Skip to main content
Log in

StCaM2, a calcium binding protein, alleviates negative effects of salinity and drought stress in tobacco

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Key Message

Overexpression of StCaM2 in tobacco promotes plant growth and confers increased salinity and drought tolerance by enhancing the photosynthetic efficiency, ROS scavenging, and recovery from membrane injury.

Abstract

Calmodulins (CaMs) are important Ca2+ sensors that interact with effector proteins and drive a network of signal transduction pathways involved in regulating the growth and developmental pattern of plants under stress. Herein, using in silico analysis, we identified 17 CaM isoforms (StCaM) in potato. Expression profiling revealed different temporal and spatial expression patterns of these genes, which were modulated under abiotic stress. Among the identified StCaM genes, StCaM2 was found to have the largest number of abiotic stress responsive promoter elements. In addition, StCaM2 was upregulated in response to some of the selected abiotic stress in potato tissues. Overexpression of StCaM2 in transgenic tobacco plants enhanced their tolerance to salinity and drought stress. Accumulation of reactive oxygen species was remarkably decreased in transgenic lines compared to that in wild type plants. Chlorophyll a fluorescence analysis suggested better performance of photosystem II in transgenic plants under stress compared to that in wild type plants. The increase in salinity stress tolerance in StCaM2-overexpressing plants was also associated with a favorable K+/Na+ ratio. The enhanced tolerance to abiotic stresses correlated with the increase in the activities of anti-oxidative enzymes in transgenic tobacco plants. Overall, our results suggest that StCaM2 can be a novel candidate for conferring salt and drought tolerance in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abbas N, Maurya JP, Senapati D, Gangappa SN, Chattopadhyaya S (2014) Arabidopsis CAM7 and HY5 physically interact and directly bind to the HY5 promoter to regulate its expression and thereby promote photomorphogenesis. Plant Cell 26:1036–1052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Al-Quraan NA, Locy RD, Singh NK (2010) Expression of calmodulin genes in wild type and calmodulin mutants of Arabidopsis thalianaunder heat stress. Plant Physiol Biochem 48:697–702. https://doi.org/10.1016/j.plaphy.2010.04.011

    Article  CAS  PubMed  Google Scholar 

  • Arnon DJ (1949) Copper enzymes in isolated chloroplasts: Polyphenol oxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asano T, Kunieda N, Omura Y, Ibe H, Kawasaki T, Takano M, Sato M, Furuhashi H, Mujin T, Takaiwa F, Wu CY (2002) Rice SPK, a calmodulin-like domain protein kinase, is required for storage product accumulation during seed development: phosphorylation of sucrose synthase is a possible factor. Plant Cell 14(3):619–628. https://doi.org/10.1105/tpc.010454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balamani V, Veluthambi K, Poovaiah BW (1986) Effect of calcium on tuberization in potato (Solanum tuberosum L.). Plant Physiol 80:856–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barr HD, Weatherley PE (1962) A re-examination of the relative turgidity technique for estimating water deficit in leaves. Aust J Biol Sci 15:413–428

    Article  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant and Soil 39:205–207

    Article  CAS  Google Scholar 

  • Bender KW, Snedden WA (2013) Calmodulin-related proteins step out from the shadow of their namesake. Plant Physiol 163:486–495. https://doi.org/10.1104/pp.113.221069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birch PRJ, Bryan G, Fenton B, Gilroy EM, Hein I, Jones JT, Prashar A, Taylor MA, Torrance L, Toth IK (2012) Crops that feed the world 8: potato: are the trends of increased global production sustainable. Food Secur 4:477–508. https://doi.org/10.1007/s12571-012-0220-1

    Article  Google Scholar 

  • Boonburapong B, Buaboocha T (2007) Genome-wide identification and analyses of the rice calmodulin and related potential calcium sensor proteins. Plant Biol 7:1–17. https://doi.org/10.1186/1471-2229-7-4

    Article  CAS  Google Scholar 

  • Bouaziz D, Pirrello J, Charfeddine M, Hammami A, Jbir R, Dhieb A, Bouzayen M, Gargouri-Bouzid R (2013) Overexpression of StDREB1 transcription factor increases tolerance to salt in transgenic potato plants. Mol Biotechnol 54:803–817. https://doi.org/10.1007/s12033-012-9628-2

    Article  CAS  PubMed  Google Scholar 

  • Bouche N, Yellin A, Snedden WA, Fromm H (2005) Plant-specific calmodulin binding proteins. Annu Rev Plant Biol 56:435–466

