Skip to main content

Advertisement

Log in

Molecular mechanisms of plant tolerance to heat stress: current landscape and future perspectives

  • Review
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

We summarize recent studies focusing on the molecular basis of plant heat stress response (HSR), how HSR leads to thermotolerance, and promote plant adaptation to recurring heat stress events.

Abstract

The global crop productivity is facing unprecedented threats due to climate change as high temperature negatively influences plant growth and metabolism. Owing to their sessile nature, plants have developed complex signaling networks which enable them to perceive changes in ambient temperature. This in turn activates a suite of molecular changes that promote plant survival and reproduction under adverse conditions. Deciphering these mechanisms is an important task, as this could facilitate development of molecular markers, which could be ultimately used to breed thermotolerant crop cultivars. In current article, we summarize mechanisms involve in plant heat stress acclimation with special emphasis on advances related to heat stress perception, heat-induced signaling, heat stress-responsive gene expression and thermomemory that promote plant adaptation to short- and long-term-recurring heat-stress events. In the end, we will discuss impact of emerging technologies that could facilitate the development of heat stress-tolerant crop cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ANN:

Annexin

AOX:

Alternative oxidase

APX:

Ascorbate peroxidase

ASF1:

Anti-silencing function 1

AT:

Acquired thermotolerance

BIP:

Binding immunoglobulin protein

bZIP:

Basic leucine zipperCas9

CaM:

Calmodulin

CAT:

Castalse

CNGC:

Cyclic nucleotide-gated channels

CSD:

Copper/zinc superoxide dismutase

ER:

Endoplasmic reticulum

FGT1:

Forgetter 1

GP:

Glutathione peroxidase

GR:

Glutathione reductase

GRF:

Growth-regulating factor

H3K4:

Histone 3 lysine 4

WT:

Wild type

HSE:

Heat shock element

PLC9:

Phospholipase C 9

MAPKK:

MAPK kinases

TF:

Transcription factor

LEA:

Late embryogenesis abundant

miRNA:

Micro-RNA

NRD:

Negative regulatory domain

PCD:

Programmed cell death

PM:

Plasma membrane

REF6:

Relative of early flowering 6

HS:

Heat stress repeats

ROS:

Reactive oxygen species

sHSP:

Small HSP

sHSPs:

Small HSPs

XRN:

Exoribonuclease

HSR:

Heat-stress response

UPR:

Unfolded protein response

QTL:

Quantitative trait loci

Ca2 + :

Calcium

DRIP2:

DREB2A-interacting-protein 2

CDKA1:

Cyclin-dependent kinase A1

MAPKKK:

MAPK kinase kinases

HIT4:

Heat intolerant 4

IP3:

D myo-inositol-1,4,5-trisphosphate

RIM:

RCD1-interacting motif

Cas9:

CRISPR-associated protein 9

ERF:

Ethylene responsive factor

AP2/ERF:

Apetala 2/ethylene responsive factor

SOD:

Superoxide dismutase

H3K27me3:

Histone 3 lysine 27 tri-methylation

PIPK:

Phosphatidylinositol-4-phosphate 5-kinase

ONSEN:

A copia-type reterotransposon

CBK3:

Calmodulin-binding protein kinase 3

DRIP1:

DREB2A-interacting-protein 1

NF-YB3:

Nuclear factor YB3

TAS1:

Trans-acting siRNA precursor 1

CDPKs:

Calcium-dependent protein kinases

MOM1:

Morpheus molecule 1

PTM:

Post-translational modification

HSF:

Heat shock factors

RBOHs:

Respiratory burst oxidase homologs

MAPK:

Mitogen-activated protein kinase

DDM1:

Decrease in DNA methylation 1

HTT1/2:

Heat-induced TAS1 TARGET1/2

MBF1c:

Multi-protein bridging factor 1c

DREB:

Dehydration responsive element binding

CRISPR:

Clustered regularly interspaced short palindromic

NADPH:

Nicotinamide adenine dinucleotide phosphate

DPB3-1:

DNA polymerase II subunit B3-1

TRD:

Temperature-dependent repression domain

SPL:

Squamosa-promoter binding protein-like

HSP:

