Skip to main content
Log in

Alfalfa (Medicago sativa L.) MsCML46 gene encoding calmodulin-like protein confers tolerance to abiotic stress in tobacco

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

MsCML46 enhances tolerance to abiotic stresses through alleviating osmotic stress and oxidative damage by regulating the expression of stress-related genes to optimize osmolytes levels and antioxidant enzyme activity in transgenic tobacco.

Abstract

Abiotic stresses are major environmental factors that constraint crop productivity worldwide. Various stimuli regulate intracellular calcium levels and calcium-mediated signal transduction, and cellular responses. Ca2+ signals are perceived by different Ca2+ receptors. Calmodulin-like protein (CML) is one of the best-characterized Ca2+ sensors which shares sequence similarity with highly conserved calmodulin (CaM) ubiquitously expressed in plants. Currently, the molecular and physiological functions of CMLs are largely unknown. In this study, the MsCML46 was characterized in alfalfa (Medicago sativa cv. Zhaodong) under freezing stress. Results showed that MsCML46 was localized to the cytoplasm of Arabidopsis, and its expression was strongly elevated by cold, drought, salt, saline-alkali, and ABA treatments. Overexpressing MsCML46 in tobacco enhanced tolerance to freezing, drought, and salt stresses as evidenced by improved contents of osmotic regulatory solutes and antioxidant enzyme activity but decreased reactive oxygen species (ROS) accumulation. Furthermore, cold, drought, and salt stresses increased the expression of stress-related genes in transgenic tobacco. MsCML46 binds free Ca2+ to promote signal transduction and maintain higher K+/Na+ ratio. In this way, it protects intracellular homeostasis under sodium ion toxicity. These results suggest that MsCML46 plays a crucial role in resisting abiotic stresses and can be exploited in genetic engineering for crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The MsCML46 sequence data that support the finding of this article is openly available in NCBI with GenBank accession number MT313689. Other data that support the findings of this study are available from the corresponding author upon reasonable request.

Abbreviations

ABA:

Abscisic acid

ANOVA:

Analysis of variance

CAT:

Catalase

DAB:

Diaminobenzidine

ECL:

Electrochemiluminescence

ERD:

Early response to dehydration protein

FW:

Fresh weight

HRP:

Horseradish peroxidase

LEA:

Late embryogenesis abundant protein

LTP:

Lipid transfer protein

MDA:

Malondialdehyde

NBT:

P-nitro blue tetrazolium chloride

NCBI:

National center for biotechnology information

ORF:

Open reading frame

P5CS:

Pyrroline-5-carboxylate synthetase

PEG:

Polyethylene glycol

PMSF:

Phenylmethylsulfonyl fluoride

POD:

Peroxidase

PVDF:

Polyvinylidene difluoride

RD29A:

Response to dehydration 29A

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

SRA:

Sequence read archive

References

  • Alsheikh MK, Svensson JT, Randall SK (2005) Phosphorylation regulated ion-binding is a property shared by the acidic subclass dehydrins. Plant Cell Environ 28:1114–1122

    Article  CAS  Google Scholar 

  • Avin-Wittenberg T (2019) Autophagy and its role in plant abiotic stress management. Plant Cell Environ 42:1045–1053

    Article  CAS  PubMed  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  CAS  PubMed  Google Scholar 

  • Beers RF, Sizer IW (1952) A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195:133–140

    Article  CAS  PubMed  Google Scholar 

  • Bouton JH (1996) New uses for alfalfa and other “old” forage legumes. Progress in new crops. ASHS press, Alexandria, pp 251–259

    Google Scholar 

  • Brahmbhatt N, Kalasariya HS (2015) Effect of algae on seedling growth of “Queen of Forages. Int J Eng Res General Sci 3:827–833

    Google Scholar 

  • Chandra S, Low PS (1997) Measurement of Ca2+ fluxes during elicitation of the oxidative burst in aequorin-transformed tobacco cells. J Biol Chem 272:28274–28280

    Article  CAS  PubMed  Google Scholar 

  • Cheng S, Tang D, Miller WB, Shi Y (2018) Evaluation of salinity tolerance in honeysuckle (Lonicera japonica) using growth, ion accumulation, lipid peroxidation, and non-enzymatic and enzymatic antioxidants system criteria. J Hortic Sci Biotechnol 93:185–195

    Article  CAS  Google Scholar 

  • Choudhury S, Panda P, Sahoo L, Panda SK (2013) Reactive oxygen species signaling in plants under abiotic stress. Plant Signal Behav. https://doi.org/10.4161/psb.23681