    Article  CAS  PubMed  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Buyuk I, Inal B, Ilhan E, Tanriseven M, Aras S, Erayman M (2016) Genome-wide identification of salinity responsive HSP70s in common bean. Mol Biol Rep 43:1251–1266. https://doi.org/10.1007/s11033-016-4057-0

    Article  CAS  PubMed  Google Scholar 

  • Chen GX, Asada K (1989) Ascorbate peroxidase in tea leaves: occurrence of two isozymes and the differences in their enzymatic and molecular properties. Plant Cell Physiol 30:987–998

    CAS  Google Scholar 

  • Chen C, Sun X, Duanmu H, Zhu D, Yu Y, Cao L, Liu A, Jia B, Xiao J, Zhu Y (2015) GsCML27, a gene encoding a calcium-binding ef-hand protein from Glycine soja, plays differential roles in plant responses to bicarbonate, salt and osmotic stresses. PLoS One 10(11):e0141888

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cheng SH, Willmann MR, Chen HC, Sheen J (2002) Calcium signaling through protein kinases. The Arabidopsis calcium-dependent protein kinase gene family. Plant Physiol 129:469–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung WS, Lee SH, Kim JC, Heo WD, Kim MC, Park CY, Park HC, Lim CO, Kim WB, Harper JF, Cho MJ (2000) Identification of a calmodulin-regulated soybean Ca2+-ATPase (SCA1) that is located in the plasma membrane. Plant Cell 12:1393–1407. https://doi.org/10.2307/3871138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeFalco TA, Bender KW, Snedden WA (2009) Breaking the code: Ca2+ sensors in plant signalling. Biochem J 425:27–40

    Article  PubMed  CAS  Google Scholar 

  • Dou L, Lv L, Li H, Li Y, Xi R, Zhao Q, Wang W, Pang C, Zou C, Song G, Xiao G (2019) Genome-wide identification and expression analysis of the GhIQD gene family in upland cotton (Gossypium hirsutum L.). J Cotton Res. https://doi.org/https://doi.org/10.21203/rs.2.16724/v1

  • Gifford JL, Jamshidiha M, Mo J, Ishida H, Vogel HJ (2013) Comparing the calcium binding abilities of two soybean calmodulins: towards understanding the divergent nature of plant calmodulins. Plant Cell 25:4512–4524. https://doi.org/10.1105/tpc.113.113183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta NK, Shubhi A, Agarwal VP, Nathawat NS, Sunita G, Singh G (2013) Effect of short-term heat stress on growth, physiology and antioxidative defence system in wheat seedlings. Acta Physiol Plant 35:1837–1842. https://doi.org/10.1016/j.ecss.2007.03.033

    Article  CAS  Google Scholar 

  • Habib A, Donnelly DJ (2002) Calcium translocation and accumulation into potato tubers. Potato Res 45:17–24. https://doi.org/10.1007/BF02732215

    Article  CAS  Google Scholar 

  • Harper JF, Sussman MR, Schaller GE, Putnam-Evans C, Charbonneau H, Harmon AC (1991) A calcium-dependent protein kinase with a regulatory domain similar to calmodulin. Science 252:951–954

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Mol Plant Physiol 51:463–499

    Article  CAS  Google Scholar 

  • Hassanpanah D (2010) Evaluation of potato cultivars for resistance against water deficit stress under in vivo conditions. Potato Res 53:383–392

    Article  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Hoekstra AY, Hung PQ (2005) Globalisation of water resources: international virtual water flows in relation to crop trade. Global Environ Change 15:45–56

    Article  Google Scholar 

  • Hofgen R, Willmitzer L (1988) Storage of competent cells for Agrobacterium transformation. Nucleic Acids Res 16:9877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231

    Article  CAS  Google Scholar 

  • Ilhan E, Buyuk I, Inal B (2018) Transcriptome-scale characterization of salt responsive bean TCP transcription factors. Gene 642:64–73. https://doi.org/10.1016/j.gene.2017.11.021

    Article  CAS  PubMed  Google Scholar 

  • Ingkasuwan P, Netrphan S, Prasitwattanaseree S, Tanticharoen M, Bhumiratana S, Meechai A, Chaijaruwanich J, Takahashi H, Cheevadhanarak S (2012) Inferring transcriptional gene regulation network of starch metabolism in Arabidopsis thaliana leaves using graphical Gaussian model. BMC Syst Biol 6:100. https://doi.org/10.1186/1752-0509-6-100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jefferies R, Mackerron D (2008) Responses of potato genotypes to drought. II. Leaf area index, growth and yield. Ann Appl Biol 122:105–122

