Skip to main content
Log in

Combined drought and heat stress in Camellia oleifera cultivars: leaf characteristics, soluble sugar and protein contents, and Rubisco gene expression

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

Leaf relative water content, leaf area, leaf fresh weight, and SPAD chlorophyll meter readings along with Co - rbcL and Co - rbcS expression can be used for evaluating Camellia oleifera responses to combined drought and heat stress and subsequent recovery after rainfall events.

Abstract

Leaf characteristics, soluble protein and total soluble sugar contents as well as Rubisco-related gene expression in three cultivars of C. oleifera were measured during a combined drought and heat stress period and after subsequent rainfall events. Leaf relative water content (RWC) was significantly correlated with leaf area (LA), leaf fresh weight (FW), SPAD chlorophyll meter readings, and the levels of Co-rbcL and Co-rbcS expression. Results suggest that leaf RWC, LA, leaf FW, SPAD readings together with Co-rbcL and Co-rbcS expression can be used for evaluating responses of C. oleifera cultivars to combined drought and heat stress and subsequent recovery after rainfall events. Rubisco activase might be used for evaluating plant recovery after rainfall. This study identified cultivars differing in tolerance to the combined stress and recovery. Information derived from this study should be valuable for improving survivability and productivity of C. oleifera cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ashraf M (2010) Inducing drought tolerance in plants: recent advances. Biotechnol Adv 28:169–183

    Article  CAS  PubMed  Google Scholar 

  • Bartholomew DM (1991) Abscisic acid control of rbcS and cab transcript in tomato leaves. Plant Physiol 96:291–296. doi:10.1104/pp.96.1.291

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Basu PS, Ali M, Chaturvedi SK (2007) Osmotic adjustment increases water uptake, remobilization of assimilates and maintains photosynthesis in chickpea under drought. Indian J Exp Biol 45:261–267

    CAS  PubMed  Google Scholar 

  • Bradford MM (1976) Rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  • Bray EA (1993) Molecular responses to water deficit. Plant Physiol 103:1035–1040. doi:10.1104/pp.103.4.1035

    PubMed Central  CAS  PubMed  Google Scholar 

  • Carmo-Silva AE, Gore MA, Andrade-Sanchez P, French AN, Hunsaker DJ, Salvucci Mi E (2012) Decreased CO2 availability and inactivation of Rubisco limit photosynthesis in cotton plants under heat and drought stress in the field. Environ Exp Bot 83:1–11. doi:10.1016/j.envexpbot.2012.04.001

    Article  CAS  Google Scholar 

  • Chen Y, Wang B, Chen J, Wang X, Wang R, Peng S, Chen L, Ma L, Luo J (2015) Identification of Rubisco rbcL and rbcS in Camellia oleifera and their potential as molecular markers for selection of high tea oil cultivars. Front Plant Sci 6:189. doi:10.3389/fpls.2015.00189

    PubMed Central  PubMed  Google Scholar 

  • Ciais P, Reichstein M, Viovy N, Granier A, Ogee J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A, Chevallier F, De Noblet N, Friend AD, Friedlingstein P, Grunwald T, Heinesch B, Keroner P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival JM, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana JF, Sanz MJ, Schulze ED, Vesala T, Valentini R (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–533

    Article  CAS  PubMed  Google Scholar 

  • Cottee NS, Bange MP, Wilson IW, Tan DKY (2012) Developing controlled environment screening for high temperature tolerance in cotton that accurately reflects performance in the field. Funct Plant Biol 39:670–678

    Article  CAS  Google Scholar 

  • Crafts-Brandner SJ, van de Loo FJ, Salvucci ME (1997) The two forms of ribulose-1,5-bisphosphate carboxylase/oxygenase activase differ in sensitivity to elevated temperature. Plant Physiol 114:439–444

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cramer G, Ergül A, Grimplet J, Tillett R, Tattersall E, Bohlman M, Vincent D, Sonderegger J, Evans J, Osborne C, Quilici D, Schlauch K, Schooley D, Cushman J (2007) Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles. Funct Integr Genomic 7:111–134. doi:10.1007/s10142-006-0039-y

    Article  CAS  Google Scholar 

  • Cseri A, Cserháti M, Von Korff M, Nagy B, Horváth GV, Palágyi A, Pauk J, Dudits D, Törjék O (2011) Allele mining and haplotype discovery in barley candidate genes for drought tolerance. Euphytica 181:341–356. doi:10.1007/s10681-011-0445-7