    Article  PubMed  PubMed Central  Google Scholar 

  • Day IS, Reddy VS, Ali GS, Reddy A (2002) Analysis of EF-hand-containing proteins in Arabidopsis. Genome Biol 3:1–24

    Article  Google Scholar 

  • Delk NA, Johnson KA, Chowdhury NI, Braam J (2005) CML24, regulated in expression by diverse stimuli, encodes a potential Ca2+ sensor that functions in responses to abscisic acid, daylength, and ion stress. Plant Physiol 139:240–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fancy NN, Bahlmann AK, Loake GJ (2017) Nitric oxide function in plant abiotic stress. Plant Cell Environ 40:462–472

    Article  CAS  PubMed  Google Scholar 

  • Fridovich I (1997) Superoxide anion radical (O.-2), superoxide dismutases, and related matters. J Biol Chem 272:18515–18517

    Article  CAS  PubMed  Google Scholar 

  • García-Martí M, Piñero MC, García-Sanchez F, Mestre TC, López-Delacalle M, Martínez V, Rivero RM (2019) Amelioration of the oxidative stress generated by simple or combined abiotic stress through the K+ and Ca2+ supplementation in tomato plants. Antioxidants 8:81

    Article  PubMed Central  CAS  Google Scholar 

  • Hannah MA, Wiese D, Freund S, Fiehn O, Heyer AG, Hincha DK (2006) Natural genetic variation of freezing tolerance in Arabidopsis. Plant Physiol 142:98–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK et al (2000) Plant cellular and molecular responses to high salinity. Ann Rev Plant Biol 51(1):463–499

    Article  CAS  Google Scholar 

  • Hashempoura A, Ghasemnezhada M, Ghazvinia RF, Sohanib M (2014) Freezing stress effects on antioxidant enzyme activities, ion leakage and lipid peroxidation of olive (Olea europaea L. cvs. Fishomi and Roughani). Agric Adv 3:249–260

    Google Scholar 

  • Hu T, Zhu S, Tan L, Qi W, He S, Wang G (2016) Overexpression of OsLEA4 enhances drought, high salt and heavy metal stress tolerance in transgenic rice (Oryza sativa L.). Environ Exp Bot 123:68–77

    Article  CAS  Google Scholar 

  • Hu X, Xu X, Li C (2018) Ectopic expression of the LoERF017 transcription factor from Larix olgensis Henry enhances salt and osmotic-stress tolerance in Arabidopsis thaliana. Plant Biotechnol Rep 12:93–104

    Article  Google Scholar 

  • Huang X, Liu J, Chen X (2010) Overexpression of PtrABF gene, a bZIP transcription factor isolated from Poncirus trifoliata, enhances dehydration and drought tolerance in tobacco via scavenging ROS and modulating expression of stress-responsive genes. BMC Plant Biol 10:1–18

    Article  CAS  Google Scholar 

  • Huang X, Zhang Q, Zhu D, Fu X, Wang M, Zhang Q, Moriguchi T, Liu J (2015) ICE1 of Poncirus trifoliata functions in cold tolerance by modulating polyamine levels through interacting with arginine decarboxylase. J Exp Bot 66:3259–3274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang L, Zhang M, Jia J, Zhao X, Huang X, Ji E, Ni L, Jiang M (2018a) An atypical late embryogenesis abundant protein OsLEA5 plays A positive role in ABA-induced antioxidant defense in Oryza Sativa L. Plant Cell Physiol 59:916–929

    Article  CAS  PubMed  Google Scholar 

  • Huang Z, Liu Y, Cui Z, Fang Y, He H, Liu B, Wu G (2018b) Soil water storage deficit of alfalfa (Medicago sativa) grasslands along ages in arid area (China). Field Crop Res 221:1–6

    Article  Google Scholar 

  • Hyslop PA, Zhang Z, Pearson DV, Phebus LA (1995) Measurement of striatal H2O2 by microdialysis following global forebrain ischemia and reperfusion in the rat: correlation with the cytotoxic potential of H2O2 in vitro. Brain Res 671:181–186

    Article  CAS  PubMed  Google Scholar 

  • Iannucci A, Di Fonzo N, Martiniello P (2002) Alfalfa (Medicago sativa L.) seed yield and quality under different forage management systems and irrigation treatments in a Mediterranean environment. Field Crop Res 78:65–74