    Article  Google Scholar 

  • Kanchiswamy CN, Mohanta TK, Capuzzo A, Occhipinti A, Verrillo F, Maffei ME, Malnoy M (2013) Differential expression of CPKs and cytosolic Ca2+ variation in resistant and susceptible apple cultivars (Malus x domestica) in response to the pathogen Erwiniaamylovora and mechanical wounding. BMC Genom 14:760

    Article  CAS  Google Scholar 

  • Kaplan B, Davydov O, Knight H, Galon Y, Knight MR, Fluhr R, Fromm H (2006) Rapid transcriptome changes induced by cytosolic Ca2+ transients reveal ABRE-related sequences as Ca2+-responsive cis elements in Arabidopsis. Plant Cell 18:2733–2748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kapoor M, Arora R, Lama T, Nijhawan A, Khurana JP, Tyagi AK, Kapoor S (2008) Genome-Wide identification, organization and phylogenetic analysis of dicer-like, argonaute and RNA-dependent RNA polymerase gene families and their expression analysis during reproductive development and stress in rice. BMC Gen 9:1–17. https://doi.org/10.1186/1471-2164-9-451

    Article  CAS  Google Scholar 

  • Kooiker M, Airoldi CA, Losa A, Manzotti PS, Finzi L, Kater MM, Colombo L (2005) BASIC PENTACYSTEINE1, a GA binding protein that induces conformational changes in the regulatory region of the homeotic Arabidopsis gene SEEDSTICK. Plant Cell 17:722–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar D, Yusuf MA, Singh P, Sardar M, Sarin NB (2013) Modulation of antioxidant machinery in alpha-tocopherol-enriched transgenic Brassica juncea plants tolerant to abiotic stress conditions. Protoplasma 250:1079–1089

    Article  CAS  PubMed  Google Scholar 

  • Larkindale J, Knight MR (2002) Protection against heat stressinduced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiol 128:628–695. https://doi.org/10.1104/pp.128.2.682

    Article  Google Scholar 

  • Li ZG, Gong M (2009) Involvement of calcium and calmodulin in mechanical stimulation-induced heat tolerance in tobacco (Nicotiana tabacum L.) suspension cultured cells. Plant Physiol Commun 45:363–365

    Google Scholar 

  • Li C, Meng D, Zhang J, Cheng L (2019) Genome-wide identification and expression analysis of calmodulin and calmodulin-like genes in apple (Malus × domestica). Plant Physiol Biochem 139:600–612

    Article  CAS  PubMed  Google Scholar 

  • Luan S, Kudla J, Rodriguez-Concepcion M, Yalovsky S, Gruissem W (2002) Calmodulins and calcineurin B-like proteins: calcium sensors for specific signal response coupling in plants. Plant Cell 14:S389–S400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magnan F, Ranty B, Charpenteau M, Sotta B, Galaud JP, Aldon D (2008) Mutations in atcml9, a calmodulin-like protein from Arabidopsis thaliana, alter plant responses to abiotic stress and abscisic acid. Plant J 56:575–589

    Article  CAS  PubMed  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: An overview. Arch Biochem Biophys 444:139–158

    Article  CAS  PubMed  Google Scholar 

  • McAinsh MR, Pittman JK (2009) Shaping the calcium signature. New Phytol 181:275–294

    Article  CAS  PubMed  Google Scholar 

  • McCormack E, Braam J (2003) Calmodulins and related potential calcium sensors of Arabidopsis. New Phytol 159:585–598

    Article  CAS  PubMed  Google Scholar 

  • McCormack E, Tsai YC, Braam J (2005) Handling calcium signaling: arabidopsis CaMs and CMLs. Trends Plant Sci 10:383–389

    Article  CAS  PubMed  Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stress. Plant Cell and Environ 33:453–467. https://doi.org/10.1111/j.1365-3040.2009.02041.x

    Article  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410. https://doi.org/10.1016/S1360-1385(02)02312-9

    Article  CAS  PubMed  Google Scholar 

  • Munir S, Liu H, Xing Y, Hussain S, Ouyang B, Zhang Y, Li H, Ye Z (2016) Overexpression of calmodulin-like (ShCML44) stress-responsive gene from Solanum habrochaites enhances tolerance to multiple abiotic stresses. Sci Rep 6:31772. https://doi.org/10.1038/srep31772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh SH, Yun SJ (1999) Effects of various calmodulins on the activation of glutamate decarboxylase and nicotinamide adenine dincleotide kinase isolated from tobacco plants. Agric Chem Biotechnol 42:19–24

