Skip to main content
Log in

A chalcone synthase gene AeCHS from Abelmoschus esculentus regulates flavonoid accumulation and abiotic stress tolerance in transgenic Arabidopsis

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Chalcone synthase (CHS) is one of the key enzymes in flavonoid biosynthesis pathway in plants. However, the roles of AeCHS gene from Abelmoschus esculentus in flavonoid accumulation and tolerance to abiotic stresses have not been studied. In this study, the AeCHS gene was cloned from Abelmoschus esculentus. The open reading frame contained 1170 nucleotides encoding 389 amino acids. The coding region of AeCHS was cloned into a binary vector under the control of 35S promoter and then transformed into Arabidopsis to obtain transgenic plants. Overexpression of AeCHS increased the production of downstream flavonoids and the expression of related genes in the flavonoid biosynthesis pathway. It also improved resistance to salt and mannitol stresses during seed germination and root development. Further component and enzymatic analyses showed the decreased content of H2O2 and malondialdehyde and the increased activities of superoxide dismutase (SOD) and peroxidase (POD) in transgenic seedlings. Meanwhile, the expression level of AtSOD and AtPOD genes was up-regulated against salt and osmotic stresses. Together, our finding indicated that changing the expression level of AeCHS in plants alters the accumulation of flavonoids and regulates plantlet tolerance to abiotic stress by maintaining ROS homeostasis. The AeCHS gene has the potential to be used to increase the content of valuable flavonoids and improve the tolerance to abiotic stresses in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abdel-Lateif K, Vaissayre V, Gherbi H, Verries C, Meudec E, Perrine-Walker F, Cheynier V, Svistoonoff S, Franche C, Bogusz D, Hocher V (2013) Silencing of the chalcone synthase gene in Casuarina glauca highlights the important role of flavonoids during nodulation. New Phytol 199:1012–1021

    Article  CAS  PubMed  Google Scholar 

  • Akada S, Kung SD, Dube SK (1990) The nucleotide sequence of gene 3 of the soybean chalcone synthase multigene family. Nucleic Acids Res 18:5899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balasundram N, Sundram K, Samman S (2006) Phenolic compounds in plants and agri-industrial by-products: antioxidant activity, occurrence, and potential uses. Food Chem 99:191–203

    Article  CAS  Google Scholar 

  • Bao AK, Wang SM, Wu GQ, Xi JJ, Zhang JL, Wang CM (2009) Overexpression of the Arabidopsis H+-PPase enhanced resistance to salt and drought stress in transgenic alfalfa (Medicago sativa L.). Plant Sci 176:232–240

    Article  CAS  Google Scholar 

  • Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptations to environmental stresses. Plant Cell 7:1099–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buer CS, Imin N, Djordjevic MA (2010) Flavonoids: new roles for old molecules. J Integr Plant Biol 52:98–111

    Article  CAS  PubMed  Google Scholar 

  • Chen LJ, Guo HuM, Lin Y, Cheng HM (2015) Chalcone synthase EaCHS1 from Eupatorium adenophorum functions in salt stress tolerance in tobacco. Plant Cell Rep 34:885–894

    Article  CAS  Google Scholar 

  • Christensen AB, Gregersen PL, Schroder J, Collinge DB (1998) A chalcone synthase with an unusual substrate preference is expressed in barley leaves in response to UV light and pathogen attack. Plant Mol Biol 37:849–857

    Article  CAS  PubMed  Google Scholar 

  • Christie JM, Jenkins GI (1996) Distinct UV-B and UV-A blue light signal transduction pathways induce chalcone synthase gene expression in Arabidopsis cells. Plant Cell 8:1555–1567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhawale S, Souciet G, Kuhn DN (1989) Increase of chalcone synthase mRNA in pathogen-inoculated soybeans with race-specific resistance is different in leaves and roots. Plant Physiol 91:911–916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dixon RA, Liu C, Jun JH (2013) Metabolic engineering of anthocyanins and condensed tannins in plants. Curr Opin Biotechnol 24:329–335

    Article  CAS  PubMed  Google Scholar 

  • Ferrer JL, Jez JM, Bowman ME, Dixon RA, Noel JP (1999) Structure of chalcone synthase and the molecular basis of plant polyketide biosynthesis. Nat Struct Biol 6:775–784