    Article  Google Scholar 

  • Kang C, Zhai H, Xue L, Zhao N, He S, Liu Q (2018) A lycopene β-cyclase gene, IbLCYB2, enhances carotenoid contents and abiotic stress tolerance in transgenic sweetpotato. Plant Sci 272:243–254

    Article  CAS  PubMed  Google Scholar 

  • Kannangara C, Woolhouse H (1968) Changes in the enzyme activity of soluble protein fractions in the course of foliar senescence in Perilla frutescens L. Britt New Phytol 67:533–542

    Article  CAS  Google Scholar 

  • Kim SY, Nam KH (2010) Physiological roles of ERD10 in abiotic stresses and seed germination of Arabidopsis. Plant Cell Rep 29:203–209

    Article  CAS  PubMed  Google Scholar 

  • Kiranmai K, Lokanadha Rao G, Pandurangaiah M, Nareshkumar A, Amaranatha Reddy V, Lokesh U, Venkatesh B, Anthony Johnson A, Sudhakar C (2018) A novel WRKY transcription factor, MuWRKY3 (Macrotyloma uniflorum Lam. Verdc.) enhances drought stress tolerance in transgenic groundnut (Arachis hypogaea L.) plants. Front Plant Sci 9:346

    Article  PubMed  PubMed Central  Google Scholar 

  • Knight H, Brandt S, Knight MR (1998) A history of stress alters drought calcium signalling pathways in Arabidopsis. Plant J 16:681–687

    Article  CAS  PubMed  Google Scholar 

  • Kovacs D, Kalmar E, Torok Z, Tompa P (2008) Chaperone activity of ERD10 and ERD14, two disordered stress-related plant proteins. Plant Physiol 147:381–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ku YS, Sintaha M, Cheung MY, Lam HM (2018) Plant hormone signaling crosstalks between biotic and abiotic stress responses. Int J Mol Sci 19:3206

    Article  PubMed Central  CAS  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Method Enzymo 148:350–382

    Article  CAS  Google Scholar 

  • Liu Z, Chen T, Ma L, Zhao Z, Zhao P, Nan Z, Wang Y (2013) Global transcriptome sequencing using the Illumina platform and the development of EST-SSR markers in autotetraploid alfalfa. PLoS ONE. https://doi.org/10.1371/journal.pone.0083549

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu H, Che Z, Zeng X, Zhou X, Sitoe HM, Wang H, Yu D (2016) Genome-wide analysis of calcium-dependent protein kinases and their expression patterns in response to herbivore and wounding stresses in soybean. Funct Integr Genomic 16:481–493

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    Article  CAS  PubMed  Google Scholar 

  • Luo X, Huang Q (2011) Relationships between leaf and stem soluble sugar content and tuberous root starch accumulation in cassava. J Agr Sci 3:64

    Google Scholar 

  • Lutts S, Kinet J, Bouharmont J (1996) NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Ann Bot 78:389–398

    Article  CAS  Google Scholar 

  • Ma L, Ye J, Yang Y, Lin H, Yue L, Luo J, Long Y, Fu H, Liu X, Zhang Y (2019a) The SOS2-SCaBP8 complex generates and fine-tunes an AtANN4-dependent calcium signature under salt stress. Dev Cell 48:697–709

    Article  CAS  PubMed  Google Scholar 

  • Ma Q, Zhou Q, Chen C, Cui Q, Zhao Y, Wang K, Arkorful E, Chen X, Sun K, Li X (2019b) Isolation and expression analysis of CsCML genes in response to abiotic stresses in the tea plant (Camellia sinensis). Sci Rep 9:1–9

    Google Scholar 

  • Mafakheri A, Siosemardeh A, Bahramnejad B, Struik P, Sohrabi Y (2010) Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Aust J Crop Sci 4:580–585

    CAS  Google Scholar 

  • Martín-Pedraza L, González M, Gómez F, Blanca-López N, Garrido-Arandia M, Rodríguez R, Torres MJ, Blanca M, Villalba M, Mayorga C (2016) Two nonspecific lipid transfer proteins (nsLTPs) from tomato seeds are associated to severe symptoms of tomato-allergic patients. Mol Nutr Food Res 60:1172–1182

    Article  PubMed  CAS  Google Scholar 

  • Massinga RA, Currie RS (2002) Impact of Palmer amaranth (Amaranthus palmeri) on corn (Zea mays) grain yield and yield and quality of forage. Weed Technol 16:532–536