Heat shock protein

PIP2:

Phosphatidylinositol-4,5-bisphosphate

NF-YA2:

Nuclear factor YA2

References

  • Ahmad P, Sarwat M, Bhat NA, Wani MR, Kazi AG, Tran LSP (2015) Alleviation of cadmium toxicity in Brassica juncea L. (Czern & Coss) by calcium application involves various physiological and biochemical strategies. PLoS ONE 101:e0114571

    Article  Google Scholar 

  • Ahmad P, Abdel Latef AA, Abd Allah EF, Hashem A, Sarwat M, Anjum NA, Gucel S (2016) Calcium and potassium supplementation enhanced growth, osmolyte secondary metabolite production, and enzymatic antioxidant machinery in cadmium-exposed chickpea (Cicer arietinum L.). Front Plant Sci 7:513

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahmad P, Abd Allah EF, Alyemeni MN, Wijaya L, Alam P, Bhardwaj R, Siddique KH (2018) Exogenous application of calcium to 24-epibrassinosteroid pre-treated tomato seedlings mitigates NaCl toxicity by modifying ascorbate–glutathione cycle and secondary metabolites. Sci Rep 81:1–15

    Google Scholar 

  • Akhtar M, Jaiswal A, Taj G, Jaiswal JP, Qureshi MI, Singh NK (2012) DREB1/CBF transcription factors: their structure, function and role in abiotic stress tolerance in plants. J Genet 913:385–395

    Article  Google Scholar 

  • Albihlal WS, Obomighie I, Blein T, Persad R, Chernukhin I, Crespi M, Mullineaux PM (2018) Arabidopsis HEAT SHOCK TRANSCRIPTION FACTORA1b regulates multiple developmental genes under benign and stress conditions. J Exp Bot 6911:2847–2862

    Article  Google Scholar 

  • Banti V, Mafessoni F, Loreti E, Alpi A, Perata P (2010) The heat-inducible transcription factor HsfA2 enhances anoxia tolerance in Arabidopsis. Plant Physiol 1523:1471–1483

    Article  Google Scholar 

  • Baxter A, Mittler R, Suzuki N (2014) ROS as key players in plant stress signaling. J Exp Bot 655:1229–1240

    Article  Google Scholar 

  • Bennetzen JL, Wang H (2014) The contributions of transposable elements to the structure, function, and evolution of plant genomes. Annu Rev Plant Biol 65:505–530

    Article  CAS  PubMed  Google Scholar 

  • Bönisch C, Hake SB (2012) Histone H2A variants in nucleosomes and chromatin: more or less stable? Nucleic Acids Res 4021:10719–10741

    Article  Google Scholar 

  • Braam J (1992) Regulated expression of the calmodulin-related TCH genes in cultured Arabidopsis cells: induction by calcium and heat shock. Proc Natl Acad Sci 898:3213–3216

    Article  Google Scholar 

  • Brzezinka K, Altmann S, Czesnick H, Nicolas P, Gorka M, Benke E, Bäurle I (2016) Arabidopsis FORGETTER1 mediates stress-induced chromatin memory through nucleosome remodeling. Elife 5:e17061

    Article  PubMed  PubMed Central  Google Scholar 

  • Cavrak VV, Lettner N, Jamge S, Kosarewicz A, Bayer LM, Scheid OM (2014) How a retrotransposon exploits the plant’s heat stress response for its activation. PLoS Genet 101:e1004115

    Article  Google Scholar 

  • Ceccherini G, Russo S, Ameztoy I, Marchese AF, Carmona-Moreno C (2017) Heat waves in Africa 1981–2015, observations and reanalysis. Nat Hazard 171:115–125

    Article  Google Scholar 

  • Charng YY, Liu HC, Liu NY, Chi WT, Wang CN, Chang SH, Wang TT (2007) A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis. Plant Physiol 1431:251–262

    Article  Google Scholar 

  • Chen H, Hwang JE, Lim CJ, Kim DY, Lee SY, Lim CO (2010) Arabidopsis DREB2C functions as a transcriptional activator of HsfA3 during the heat stress response. Biochem Biophys Res Commun 4012:238–244

