Continuum Physics, vol. 3, pp. 1–127. Academic Press, New York (1976)

    Google Scholar 

  2. Bowen, R.M.: Incompressible porous media models by use of the theory of mixtures. Int. J. Eng. Sci. 18, 1129–1148 (1980)

    Article  MATH  Google Scholar 

  3. Bowen, R.M.: Compressible porous media models by use of the theory of mixtures. Int. J. Eng. Sci. 20, 697–735 (1982)

    Article  MATH  Google Scholar 

  4. de Boer, R.: Trends in Continuum Mechanics of Porous Media, vol. 18. Theory and Applications of Transport in Porous Media. Springer, Dodrecht (2005)

    Book  MATH  Google Scholar 

  5. Ehlers, W.: Foundations of multiphasic and porous materials. In: Ehlers, W., Bluhm, J. (eds.) Porous Media: Theory, Experiments and Numerical Applications, pp. 3–86. Springer, Berlin (2002)

    Chapter  Google Scholar 

  6. Ehlers, W.: Challenges of porous media models in geo- and biomechanical engineering including electro-chemically active polymers and gels. Int. J. Adv. Eng. Sci. Appl. Math. 1, 1–24 (2009)

    Article  Google Scholar 

  7. Truesdell, C.: Rational Thermodynamics, 2nd edn. Springer, New York (1984)

    Book  MATH  Google Scholar 

  8. Coleman, B.D., Noll, W.: The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Ration. Mech. Anal. 13, 167–178 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ehlers, W.: On thermodynamics of elasto-plastic porous media. Arch. Mech. 41, 73–93 (1989)

    MathSciNet  MATH  Google Scholar 

  10. Ehlers, W., Ellsiepen, P.: PANDAS: Ein FE-System zur Simulation von Sonderproblemen der Bodenmechanik. In: Wriggers, P., Meißner, U., Stein, E., Wunderlich, W. (eds.) Finite Elemente in der Baupraxis-FEM’98, pp. 391–400. Ernst & Sohn, Berlin (1998)

    Google Scholar 

  11. Ehlers, W., Ellsiepen, P., Ammann, M.: Time-and space-adaptive methods applied to localization phenomena in empty and saturated micropolar and standard porous materials. Int. J. Numer. Methods Eng. 52, 503–526 (2001)

    Article  MATH  Google Scholar 

  12. Ehlers, W., Acartürk, A., Karajan, N.: Advances in modelling saturated soft biological tissues and chemically active gels. Arch. Appl. Mech. 80, 467–478 (2010)

    Article  MATH  Google Scholar 

  13. Ehlers, W., Karajan, N., Markert, B.: An extended biphasic model for charged hydrated tissues with application to the intervertebral disc. Biomech. Model. Mechanobiol. 8, 233–251 (2009)

    Article  Google Scholar 

  14. Ehlers, W., Avci, O.: Stress-dependent hardening and failure surfaces of dry sand. Int. J. Numer. Anal. Methods Geomech. 37(8), 787–809 (2013)

    Article  Google Scholar 

  15. Ehlers, W., Häberle, K.: Interfacial mass transfer during gas-liquid phase change in deformable porous media with heat transfer. Transp. Porous Med. 114, 525–556 (2016)

    Article  MathSciNet  Google Scholar 

  16. Schenke, M., Ehlers, W.: Parallel solution of volume-coupled multi-field problems using an Abaqus-PANDAS software interface. Proc. Appl. Math. Mech. 15, 419–420 (2015)

    Article  Google Scholar 

  17. Hashin, Z.: Analysis of composite materials-a survey. ASME J. Appl. Mech. 50, 481–505 (1983)

    Article  MATH  Google Scholar 

  18. Ehlers, W.: Effective stresses in multiphasic porous media: a thermodynamic investigation of a fully non-linear model with compressible and incompressible constituents. Geomech. Energy Environ. 15, 35–46 (2018)

    Article  Google Scholar 

  19. Taylor, C., Hood, P.: A numerical solution of the Navier-Stokes equations using the finite element technique. Comput. Fluids 1, 73–100 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  20. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, New York (1991)