    Article  Google Scholar 

  • Feng B, Liu P, Li G, Dong ST, Wang FH, Kong LA, Zhang JW (2014) Effect of heat stress on the photosynthetic characteristics in flag leaves at the grain-filling stage of different heat-resistant winter wheat varieties. J Agro Crop Sci 200:143–155. doi:10.1111/jac.12045

    Article  CAS  Google Scholar 

  • Ge Y, He X, Wang J, Jiang B, Ye R, Lin X (2014) Physiological and biochemical responses of Phoebe bournei seedlings to water stress and recovery. Acta Physiol Plant 36:1241–1250. doi:10.1007/s11738-014-1502-3

    Article  CAS  Google Scholar 

  • Hsiao TC (1973) Plant responses to water stress. Annu Rev Plant Physiol 24:519–570. doi:10.1146/annurev.pp.24.060173.002511

    Article  CAS  Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis, vol 1009. Cambridge University Press, Cambridge

    Google Scholar 

  • Ji K, Wang Y, Sun W, Lou Q, Mei H, Shen S, Chen H (2011) Drought-responsive mechanisms in rice genotypes with contrasting drought tolerance during reproductive stage. J Plant Physiol 169:336–344. doi:10.1016/j.jplph.2011.10.010

    Article  PubMed  Google Scholar 

  • Lawlor DW, Tezara W (2009) Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: a critical evaluation of mechanisms and integration of processes. Ann Bot 103:561–579

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    Article  CAS  PubMed  Google Scholar 

  • Markwell J, Osterman JC, Mitchell JL (1995) Calibration of the Minolta SPAD-502 leaf chlorophyll meter. Photosynth Res 46:467–472. doi:10.1007/BF00032301

    Article  CAS  PubMed  Google Scholar 

  • Marquard RD, Tipton JL (1987) Relationship between extractable chlorophyll and an in situ method to estimate leaf greenness. HortScience 22:1327

    CAS  Google Scholar 

  • Morgan JM (1984) Osmoregulation and water stress in higher plants. Annu Rev Plant Physiol 35:299–319

    Article  Google Scholar 

  • Mullan D, Pietragalla J (2012) Leaf relative water content. In: Pask AJD, Pietragalla J, Mullan D, Reynolds M (eds) Physiological breeding II: A field guide to wheat phenotyping. CIMMYT, Mexico, pp 25–27

    Google Scholar 

  • Osakabe Y, Osakabe K, Shinozaki K, Tran LP (2014) Response of plants to water stress. Front Plant Sci 5:86. doi:10.3389/fpls.2014.00086

    Article  PubMed Central  PubMed  Google Scholar 

  • Park SY, Noh KJ, Yoo JH, Yu JW, Lee BW, Kim JG, Seo HS, Paek NC (2006) Rapid upregulation of Dehyrin3 and Dehydrin4 in response to dehydration is a characteristic of drought-tolerant genotypes in barley. J Plant Biol 49:455–462

    Article  CAS  Google Scholar 

  • Parry MAJ, Andralolc J, Khan S, Lea PJ, Keys AJ (2002) Rubisco activity: effects of drought stress. Ann Bot 89:833–839. doi:10.1093/aob/mcf103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pelloux J, Jolivet Y, Fontaine V, Banvoy J, Dizengremel P (2001) Changes in Rubisco and Rubisco activase gene expression and polypeptide content in Pinus halepensis M. subjected to ozone and drought. Plant Cell Environ 24:123–131

    Article  CAS  Google Scholar 

  • Pinheiro C, Chaves MM (2011) Photosynthesis and drought: can we make metabolic connections from available data? J Exp Bot 62:869–882. doi:10.1093/jxb/erq340

    Article  CAS  PubMed  Google Scholar 

  • Pinheiro C, Chaves MM, Ricardo CP (2001) Alterations in carbon and nitrogen metabolism induced by water deficit in the stems and leaves of Lupinus albus L. J Exp Bot 52:1063–1070. doi:10.1093/jexbot/52.358.1063

    Article  CAS  PubMed  Google Scholar 

  • Sareen S, Tyagi BS, Sarial AK, Tiwari V, Sharma I (2014) Trait analysis, diversity, and genotype x environment interaction in some wheat landraces evaluated under drought and heat stress conditions. Chil J Agric Res 74:135–142. doi:10.4067/S0718-58392014000200002