    Article  Google Scholar 

  • McCormack E, Tsai YC, Braam J (2005) Handling calcium signaling: Arabidopsis CaMs and CMLs. Trends Plant Sci 10:383–389

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–19

    Article  CAS  PubMed  Google Scholar 

  • Montillet JL, Chamnongpol S, Rustérucci C, Dat J, Cotte BVD, Agnel JP, Battesti C, Inzé D, Breusegem FV, Triantaphylides C (2005) Fatty acid hydroperoxides and H2O2 in the execution of hypersensitive cell death in tobacco leaves. Plant Physiol 138:1516–1526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munir S, Liu H, Xing Y, Hussain S, Ouyang B, Zhang Y, Li H, Ye Z (2016) Overexpression of calmodulin-like (ShCML44) stress-responsive gene from Solanum habrochaites enhances tolerance to multiple abiotic stresses. Sci Rep 6:1–20

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plantarum 15:473–497

    Article  CAS  Google Scholar 

  • Nakashima K, Ito Y, Yamaguchi-Shinozaki K (2009) Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol 149:88–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naot D, Ben-Hayyim G, Eshdat Y, Holland D (1995) Drought, heat and salt stress induce the expression of a citrus homologue of an atypical late-embryogenesis Lea5 gene. Plant Mol Bio 27:619–622

    Article  CAS  Google Scholar 

  • Perochon A, Aldon D, Galaud JP, Ranty B (2011) Calmodulin and calmodulin-like proteins in plant calcium signaling. Biochimie 93:2048–2053

    Article  CAS  PubMed  Google Scholar 

  • Radović J, Sokolović D, Marković J (2009) Alfalfa-most important perennial forage legume in animal husbandry. Biotechnol Animal Husbandry 25:465–475

    Article  Google Scholar 

  • Rai AN, Penna S (2013) Molecular evolution of plant P5CS gene involved in proline biosynthesis. Mol Biol Rep 40:6429–6435

    Article  CAS  PubMed  Google Scholar 

  • Ranty B, Aldon D, Cotelle V, Galaud JP, Thuleau P, Mazars C (2016) Calcium sensors as key hubs in plant responses to biotic and abiotic stresses. Front Plant Sci 7:327

    Article  PubMed  PubMed Central  Google Scholar 

  • Rehman SU, Bilal M, Rana RM, Tahir MN, Shah MKN, Ayalew H, Yan G (2016) Cell membrane stability and chlorophyll content variation in wheat (Triticum aestivum) genotypes under conditions of heat and drought. Crop Pasture Sci 67:712–718

    Article  CAS  Google Scholar 

  • Rentel MC, Knight MR (2004) Oxidative stress-induced calcium signaling in Arabidopsis. Plant Physiol 135:1471–1479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russelle MP (2001) Alfalfa: After an 8000 year journey, the “Queen of Forages” stands poised to enjoy renewed popularity. Am Sci 89:252–261

    Article  Google Scholar 

  • Santos ADA, Silveira JAGD, Bonifacio A, Rodrigues AC, Figueiredo MDVB (2018) Antioxidant response of cowpea co-inoculated with plant growth-promoting bacteria under salt stress. Braz J Microbiol 49:513–521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scholz SS, Reichelt M, Vadassery J, Mithöfer A (2015) Calmodulin-like protein CML37 is a positive regulator of ABA during drought stress in Arabidopsis. Plant Signal Behav. https://doi.org/10.1080/15592324.2015.1011951

    Article  PubMed  PubMed Central  Google Scholar 

  • Sham A, Aly MA (2012) Bioinformatics based comparative analysis of omega-3 fatty acids in desert plants and their role in stress resistance and tolerance. Int J Plant Res 2:1

    Article  Google Scholar 

  • Shi S, Nan L, Smith KF (2017) The current status, problems, and prospects of alfalfa (Medicago sativa L.) breeding in China. Agronomy. https://doi.org/10.3390/agronomy7010001

    Article  Google Scholar 

  • Shukla PS, Agarwal PK, Jha B (2012) Improved salinity tolerance of Arachis hypogaea (L.) by the interaction of halotolerant plant-growth-promoting rhizobacteria. J Plant Growth Regul 31:195–206

    Article  CAS  Google Scholar 

  • Song L, Jiang L, Chen Y, Shu Y, Bai Y, Guo C (2016) Deep-sequencing transcriptome analysis of field-grown Medicago sativa L. crown buds acclimated to freezing stress. Funct Integr Genomic 16:495–511