    Book  MATH  Google Scholar 

  21. Brooks, R.H., Corey, A.T.: Hydraulic Properties of Porous Media, Hydrology Papers, vol. 3. Colorado State University, Fort Collins (1964)

    Google Scholar 

  22. Wieners, C., Graf, T., Ammann, M., Ehlers, W.: Parallel Krylov methods and the application to 3-d simulations of a triphasic porous media model in soil mechanics. Computat. Mech. 36, 409–420 (2005)

    Article  MATH  Google Scholar 

  23. Dalton, J.: On the expansion of elastic fluids by heat. Essay IV of Mem. Lit. Philos. Soc. Manch. 5, 595–602 (1802)

  24. de Borst, R.: Simulation of strain localization: a reappraisal of the Cosserat continuum. Eng. Comput. 8, 317–332 (1991)

    Article  Google Scholar 

  25. Steinmann, P.: A micropolar theory of finite deformation and finite rotation multiplicative elasto-plasticity. Int. J. Solids Strucut. 31, 1063–1084 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ehlers, W., Volk, W.: On theoretical and numerical methods in the theory of porous media based on polar and non-polar elastoplastic solid materials. Int. J. Solids Struct. 35, 4597–4617 (1998)

    Article  MATH  Google Scholar 

  27. Needleman, A.: Material rate dependence and mesh sensitivity in localization problems. Comput. Methods Appl. Mech. Eng. 67, 69–85 (1988)

    Article  MATH  Google Scholar 

  28. Mühlhaus, H.-B., Aifantis, E.C.: A variational principle for gradient plasticity. Int. J. Solids Struct. 28, 845–857 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  29. de Borst, R., Sluys, L.J., Mühlhaus, H.-B., Pamin, J.: Fundamental issues in finite element analysis of localization of deformation. Eng. Comput. 10, 99–121 (1993)

    Article  Google Scholar 

  30. Ehlers, W., Graf, T., Ammann, M.: Deformation and localization analysis in partially saturated soil. Comput. Methods Appl. Mech. Eng. 193, 2885–2910 (2004)

    Article  MATH  Google Scholar 

  31. Griffith, A.A.: The phenomena of rupture and flow in solids. Phil. Trans. R. Soc. Lond. A 221, 163–198 (1921)

    Article  Google Scholar 

  32. Irwin, G.R.: Analysis of stresses and strains near the end of a crack traversing a plate. J. Appl. Mech. 24, 361–364 (1957)

    Google Scholar 

  33. Barenblatt, G.I.: The mathematical theory of equilibrium cracks in brittle fracture. Adv. Appl. Mech. 7, 55–129 (1962)

    Article  MathSciNet  Google Scholar 

  34. Miehe, C., Welschinger, F., Hofacker, M.: Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations. Int. J. Numer. Methods Eng. 83, 1273–1311 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Belytschko, T., Black, T.: Elastic crack growth in finite elements with minimal remeshing. Int. J. Numer. Methods Eng. 45, 601–620 (1999)

    Article  MATH  Google Scholar 

  36. Moës, N., Belytschko, T.: Extended finite element method for cohesive crack growth. Eng. Fract. Mech. 69, 813–833 (2002)

    Article  Google Scholar 

  37. Miehe, C., Hofacker, M., Welschinger, F.: A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Comput. Methods Appl. Mech. Eng. 199, 2765–2778 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Ehlers, W., Luo, C.: A phase-field approach embedded in the Theory of Porous Media for the description of dynamic hydraulic fracturing. Comput. Methods Appl. Mech. Eng. 315, 348–368 (2017)

    Article  MathSciNet  Google Scholar 

  39. Ehlers, W., Luo, C.: A phase-field approach embedded in the theory of porous media for the description of dynamic hydraulic fracturing, Part II: the crack-opening indicator. Comput. Methods Appl. Mech. Eng. 341, 429–442 (2018)

    Article  MathSciNet  Google Scholar 

  40. Acartürk, A.: Simulation of charged hydrated porous media, Dissertation, Report No. II-18 of the Institute of Applied Mechanics (CE), University of Stuttgart (2009)