    Article  Google Scholar 

  • Clapier CR, Cairns BR (2009) The biology of chromatin remodeling complexes. Annu Rev Biochem 78:273–304

    Article  CAS  PubMed  Google Scholar 

  • Clough SJ, Fengler KA, Yu IC, Lippok B, Smith RK, Bent AF (2000) The Arabidopsis dnd1 “defense, no death” gene encodes a mutated cyclic nucleotide-gated ion channel. Proc Natl Acad Sci 9716:9323–9328

    Article  Google Scholar 

  • Cortijo S, Charoensawan V, Brestovitsky A, Buning R, Ravarani C, Rhodes D, Wigge PA (2017) Transcriptional regulation of the ambient temperature response by H2A Z nucleosomes and HSF1 transcription factors in Arabidopsis. Mol Plant 1010:1258–1273

    Article  Google Scholar 

  • Dafny-Yelin M, Tzfira T, Vainstein A, Adam Z (2008) Non-redundant functions of sHSP-CIs in acquired thermotolerance and their role in early seed development in Arabidopsis. Plant Mol Biol 674:363–373

    Article  Google Scholar 

  • Dai X, Bai Y, Zhao L, Dou X, Liu Y, Wang L, Qin Y (2017) H2A Z represses gene expression by modulating promoter nucleosome structure and enhancer histone modifications in Arabidopsis. Mol Plant 1010:1274–1292

    Article  Google Scholar 

  • Deng Y, Humbert S, Liu JX, Srivastava R, Rothstein SJ, Howell SH (2011) Heat induces the splicing by IRE1 of a mRNA encoding a transcription factor involved in the unfolded protein response in Arabidopsis. Proc Natl Acad Sci 10817:7247–7252

    Article  Google Scholar 

  • El-Kereamy A, Bi YM, Ranathunge K, Beatty PH, Good AG, Rothstein SJ (2012) The rice R2R3-MYB transcription factor OsMYB55 is involved in the tolerance to high temperature and modulates amino acid metabolism. PLoS ONE 712:e52030

    Article  Google Scholar 

  • Erkina TY, Tschetter PA, Erkine AM (2008) Different requirements of the SWI/SNF complex for robust nucleosome displacement at promoters of heat shock factor and Msn2-and Msn4-regulated heat shock genes. Mol Cell Biol 284:1207–1217

    Article  Google Scholar 

  • Fahad S, Hussain S, Bano A, Saud S, Hassan S, Shan D, Huang J (2015) Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: consequences for changing environment. Environ Sci Pollut Res 227:4907–4921

    Article  Google Scholar 

  • Fang Y, Liao K, Du H, Xu Y, Song H, Li X, Xiong L (2015) A stress-responsive NAC transcription factor SNAC3 confers heat and drought tolerance through modulation of reactive oxygen species in rice. J Exp Bot 6621:6803–6817

    Article  Google Scholar 

  • Fang X, Zhao G, Zhang S, Li Y, Gu H, Li Y, Qi Y (2019) Chloroplast-to-nucleus signaling regulates microRNA biogenesis in Arabidopsis. Dev Cell 483:371–382

    Article  Google Scholar 

  • Farooq MA, Niazi AK, Akhtar J, Farooq M, Souri Z, Karimi N, Rengel Z (2019) Acquiring control: the evolution of ROS-Induced oxidative stress and redox signaling pathways in plant stress responses. Plant Physiol Biochem 141:353–369

    Article  CAS  PubMed  Google Scholar 

  • Feng C, Andreasson E, Maslak A, Mock HP, Mattsson O, Mundy J (2004) Arabidopsis MYB68 in development and responses to environmental cues. Plant Sci 1675:1099–1107

    Article  Google Scholar 

  • Finka A, Goloubinoff P (2014) The CNGCb and CNGCd genes from Physcomitrella patens moss encode for thermosensory calcium channels responding to fluidity changes in the plasma membrane. Cell Stress Chaperones 191:83–90

    Article  Google Scholar 

  • Finka A, Mattoo RU, Goloubinoff P (2011) Meta-analysis of heat-and chemically upregulated chaperone genes in plant and human cells. Cell Stress Chaperones 161:15–31