    Article  CAS  Google Scholar 

  • Taïbi K, Taïbi F, Abderrahim LA, Ennajah A, Belkhodja M, Mulet JM (2016) Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L. S Afr J Bot 105:306–312

    Article  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biol Evol 28:2731–2739

    Article  CAS  Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Ann Rev Plant Biol 50(1):571–599

    Article  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vadassery J, Reichelt M, Hause B, Gershenzon J, Boland W, Mithöfer A (2012) CML42-mediated calcium signaling coordinates responses to Spodoptera herbivory and abiotic stresses in Arabidopsis. Plant Physiol 159:1159–1175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanderbeld B, Snedden WA (2007) Developmental and stimulus-induced expression patterns of Arabidopsis calmodulin-like genes CML37, CML38 and CML39. Plant Mol Biol 64:683–697

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Chen J, Chen L, Wang X, Wang R, Ma L, Peng S, Luo J, Chen Y (2015) Combined drought and heat stress in Camellia oleifera cultivars: leaf characteristics, soluble sugar and protein contents, and Rubisco gene expression. Trees 29:1483–1492

    Article  CAS  Google Scholar 

  • Wang F, Ren G, Li F, Qi S, Xu Y, Wang B, Yang Y, Ye Y, Zhou Q, Chen X (2018) A chalcone synthase gene AeCHS from Abelmoschus esculentus regulates flavonoid accumulation and abiotic stress tolerance in transgenic Arabidopsis. Acta Physiol Plant 40:1–13

    Article  CAS  Google Scholar 

  • White PJ, Broadley MR (2003) Calcium in plants. Ann Bot 92:487–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willekens H, Chamnongpol S, Davey M, Schraudner M, Langebartels C, Van Montagu M, Inze D, Van Camp W (1997) Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants. The EMBO J 16:4806–4816

    Article  CAS  PubMed  Google Scholar 

  • Williams DM (1996) Grassland enclosures: catalyst of land degradation in Inner Mongolia. Human Org 55(3):307–313

    Article  Google Scholar 

  • Woodward AJ, Bennett IJ (2005) The effect of salt stress and abscisic acid on proline production, chlorophyll content and growth of in vitro propagated shoots of Eucalyptus camaldulensis. Plant Cell Tiss Org 82:189–200

    Article  CAS  Google Scholar 

  • Wu H (2004) Alfalfa drying properties and technologies-in review. Nature Sci 2:65–67

    Google Scholar 

  • Xu G, Rocha PS, Wang M, Xu M, Cui Y, Li L, Zhu Y, Xia X (2011) A novel rice calmodulin-like gene, OsMSR2, enhances drought and salt tolerance and increases ABA sensitivity in Arabidopsis. Planta 234:47–59

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Zheng X, Song Y, Zhu L, Yu Z, Gan L, Zhou S, Liu H, Wen F, Zhu C (2018) NtLTP4, a lipid transfer protein that enhances salt and drought stresses tolerance in Nicotiana tabacum. Sci Rep 8:1–14

    Google Scholar 

  • Yadav NS, Shukla PS, Jha A, Agarwal PK, Jha B (2012) The SbSOS1 gene from the extreme halophyte Salicornia brachiata enhances Na+ loading in xylem and confers salt tolerance in transgenic tobacco. BMC Plant Biol 12:1–18

    Article  CAS  Google Scholar 

  • Yang Y, Wu Y, Ma L, Yang Z, Dong Q, Li Q, Ni X, Kudla J, Song C, Guo Y (2019a) The Ca2+ sensor SCaBP3/CBL7 fine tunes Arabidopsis alkali tolerance and modulats plasma membrane H+-ATPase activity. Plant Cell. https://doi.org/10.1105/tpc.18.00568

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang Z, Wang C, Xue Y, Liu X, Chen S, Song C, Yang Y, Guo Y (2019b) Calcium-activated 14-3-3 proteins as a molecular switch in salt stress tolerance. Nat Commun 10:1–12

    CAS  Google Scholar 

  • Yin X, Huang L, Zhang X, Wang M, Xu G, Xia X (2015) OsCML4 improves drought tolerance through scavenging of reactive oxygen species in rice. J Plant Biol 58:68–73

    Article  CAS  Google Scholar 

  • Zhang T, Kang J, Guo W, Zhao Z, Xu Y, Yan X, Yang Q (2014) Yield evaluation of twenty-eight alfalfa cultivars in hebei province of China. J Integr Agr 13:2260–2267