  41. Ehlers, W., Eipper, G.: Finite elastic deformations in liquid-saturated and empty porous solids. Transp. Porous Med. 34, 179–191 (1999)

    Article  MathSciNet  Google Scholar 

  42. Karajan, N.: An extended biphasic description of the inhomogeneous and anisotropic intervertebral disc. Dissertation Thesis, Report No. II-19 of the Institute of Applied Mechanics (CE), University of Stuttgart (2009)

  43. Ehlers, W., Wagner, A.: Constitutive and computational aspects in tumor therapies of multiphasic brain tissue. In: Holzapfel, G.A., Kuhl, E. (eds.) Computer Models in Biomechanics: from Nano to Macro, pp. 263–276. Springer, Dordrecht (2013)

    Chapter  Google Scholar 

  44. Ehlers, W., Wagner, A.: Multi-component modelling of human brain tissue: a contribution to the constitutive and computational description of deformation, flow and diffusion processes with application to the invasive drug-delivery problem. Comput. Methods Biomech. Biomed. Eng. 18, 861–879 (2015)

    Article  Google Scholar 

  45. Markert, B., Ehlers, W., Karajan, N.: A general polyconvex strain-energy function for fiber-reinforced materials. Proc. Appl. Math. Mech. 5, 245–246 (2005)

    Article  MATH  Google Scholar 

  46. Bobo, R.H., Laske, D.W., Akbasak, A., Morrison, P.F., Dedrick, R.L., Oldfield, E.H.: Convection-enhanced delivery of macromolecules in the brain. Proc. Natl Acad. Sci. USA (PNAS) 91, 2076–2080 (1994)

    Article  Google Scholar 

  47. Fink, D., Wagner, A., Ehlers, W.: Application-driven model reduction for the simulation of therapeutic infusion processes in multi-component brain tissue. J. Comput. Sci. 24, 101–115 (2018)

    Article  Google Scholar 

Further Reading

  1. Biot, M.A.: Le problème de la consolidation de matières argileuses sous une charge. Annales de la Société scientifique de Bruxelles B55, 110–113 (1935)

    Google Scholar 

  2. Biot, M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12, 155–164 (1941)

    Article  MATH  Google Scholar 

  3. Biot, M.A.: Theory of propagation of elastic waves in a fluid-saturated porous solid, I. Low frequency range. J. Acoust. Soc. Am. 28, 168–178 (1956)

  4. Biot, M.A.: Theory of propagation of elastic waves in a fluid-saturated porous solid, II. Higher frequency range. J. Acoust. Soc. Am. 28, 179–191 (1956)

  5. Biot, M.A.: Variational Lagrangian-thermodynamics of nonisothermal finite strain mechanics of porous solids and thermomolecular diffusion. Int. J. Solids Struct. 13, 579–597 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  6. Biot, M.A.: Variational irreversible thermodynamics of heat and mass transfer in porous solids: new concept and methods. Q. Appl. Math. 36, 1–38 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  7. de Boer, R.: Theory of Porous Media. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  8. Borja, R.I., Regueiro, R.A.: Dynamics of porous media at finite strain. Comput. Methods Appl. Mech. Eng. 193, 3837–3870 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ehlers, W.: Porous media in the light of history. In: Stein, E. (ed.) The History of Theoretical, Material and Computational Mechanics–Mathematics Meets Mechanics and Engineering. Lecture Notes in Applied Mathematics and Mechanics (LAMM) vol. 1, pp. 211–227. Springer, Heidelberg (2014)

  10. Lewis, R.W., Schrefler, B.A.: The Finite Element Method in the Deformation and Consolidation of Porous Media. Wiley, Chichester (1987)

    MATH  Google Scholar 

  11. Bishop, A.W.: The effective stress principle. Teknisk Ukeblad 39, 859–863 (1959)

    Google Scholar 

  12. Skempton, A.W.: Significance of Terzaghi’s concept of effective stress (Terzaghi’s discovery of effective stress). In: Bjerrum, L., Casagrande, A., Peck, R.B., Skempton, A.W. (eds.) From Theory to Practice in Soil Mechanics, pp. 42–53. Wiley, New York (1960)