    Article  CAS  PubMed  Google Scholar 

  • Gao JJ, Zhang Z, Peng RH, Xiong AS, Xu J, Zhu B, Yao QH (2011) Forced expression of Mdmyb10, a myb transcription factor gene from apple, enhances tolerance to osmotic stress in transgenic Arabidopsis. Mol Biol Rep 38:205–211

    Article  CAS  PubMed  Google Scholar 

  • Guo HM, Pei XX, Wan FH, Cheng HM (2011) Molecular cloning of allelopathy related genes and their relation to HHO in Eupatorium adenophorum. Mol Biol Rep 38:4651–4656

    Article  CAS  PubMed  Google Scholar 

  • Guo J, Zhou W, Lu Z, Li H, Li H, Gao F (2015) Isolation and functional analysis of chalcone isomerase gene from purple-fleshed sweetpotato. Plant Mol Biol Rep 33:1451–1463

    Article  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusion: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang T, Zhai H, Wang FB, Yang NK, Wang B, He SZ, Liu QC (2013) Cloning and characterization of a carbohydrate metabolism-associated gene IbSnRK1 from sweetpotato. Sci Hortic 158:22–32

    Article  CAS  Google Scholar 

  • Koca H, Ozdemir F, Turkan I (2006) Effect of salt stress on lipid peroxidation and superoxide dismutase and peroxidase activities of Lycopersicon esculentum and L. pennellii. Biol Plant 50:745–748

    Article  CAS  Google Scholar 

  • Koes RE, Spelt CE, van den Elzen PJ, Mol JN (1989) Cloning and molecular characterization of the chalcone synthase multigene family of Petunia hybrida. Gene 81:245–257

    Article  CAS  PubMed  Google Scholar 

  • Koes RE, Van Blokland R, Quattrocchio F, Van Tunen AJ, Mol J (1990) Chalcone synthase promoters in Petunia are active in pigmented and unpigmented cell types. Plant Cell 2:379–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koes R, Verweij W, Quattrocchio F (2005) Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci 10(5):236–242

    Article  CAS  PubMed  Google Scholar 

  • Krasensky J, Jonak C (2012) Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot 63:1593–1608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leyva A, Jarillo JA, Salinas J, Martinezzapater JM (1995) Lowtemperature induces the accumulation of phenylalanine ammonialyase and chalcone synthase messenger-rnas of Arabidopsis thaliana in a light-dependent manner. Plant Physiol 108:39–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liew CF, Goh CJ, Loh CS, Lim SH (1998) Cloning and characterization of full-length cDNA clones encoding chalcone synthase from the orchid Bromheadia finlaysoniana. Plant Physiol Biochem 36:647–656

    Article  CAS  Google Scholar 

  • Liu XJ, Chuang YN, Chiou CY, Chin DC, Shen FQ, Yeh KW (2012) Methylation effect on chalcone synthase gene expression determines anthocyanin pigmentation in floral tissues of two Oncidium orchid cultivars. Planta 236:401–409

    Article  CAS  PubMed  Google Scholar 

  • Liu DG, He SZ, Zhai H, Wang LJ, Zhao Y, Wang B, Li RJ, Liu QC (2014) Overexpression of IbP5CR enhances salt tolerance in transgenic sweetpotato. Plant Cell Tissue Org 117:1–16

    Article  Google Scholar 

  • Liu DG, He SZ, Song XJ, Zhai H, Liu N, Zhang DD, Ren ZT, Liu QC (2015) IbSIMT1, a novel salt-induced methyltransferase gene from Ipomoea batatas, is involved in salt tolerance. Plant Cell Tissue Org 120:701–715

    Article  CAS  Google Scholar 

  • Lo C, Coolbaugh RC, Nicholson RL (2002) Molecular characterization and in silico expression analysis of a chalcone synthase gene family in Sorghum bicolor. Physiol Mol Plant Pathol 61:179–188

    Article  CAS  Google Scholar 

  • Lou XM, Yao QH, Zhang Z, Peng RH, Xiong AS, Wang KK (2007) Expression of human hepatitis B virus large surface antigen gene in transgenic tomato. Clin Vaccine Immunol 14:464–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mol J, Grotewold E, Koes R (1998) How genes paint flowers and seeds. Trends Plant Sci 3(6):212–217