    Article  Google Scholar 

  • Finka A, Cuendet AFH, Maathuis FJ, Saidi Y, Goloubinoff P (2012) Plasma membrane cyclic nucleotide gated calcium channels control land plant thermal sensing and acquired thermotolerance. Plant Cell 248:3333–3348

    Article  Google Scholar 

  • Fragkostefanakis S, Röth S, Schleiff E, SCHARF K D, (2015) Prospects of engineering thermotolerance in crops through modulation of heat stress transcription factor and heat shock protein networks. Plant Cell Environ 389:1881–1895

    Article  Google Scholar 

  • Gao F, Han X, Wu J, Zheng S, Shang Z, Sun D, Li B (2012) A heat-activated calcium-permeable channel—Arabidopsis cyclic nucleotide-gated ion channel 6—is involved in heat shock responses. Plant J 706:1056–1069a

    Article  Google Scholar 

  • Gao K, Liu YL, Li B, Zhou RG, Sun DY, Zheng SZ (2014) Arabidopsis thaliana phosphoinositide-specific phospholipase C isoform 3 (AtPLC3) and AtPLC9 have an additive effect on thermotolerance. Plant Cell Physiol 5511:1873–1883

    Article  Google Scholar 

  • Giaimo BD, Ferrante F, Herchenröther A, Hake SB, Borggrefe T (2019) The histone variant H2A Z in gene regulation. Epigenetics Chromatin 121:1–22

    Google Scholar 

  • Gong M, van der Luit AH, Knight MR, Trewavas AJ (1998) Heat-shock-induced changes in intracellular Ca2+ level in tobacco seedlings in relation to thermotolerance. Plant Physiol 1161:429–437

    Article  Google Scholar 

  • Guan Q, Lu X, Zeng H, Zhang Y, Zhu J (2013) Heat stress induction of miR398 triggers a regulatory loop that is critical for thermotolerance in Arabidopsis. Plant J 745:840–851

    Article  Google Scholar 

  • Guenther MG, Levine SS, Boyer LA, Jaenisch R, Young RA (2007) A chromatin landmark and transcription initiation at most promoters in human cells. Cell 1301:77–88

    Article  Google Scholar 

  • Guihur A, Fauvet B, Finka A, Quadroni M, Goloubinoff P (2020) Quantitative proteomic analysis to capture the role of heat‐accumulated proteins in moss plant acquired thermotolerance. Plant Cell Environ

  • Guo W, Zhang J, Zhang N, Xin M, Peng H, Hu Z, Du J (2015) The wheat NAC transcription factor TaNAC2L is regulated at the transcriptional and post-translational levels and promotes heat stress tolerance in transgenic Arabidopsis. PLoS ONE 108:e0135667

    Article  Google Scholar 

  • Hahn A, Bublak D, Schleiff E, Scharf KD (2011) Crosstalk between Hsp90 and Hsp70 chaperones and heat stress transcription factors in tomato. Plant Cell 232:741–755

    Article  Google Scholar 

  • Hatfield JL (2016) Increased temperatures have dramatic effects on growth and grain yield of three maize hybrids. Agri Environ Lett 11:150006

    Article  Google Scholar 

  • Hatfield JL, Prueger JH (2015) Temperature extremes: effect on plant growth and development. Weather Clim Extremes 10:4–10

    Article  Google Scholar 

  • Hayes S, Schachtschabel J, Mishkind M, Munnik T, Arisz SA (2020) Hot topic: thermosensing in plants. Plant Cell Environ

  • Hendershot LM (2004) The ER function BiP is a master regulator of ER function. Mount Sinai J Med NY 71(5):289–297

    Google Scholar 

  • Hendershot LM, Valentine VA, Lee AS, Morris SW, Shapiro DN (1994) Localization of the gene encoding human BiP/GRP78, the endoplasmic reticulum cognate of the HSP70 family, to chromosome 9q34. Genomics 202:281–284

    Article  Google Scholar 

  • Hergeth SP, Schneider R (2015) The H1 linker histones: multifunctional proteins beyond the nucleosomal core particle. EMBO Rep 1611:1439–1453