    Google Scholar 

  13. de Boer, R., Ehlers, W.: The development of the concept of effective stresses. Acta Mech. 83, 77–92 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lade, P., de Boer, R.: The concept of effective stress for soil, concrete and rock. Géotechnique 47, 61–78 (1997)

    Article  Google Scholar 

  15. Borja, R.I.: On the mechanical energy and effective stress in saturated and unsaturated porous continua. Int. J. Solids Struct. 43, 1764–1786 (2006)

    Article  MATH  Google Scholar 

  16. Jiang, Y., Einav, I., Liu, M.: A thermodynamic treatment of partially saturated soils revealing the structure of effective stress. J. Mech. Phys. Solids 100, 131–146 (2017)

    Article  MathSciNet  Google Scholar 

  17. Ehlers, W., Ammann, M., Diebels, S.: h-adaptive FE methods applied to single- and multiphase problems. Int. J. Numer. Methods Eng. 54, 219–239 (2002)

    Article  MATH  Google Scholar 

  18. Ehlers, W., Ellsiepen, P.: Theoretical and numerical methods in environmental continuum mechanics based on the theory of porous media. In: Schrefler, B.A. (ed.) Environmental Geomechanics, CISM Courses and Lectures No. 417, pp. 1–81. Springer, Wien (2001)

  19. Boone, T.J., Ingraffea, A.R.: A numerical procedure for simulation of hydraulically driven fracture propagation in poroelastic media. Numer. Anal. Methods Geomech. 14, 27–47 (1990)

    Article  Google Scholar 

  20. Boone, T.J., Detournay, E.: Response of a vertical hydraulic fracture intersecting a poroelastic formation bounded by semi-infinite impermeable elastic layers. Int. J. Rock Mech. Min. Sci. Geomech. 27, 189–197 (1990)

  21. Detournay, E.: Propagation regimes of fluid-driven fractures in impermeable rocks. Int. J. Geomech. 4, 35–45 (2004)

    Article  Google Scholar 

  22. Heider, Y., Reiche, S., Siebert, P., Markert, B.: Modeling of hydraulic fracturing using a porous-media phase-field approach with reference to experimental data. Eng. Fract. Mech. 202, 116–134 (2018)

    Article  Google Scholar 

  23. Mikelić, A., Wheeler, M.F., Wick, T.: A phase-field method for propagating fluid-filled fractures coupled to a surrounding porous medium. SIAM Multiscale Model. Simul. 13, 367–398 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Markert, B., Heider, Y.: Coupled multi-field continuum methods for porous media fracture. In: Mehl, M., Bischoff, M., Schäfer, M. (eds.) Recent Trends in Computational Engineering-CE2014, pp. 167–180. Springer, Berlin (2015)

    Chapter  Google Scholar 

  25. Pillai, U., Heider, Y., Markert, B.: A diffusive dynamic brittle fracture model for heterogeneous solids and porous materials with implementation using a user-element subroutine. Comput. Mater. Sci. 153, 36–47 (2018)

    Article  Google Scholar 

  26. Remij, E.W., Remmers, J.J.C., Huyghe, J.M., Smeulders, D.M.J.: The enhanced local pressure model for the accurate analysis of fluid pressure driven fracture in porous materials. Comput. Methods Appl. Mech. Eng. 286, 293–312 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ateshian, G.A.: Mixture theory for modeling biological tissues: Illustrations from articular cartilage. In: Holzapfel, G., Ogden, R.W. (eds.) Biomechanics: Trends in Modeling and Simulation, pp. 1–51. Springer, Cham (2017)

    Google Scholar 

  28. Ding, J., Remmers, J.J.C., Leszczynski, S., Huyghe, J.M.: Swelling driven crack propagation in large deformation in ionized hydrogel. J. Appl. Mech. 85, 021007 (2018)

    Article  Google Scholar 

  29. Huyghe, J.M., Janssen, J.D.: Thermo-chemo-electro-mechanical formulation of saturated charged porous solids. Transp. Porous Media 34, 129–141 (1999)