    Article  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Reimold U, Kroger M, Kreuzaler F, Hahlbrock K (1983) Coding and 3′non-coding nucleotide sequence of chalcone synthase mRNA and assignment of amino acid sequence of the enzyme. EMBO J 2:1801–1805

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rogers SO, Bendich AJ (1985) Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol Biol 5:69–76

    Article  CAS  PubMed  Google Scholar 

  • Routaboul JM, Kerhoas L, Debeaujon I, Pourcel L, Caboche M, Einhorn J, Lepiniec L (2006) Flavonoid diversity and biosynthesis in seed of Arabidopsis thaliana. Planta 224:96–107

    Article  CAS  PubMed  Google Scholar 

  • RoyChoudhury A, Roy C, Sengupta DN (2007) Transgenic tobacco plants overexpressing the heterologous lea gene Rab16A from rice during high salt and water deficit display enhanced tolerance to salinity stress. Plant Cell Rep 26:1839–1859

    Article  CAS  PubMed  Google Scholar 

  • Saslowsky DE, Dana CD, Winkel-Shirley B (2000) An allelic series for the chalcone synthase locus in Arabidopsis. Gene 255:127–138

    Article  CAS  PubMed  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3:1101–1108

    Article  CAS  PubMed  Google Scholar 

  • Shvarts M, Borochov A, Weiss D (1997) Low temperature enhances petunia flower pigmentation and induces chalcone synthase gene expression. Physiol Plant 99:67–72

    Article  CAS  Google Scholar 

  • Springob K, Nakajima J, Yamazaki M, Saito K (2003) Recent advances in the biosynthesis and accumulation of anthocyanins. Nat Prod Rep 20:288–303

    Article  CAS  PubMed  Google Scholar 

  • Tattini M, Galardi C, Pinelli P, Massai R, Remorini D, Agati G (2004) Differential accumulation of flavonoids and hydroxycinnamates in leaves of Ligustrum vulgare under excess light and drought stress. New Phytol 163:547–561

    Article  CAS  Google Scholar 

  • Wade HK, Bibikova TN, Valentine WJ, Jenkins GI (2001) Interactions within a network of phytochrome, cryptochrome and UV-B phototransduction pathways regulate chalcone synthase gene expression in Arabidopsis leaf tissue. Plant J 25:675–685

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Fan W, Li H, Yang J, Huang J, Zhang P (2013) Functional characterization of dihydroflavonol-4-reductase in anthocyanin biosynthesis of purple sweetpotato underlies the direct evidence of anthocyanins function against abiotic stresses. PLoS One 8:e78484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Han CL, Zhou YN, Wang CG, Song WQ, Chen CB (2014) Cloning and expression analysis of chalcone synthase gene (AeCHS) in Abelmoschus esculentus L. J Plant Genet Res 15:561–567

    CAS  Google Scholar 

  • Wang FB, Kong WL, Wong G, Fu LF, Peng RH, Li ZJ, Yao QH (2016a) AtMYB12 regulates flavonoids accumulation and abiotic stress tolerance in transgenic Arabidopsis thaliana. Mol Genet Genom 291:1545–1559

    Article  CAS  Google Scholar 

  • Wang FB, Tong WJ, Zhu H, Kong WL, Peng RH, Liu QC, Yao QH (2016b) A novel Cys2/His2 zinc finger protein gene from sweetpotato, IbZFP1, is involved in salt and drought tolerance in transgenic Arabidopsis. Planta 243:783–797

    Article  CAS  PubMed  Google Scholar 

  • Wang FB, Zhu H, Chen DH, Li ZJ, Peng RH, Yao QH (2016c) A grape bHLH transcription factor gene, VvbHLH1, increases the accumulation of flavonoids and enhances salt and drought tolerance in transgenic Arabidopsis thaliana. Plant Cell Tissue Org 125:387–398

    Article  CAS  Google Scholar 

  • Wang FB, Zhu H, Kong WL, Peng RH, Liu QC, Yao QH (2016d) The Antirrhinum AmDEL gene enhances flavonoids accumulation and salt and drought tolerance in transgenic Arabidopsis. Planta 244:59–73