    Article  Google Scholar 

  • Shah NH, Paulsen GM (2003) Interaction of drought and high temperature on photosynthesis and grain-filling of wheat. Plant Soil 257(1):219–326

    Article  CAS  Google Scholar 

  • Silva MA, Jifon JL, Da Silva JAG, Vivek S (2007) Use of physiological parameters as fast tools to screen for drought tolerance in sugarcane. Braz J Plant Physiol 19:193–201. doi:10.1590/S1677-04202007000300003

    Article  Google Scholar 

  • Silva MA, Jifon JL, Vivek S, Da Silva JAG, Caputo MM, Damaj MB, Guimarães ER, Ferro MIT (2011) Use of physiological parameters in screening drought tolerance in sugarcane genotypes. Sugar Tech 13:191–197. doi:10.1007/s12355-011-0087-z

    Article  CAS  Google Scholar 

  • Smart RE, Bingham GE (1974) Rapid estimates of relative water content. Plant Physiol 53:258–260

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Taylor JA, Bates TR (2013) A discussion on the significance associated with Pearson’s correlation in precision agriculture studies. Precis Agric 14:558–564. doi:10.1007/s11119-013-9314-9

    Article  Google Scholar 

  • Voloudakis AE, Kosmas SA, Tsakas S, Eliopoulos E, Loukas M, Kosmidou K (2002) Expression of selected drought-related genes and physiological response of Greek cotton varieties. Funct Plant Biol 29:1237–1245. doi:10.1071/PP01253

    Article  CAS  Google Scholar 

  • Wang Q, Chen J, Li Y (2004) Nondestructive and rapid estimation of leaf chlorophyll and nitrogen status of peace lily using a chlorophyll meter. J Plant Nutr 27:557–569

    Article  CAS  Google Scholar 

  • Watkinson JI, Hendricks L, Sioson AA, Vasquez-Robinet C, Stromberg V, Heath LS, Schuler M, Bohnert HJ, Bonierbale M, Ruth Grene (2006) Accessions of Solanum tuberosum ssp. andigena show differences in photosynthetic recovery after drought stress as reflected in gene expression profiles. Plant Sci 171:745–758. doi:10.1016/j.plantsci.2006.07.010

    Article  CAS  Google Scholar 

  • Williams J, Bulaman MP, Neill SJ (1994) Wilt-induced ABA biosynthesis, gene-expression and down regulation of rbcS messenger-RNA levels in Arabidopsis thaliana. Physiol Plant 91:177–182. doi:10.1111/j.1399-3054.1994.tb00416.x

    Article  CAS  Google Scholar 

  • Wu S, Liang D, Ma F (2014) Leaf micromorphology and sugar may contribute to differences in drought tolerance for two apple cultivars. Plant Physiol Biochem 80:249–258

    Article  CAS  PubMed  Google Scholar 

  • Xu ZZ, Zhou GS (2006) Combined effects of water stress and high temperature on photosynthesis, nitrogen metabolism and lipid peroxidation of a perennial grass Leymus chinensis. Planta 224:1080–1090

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Zhou G, Shimizu H (2010) Plant responses to drought and rewatering. Plant Signal Behav 5:649–654

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xu LX, Yu JJ, Han LB, Huang BR (2013) Photosynthetic enzyme activities and gene expression associated with drought tolerance and post-drought recovery in Kentucky bluegrass. Environ Exp Bot 89:28–35. doi:10.1093/aob/mcn244

    Article  CAS  Google Scholar 

Download references

Author contribution statement

B. Wang designed and performed the research and analyzed data. Y. Chen designed and supervised the whole project and analyzed data. B. Wang and J. Chen wrote and revised the manuscript. X. Wang conducted the research. R. Wang and L. Chen participated in the experimental design, evaluation, and data analysis. S. Peng, L. Ma, and J. Luo participated in analysis of the data. All authors approved the final version of this manuscript.

Acknowledgments

This work was supported by National Natural Science Foundation of China (Grant No. 31370677) and Climate Change Special Program of China Meteorological Administration (Grant No. CCSF201525). The authors thank Mrs. Barbara Henny for critical reading of this manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongzhong Chen.

Additional information

Communicated by J. Carlson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Chen, J., Chen, L. et al. Combined drought and heat stress in Camellia oleifera cultivars: leaf characteristics, soluble sugar and protein contents, and Rubisco gene expression. Trees 29, 1483–1492 (2015). https://doi.org/10.1007/s00468-015-1229-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-015-1229-9

Keywords

Navigation