    Article  Google Scholar 

  • Zhang B, Su L, Hu B, Li L (2018a) Expression of AhDREB1, an AP2/ERF transcription factor gene from peanut, is affected by histone acetylation and increases abscisic acid sensitivity and tolerance to osmotic stress in Arabidopsis. Int J Mol Sci 19:1441–1459

    Article  PubMed Central  CAS  Google Scholar 

  • Zhang L, Cheng J, Sun X, Zhao T, Li M, Wang Q, Li S, Xin H (2018b) Overexpression of VaWRKY14 increases drought tolerance in Arabidopsis by modulating the expression of stress-related genes. Plant Cell Rep 37:1159–1172

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Zou X, Cheng H, Jia H, Wu Y, Wang G, Zhang C, Gao S (2006) Assessing the ecological security of the Tibetan plateau: Methodology and a case study for Lhaze County. J Environ Manage 80:120–131

    Article  PubMed  Google Scholar 

  • Zhao L, Liu F, Xu W, Di C, Zhou S, Xue Y, Yu J, Su Z (2009) Increased expression of OsSPX1 enhances cold/subfreezing tolerance in tobacco and Arabidopsis thaliana. Plant Biotechnol J 7:550–561

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Wei P, Liu Z, Yu B, Shi H (2017) Soybean Na+/H+ antiporter GmsSOS1 enhances antioxidant enzyme activity and reduces Na+ accumulation in Arabidopsis and yeast cells under salt stress. Acta Physiol Plant 39:1–11

    Article  Google Scholar 

  • Zhou Y, Hu L, Ye S, Jiang L, Liu S (2018) Molecular cloning and functional characterization of a Cu/Zn superoxide dismutase gene (CsCSD1) from Cucumis sativus. Plant Cell Tiss Org 135:309–319

    Article  CAS  Google Scholar 

  • Zhu J (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Dunand C, Snedden W, Galaud JP (2015) CaM and CML emergence in the green lineage. Trends Plant Sci 20:483–489

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Perez M, Aldon D, Galaud JP (2017) Respective contribution of CML8 and CML9, two arabidopsis calmodulin-like proteins, to plant stress responses. Plant Signal Behav. https://doi.org/10.1080/15592324.2017.1322246

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhuo C, Cai J, Guo Z (2013) Overexpression of early light-induced protein (ELIP) gene from Medicago sativa ssp. falcata increases tolerance to abiotic stresses. Agron J 105:1433–1440

    Article  CAS  Google Scholar 

  • Zhuo C, Liang L, Zhao Y, Guo Z, Lu S (2018) A cold responsive ethylene responsive factor from Medicago falcata confers cold tolerance by up-regulation of polyamine turnover, antioxidant protection, and proline accumulation. Plant Cell Environ 41:2021–2032

    CAS  PubMed  Google Scholar 

  • Zulfiqar F, Akram NA, Ashraf M (2020) Osmoprotection in plants under abiotic stresses: new insights into a classical phenomenon. Planta 251:1–17

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The project was sponsored by National Natural Science Foundation of China (31770575, 31972507), Science and Technology Major Project of Heilongjiang Province (GA19B103), Excellent Youth Project of Natural Science Foundation of Heilongjiang Province (YQ2020C033), Graduate Innovation Fund of Harbin Normal University (HSDSSCX2020-05), Shanghai Agricultural Science Committee Youth Talents Development Plan No. 2018 (1-34), Research Fund of Beijing Advanced Innovation Center for Food Nutrition and Human Health (20182018).

Author information

Authors and Affiliations

Authors

Contributions

BD and LS conceived and designed the experiments. BD, NC and LS performed the experiments. BD analyzed the data and wrote the manuscript. DW, HC, LY, XL and CG supervised part of the work, contributed to the discussion and edited the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Changhong Guo.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest. The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Ethical statement regarding use of plant material

The authors state that the planting materials were procured as per national regulations. All experimental materials were grown without causing any harm to the natural resource and biodiversity.

Additional information

Communicated by Leena Tripathi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 31 KB)

Supplementary file2 (DOC 33 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, B., Chen, N., Song, L. et al. Alfalfa (Medicago sativa L.) MsCML46 gene encoding calmodulin-like protein confers tolerance to abiotic stress in tobacco. Plant Cell Rep 40, 1907–1922 (2021). https://doi.org/10.1007/s00299-021-02757-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-021-02757-7

Keyword

Navigation