    Article  CAS  PubMed  Google Scholar 

  • Wang FB, Ye YX, Niu Y, Wan FX, Qi B, Chen XH, Zhou Q, Chen BQ (2016e) A tomato plastidic ATP/ADP transporter gene SlAATP increases starch content in transgenic Arabidopsis. Physiol Mol Biol Plants 22:497–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wasson AP, Pellerone FI, Mathesius U (2006) Silencing the flavonoid pathway in Medicago truncatula inhibits root nodule formation and prevents auxin transport regulation by rhizobia. Plant Cell 18:1617–1629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winkel-Shirley B (2001) Flavonoid biosynthesis: a colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol 126:485–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong CC, Li HB, Cheng KW, Chen F (2006) A systematic survey of antioxidant activity of 30 Chinese medicinal plants using the ferric reducing antioxidant power assay. Food Chem 97:705–711

    Article  CAS  Google Scholar 

  • Yang J, Huang J, Gu H, Zhong Y, Yang Z (2002) Duplication and adaptive evolution of the chalcone synthase genes of Dendranthema (Asteraceae). Mol Biol Evol 19:1752–1759

    Article  CAS  PubMed  Google Scholar 

  • Yang SJ, Vanderbeld B, Wan JX, Huang YF (2010) Narrowing down the targets: towards successful genetic engineering of drought-tolerant crops. Mol Plant 3:469–490

    Article  CAS  PubMed  Google Scholar 

  • Zhai H, Wang FB, Si ZZ, Huo JX, Xing L, An YY, He SZ, Liu QC (2016) A myo-inositol-1-phosphate synthase gene, IbMIPS1, enhances salt and drought tolerance and stem nematode resistance in transgenic sweetpotato. Plant Biotechnol J 14:592–602

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Henriques R, Lin SS (2006) Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat Protoc 1:641–646

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Han B, Wang T, Chen S, Li H, Zhang Y, Dai S (2012) Mechanisms of plant salt response: insights from proteomics. J Proteome Res 11:49–67

    Article  PubMed  Google Scholar 

  • Zhao Q, Zhang H, Wang T, Chen SX, Dai SJ (2013) Proteomics-based investigation of salt-responsive mechanisms in plant roots. J Proteom 82:230–253

    Article  CAS  Google Scholar 

  • Zhou B, Wang Y, Zhan Y, Li Y, Kawabata S (2013) Chalcone synthase family genes have redundant roles in anthocyanin biosynthesis and in response to blue/UV-A light in turnip (Brassica rapa; Brassicaceae). Am J Bot 100:2458–2467

    Article  CAS  PubMed  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    Article  CAS  PubMed  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou J, Liu CF, Liu A, Zou D, Chen XB (2012) Overexpression of OsHsp17.0 and OsHsp23.7 enhances drought and salt tolerance in rice. J Plant Physiol 169:628–635

    Article  CAS  PubMed  Google Scholar 

Download references

Author contribution statement

Conceived and designed the experiments: FW and XC. Performed the experiments: FW, GR, and FL. Analyzed the data: FW, GR, FL, SQ, YX, BW, YY, BC, and QZ. Contributed reagents/materials/analysis tools: FW, GR, FL, SQ, YX, and BW. Wrote the paper: FW and XC.

Acknowledgements

This work was funded by the Natural Science Fund for Colleges and Universities in Jiangsu Province of China (17KJB210001), the Natural Science Foundation of Jiangsu Province of China (BK2013256), the Talent Introduction Research Project of Huaiyin Institute of Technology (Z301B16534), the Science and Technology Project of Huai’an City of China (HAN2015001), and the College Student Practice Innovation Program of Jiangsu Province of China (201711049009H).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feibing Wang or Xinhong Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by R Aroca.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 90 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Ren, G., Li, F. et al. A chalcone synthase gene AeCHS from Abelmoschus esculentus regulates flavonoid accumulation and abiotic stress tolerance in transgenic Arabidopsis. Acta Physiol Plant 40, 97 (2018). https://doi.org/10.1007/s11738-018-2680-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-018-2680-1

Keywords

Navigation