    CAS  Google Scholar 

  • Ozgur R, Turkan I, Uzilday B, Sekmen AH (2014) Endoplasmic reticulum stress triggers ROS signalling, changes the redox state, and regulates the antioxidant defence of Arabidopsisthaliana. J Exp Bot 65:1377–1390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey N, Ranjan A, Pant P, Tripathi RK, Ateek F, Pandey HP, Patre UV, Sawant SV (2013) CAMTA1 regulates drought responses in Arabidopsis thaliana. BMC Gen 14:216. https://doi.org/10.1186/1471-2164-14-216

    Article  CAS  Google Scholar 

  • Phean-o-pas S, Punteeranurak P, Buaboocha T (2005) Calcium signaling-mediated and differential induction of calmodulin gene expression by stress in Oryza sativa L. J Biochem Mol Biol 38:432–439. https://doi.org/10.5483/bmbrep.2005.38.4.432

    Article  CAS  PubMed  Google Scholar 

  • Ranty B, Aldon D, Galaud JP (2006) Plant calmodulins and calmodulin-related proteins: multifaceted relays to decode calcium signals. Plant Signal Behav 1:96–104

    Article  PubMed  PubMed Central  Google Scholar 

  • Reddy AS, Ali GS, Celesnik H, Day IS (2011) Coping with stresses: roles of calcium and calcium/calmodulin-regulated gene expression. Plant Cell 23:2010–2032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts DM, Harmon AC (1992) Calcium-modulated proteins: targets of intracellular calcium signals in higher plants. Annu Rev Plant Physiol Plant Mol Biol 43:375–414

    Article  CAS  Google Scholar 

  • Rogers SO, Bendich AJ (1994) Extraction of total cellular DNA from plants, algae and fungi. In: Gelvin SB, Schilperoort RA (eds) Plant Molecular Biology Manual, D1. Kluwer Academic Press, Dordrecht, pp 1–8

    Google Scholar 

  • Sairam RK, Srivastava GC (2002) Changes in antioxidant activity in subcellular fractions of tolerant and susceptible wheat genotypes in response to long term salt stress. Plant Sci 162:897–904

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. A laboratory manual. Cold Spring Harbor, New York

    Google Scholar 

  • Santi L, Wang Y, Stile MR, Berendzen K, Wanke D, Roig C, Pozzi C, Muller K, Muller J, Rohde W, Salamini F (2003) The GA octodinucleotide repeat binding factor BBR participates in the transcriptional regulation of the homeobox gene Bkn3. Plant J 34:813–826

    Article  CAS  PubMed  Google Scholar 

  • Snedden WA (2001) Fromm H (2001) Calmodulin as a versatile calcium signal transducer in plants. New Phytol 151:35–66

    Article  CAS  PubMed  Google Scholar 

  • Suzuki N, Koussevitzky S, Mittler R, Miller G (2012) ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ 35:259–270

    Article  CAS  PubMed  Google Scholar 

  • Vasquez Robinet C, Mane SP, Ulanov AV, Watkinson JI, Stromberg VK, De Koeyer D, Schafleitner R, Willmot DB, Bonierbale M, Bohnert HJ, Grene R (2008) Physiological and molecular adaptations to drought in Andean potato genotypes. J Exp Bot 59:2109–2123. https://doi.org/10.1093/jxb/ern073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Virdi AS, Singh S, Singh P (2015) Abiotic stress responses in plants: roles of calmodulin-regulated proteins. Front Plant Sci 6:809. https://doi.org/10.3389/fpls.2015.00809

    Article  PubMed  PubMed Central  Google Scholar 

  • Voorrips RE (2002) MapChart: Software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  CAS  PubMed  Google Scholar 

  • Wan DL, Li RL, Zou B, Zhang X, Cong JY, Wang RG, Xia Y, Li G (2012) Calmodulin binding protein CBP60g is a positive regulator of both disease resistance and drought tolerance in Arabidopsis. Plant Cell Rep 31:1269–1281. https://doi.org/10.1007/s00299-012-1247-7

    Article  CAS  PubMed  Google Scholar 

  • Wang SS, Diao WZ, Yang X, Qiao Z, Wang M, Acharya BR, Zhang W (2015) Arabidopsis thaliana CML25 mediates the Ca (2+) regulation of K (+) soja, plays differential roles in plant responses to bicarbonate, salt and osmotic stresses. PLoS One 10:e0141888

    Article  CAS  Google Scholar 

  • Wei M, Wang S, Dong H, Cai B, Tao J (2016) Characterization and comparison of the CPK gene family in the apple (malus x domestica) and other Rosaceae species and its response to Alternaria alternata infection. PLoS One 11:e0155590