    Article  Google Scholar 

  30. Huyghe, J.M., Molenaar, M.M., Baajens, F.P.: Poromechanics of compressible charged porous media using the theory of mixtures. J. Biomech. Eng. 129, 776–785 (2007)

    Article  Google Scholar 

  31. Huyghe, J.M., Wilson, W., Malakpoor, K.: On the thermodynamical admissibility of the triphasic theory of charged hydrated tissues. J. Biomech. Eng. 131, 044504 (2009)

    Article  Google Scholar 

  32. Huyghe, J.M.: Biaxial testing of canine annulus fibrosus tissue under changing salt concentrations. Anais da Academia Brasileira de Cincias 82, 145–151 (2010)

    Article  Google Scholar 

  33. Kraaijeveld, F.: Propagating discontinuities in ionized porous media. Dissertation Thesis, TU of Eindhoven (2009)

  34. Lai, W.M., Hou, J.S., Mow, V.C.: A triphasic theory for the swelling and deformation behaviors of articular cartilage. J. Biomech. Eng. 113, 245–258 (1991)

    Article  Google Scholar 

  35. Mow, V.C., Guo, X.E.: Mechano-electrochemical properties of articular cartilage: their inhomogeneities and anisotropies. Annu. Rev. Biomed. Eng. 4, 175–209 (2002)

    Article  Google Scholar 

  36. Bobo, R.H., Laske, D.W., Akbasak, A., Morrison, P.F., Dedrick, R.L., Oldfield, E.H.: Convection-enhanced delivery of macromolecules in the brain. Proc. Natl. Acad. Sci. 91, 2076–2080 (1994)

    Article  Google Scholar 

  37. Fung, Y.-C.: Biomechanics: Mechanical Properties of Living Tissues. Springer, Berlin (2013)

    Google Scholar 

  38. Goriely, A., Geers, M.G., Holzapfel, G.A., Jayamohan, J., Jérusalem, A., Sivaloganathan, S., Squier, W., van Dommelen, J.A., Waters, S., Kuhl, E.: Mechanics of the brain: perspectives, challenges, and opportunities. Biomech. Model. Mechanobiol 14, 931–965 (2015)

    Article  Google Scholar 

  39. Holzapfel, G.A.: Biomechanics of soft tissue. Handb Mater Behav Model 3, 1049–1063 (2001)

    Google Scholar 

  40. Miller, K., Chinzei, K.: Constitutive modelling of brain tissue: experiment and theory. J. Biomech. 30(11), 1115–1121 (1997)

    Article  Google Scholar 

  41. Linninger, A.A., Somayaji, M.R., Mekarsk, M., Zhang, L.: Prediction of convection enhanced drug delivery to the human brain. J. Theor. Biol. 250, 125–138 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  42. Ricken, T., Schwarz, A., Bluhm, J.: A triphasic model of transversely isotropic biological tissue with applications to stress and biologically induced growth. Comput. Mater. Sci. 39, 124–136 (2007)

    Article  Google Scholar 

  43. Sarntinoranont, M., Chen, X., Zhao, J., Mareci, T.M.: Computational model of interstitial transport in the spinal cord using diffusion tensor imaging. Ann. Biomed. Eng. 34, 1304–1321 (2006)

    Article  Google Scholar 

  44. Støverud, K.H., Darcis, M., Helmig, R., Hassanizadeh, S.M.: Modeling concentration distribution and deformation during convection-enhanced drug delivery into brain tissue. Transp. Porous Media 92, 119–143 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank the German Research Foundation (DFG) for financial support of the project both within the Cluster of Excellence in Simulation Technology (SimTech) under Grant Number EXC 310 and within the Collaborative Research Centre “Interface-Driven Multi-Field Processes in Porous Media” under Grant Number CRC 1313 at the University of Stuttgart.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Ehlers.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ehlers, W., Wagner, A. Modelling and simulation methods applied to coupled problems in porous-media mechanics. Arch Appl Mech 89, 609–628 (2019). https://doi.org/10.1007/s00419-019-01520-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-019-01520-5

Keywords

Mathematics Subject Classification

Navigation