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu GY, Rocha PS, Wang ML, Xu ML, Cui YC, Li LY, Zhu YX, Xia X (2011) A novel rice calmodulin-like gene, OsMSR2, enhances drought and salt tolerance and increases ABA sensitivity in Arabidopsis. Planta 234:47–59

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Wang SS, Wang M, Qiao Z, Bao CC, Zhang W (2014) Arabidopsis thaliana calmodulin-like protein CML24 regulates pollen tube growth by modulating the actin cytoskeleton and controlling the cytosolic Ca (2+) concentration. Plant Mol Biol 86:225–236

    Article  CAS  PubMed  Google Scholar 

  • Yoo JH, Park CY, Kim JC, Heo WD, Cheong MS, Park HC, Kim MC, Moon BC, Choi MS, Kang YH, Lee JH, Kim HS, Lee SM, Yoon HW, Lim CO, Yun DJ, Lee SY, Chung WS, Cho MJ (2005) Direct interaction of a divergent CaM isoform and the transcription factor, MYB2, enhances salt tolerance in Arabidopsis. J Biol Chem 280:3697–3706

    Article  CAS  PubMed  Google Scholar 

  • Yu B, Yan S, Zhou H, Dong R, Lei J, Chen C, Cao B (2018) Overexpression of CsCaM3 improves high temperature tolerance in cucumber. Front Plant Sci 9:797. https://doi.org/10.3389/fpls.2018.00797

    Article  PubMed  PubMed Central  Google Scholar 

  • Yuenyong W, Chinpongpanich A, Comai L, Chadchawan S, Buaboocha T (2018) Downstream components of the calmodulin signaling pathway in the rice salt stress response revealed by transcriptome profiling and target identification. BMC Plant Biol 18:335. https://doi.org/10.1186/s12870-018-1538-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng H, Xu L, Singh A, Wang H, Du L, Poovaiah BW (2015) Involvement of calmodulin and calmodulin-like proteins in plant responses to abiotic stresses. Front Plant Sci 6:600

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu X, Dunand C, Snedden W, Galaud JP (2015) CaM and CML emergence in the green lineage. Trends Plant Sci 20:483–489

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Dr. Deepak Kumar is thankful to the Science and Engineering Research Board (Grant No. EEQ/2016/000487), New Delhi, Government of India for providing the financial support.

Author information

Authors and Affiliations

Authors

Contributions

The work presented here was carried out in collaboration among all the authors. DK, SK, and AM conceived and designed the research. MR contributed to cloning and functional validation experiments in plants. AK contributed to Bioinformatics experiments and NY and MR conducted the real-time experiments and analysed the data. MR, AK, and DK wrote the manuscript, and MAY provided vital advice on the article and edited the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Ananda Mustafiz or Deepak Kumar.

Ethics declarations

Conflict of interest

The authors have declared that no competing interests exist.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11103_2021_1131_MOESM1_ESM.pptx

Supplementary Fig. S1 Wordcloud based on results from PLACE database. (a) Using the keywords associated with promoter elements present in the StCaMgenes. (b) Using promoter motif names. Larger word size means larger representation in the promoters. Supplementary Fig. S2 RNA-seq based expression profiling of StCaMs. Expression heatmap of StCaM genes under (a) abiotic stress, (b) hormone treatment and (c) different tissues. FPKM values of StCaM genes were scaled and centered before plotting the heatmap. Clustering in the heatmap is based on correlation. Supplementary Fig. S3 Generation and molecular analysis of transgenic tobacco plants expressing the StCaM2 gene. (a) T-DNA portion of the pCAM-StCaM2 vector construct used for tobacco transformation. (b) PCR analysis to screen the transgenic plants for the presence of transgene was done using StCaM2 gene-specific primers. (c) Southern blot analysis showing the integration and copy number of the transgene. (d) RT-PCR analysis confirming expression of StCaM2 in young fully expanded leaves of transgenic tobacco plants. Actin gene was used as an internal control. Wild-type (WT) tobacco control. (C1, C3, C4, C6, C7, and C9) independently transformed T1 transgenic lines of tobacco (PPTX 1043 KB)

Supplementary file2 (XLSX 573 KB)

Supplementary file3 (DOCX 15 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raina, M., Kumar, A., Yadav, N. et al. StCaM2, a calcium binding protein, alleviates negative effects of salinity and drought stress in tobacco. Plant Mol Biol 106, 85–108 (2021). https://doi.org/10.1007/s11103-021-01131-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-021-01131-1

Keywords

Navigation