    Article  Google Scholar 

  • Huijser P, Schmid M (2011) The control of developmental phase transitions in plants. Development 13819:4117–4129

    Article  Google Scholar 

  • Ito H, Gaubert H, Bucher E, Mirouze M, Vaillant I, Paszkowski J (2011) An siRNA pathway prevents transgenerational retrotransposition in plants subjected to stress. Nature 4727341:115–119

    Article  Google Scholar 

  • Iwasaki M, Paszkowski J (2014) Identification of genes preventing transgenerational transmission of stress-induced epigenetic states. Proc Natl Acad Sci 11123:8547–8552

    Article  Google Scholar 

  • Jacob P, Hirt H, Bendahmane A (2017) The heat-shock protein/chaperone network and multiple stress resistance. Plant Biotechnol J 154:405–414

    Article  Google Scholar 

  • Jami SK, Clark GB, Turlapati SA, Handley C, Roux SJ, Kirti PB (2008) Ectopic expression of an annexin from Brassica juncea confers tolerance to abiotic and biotic stress treatments in transgenic tobacco. Plant Physiol Biochem 4612:1019–1030

    Article  Google Scholar 

  • Kataoka R, Takahashi M, Suzuki N (2017) Coordination between bZIP28 and HSFA2 in the regulation of heat response signals in Arabidopsis. Plant Signal Behav 1211:e1376159

    Article  Google Scholar 

  • Kaur H, Sirhindi G, Bhardwaj R, Alyemeni MN, Siddique KH, Ahmad P (2018) 28-homobrassinolide regulates antioxidant enzyme activities and gene expression in response to salt-and temperature-induced oxidative stress in Brassica juncea. Sci Rep 8(1):1–13

    Article  Google Scholar 

  • Khan MIR, Iqbal N, Masood A, Per TS, Khan NA (2013) Salicylic acid alleviates adverse effects of heat stress on photosynthesis through changes in proline production and ethylene formation. Plant Signal Behav 811:e26374

    Article  Google Scholar 

  • Kim JS, Mizoi J, Kidokoro S, Maruyama K, Nakajima J, Nakashima K, Yamaguchi-Shinozaki K (2012) Arabidopsis GROWTH-REGULATING FACTOR7 functions as a transcriptional repressor of abscisic acid—and osmotic stress—responsive genes, including DREB2A. Plant Cell 248:3393–3405

    Article  Google Scholar 

  • Kimura S, Kaya H, Kawarazaki T, Hiraoka G, Senzaki E, Michikawa M, Kuchitsu K (2012) Protein phosphorylation is a prerequisite for the Ca2+-dependent activation of Arabidopsis NADPH oxidases and may function as a trigger for the positive feedback regulation of Ca2+ and reactive oxygen species. Biochimica et Biophysica Acta (BBA) Mol Cell Res 18232:398–405

    Article  Google Scholar 

  • Kobayashi M, Ohura I, Kawakita K, Yokota N, Fujiwara M, Shimamoto K, Yoshioka H (2007) Calcium-dependent protein kinases regulate the production of reactive oxygen species by potato NADPH oxidase. Plant Cell 193:1065–1080

    Article  Google Scholar 

  • Kohli SK, Khanna K, Bhardwaj R, Abd Allah EF, Ahmad P, Corpas FJ (2019) Assessment of subcellular ROS and NO metabolism in higher plants: multifunctional signaling molecules. Antioxidants 812:641

    Article  Google Scholar 

  • Konopka-Postupolska D, Clark G, Goch G, Debski J, Floras K, Cantero A, Hennig J (2009) The role of annexin 1 in drought stress in Arabidopsis. Plant Physiol 1503:1394–1410

    Article  Google Scholar 

  • Kovtun Y, Chiu WL, Tena G, Sheen J (2000) Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci 976:2940–2945

    Article  Google Scholar 

  • Kumar SV, Wigge PA (2010) H2A Z-containing nucleosomes mediate the thermosensory response in Arabidopsis. Cell 1401:136–147

    Article  Google Scholar 

  • Kumar RR, Hasija S, Goswami S, Tasleem M, Sakhare A, Kumar S, Praveen S (2019) Gamma irradiation protect the developing wheat endosperm from oxidative damage by balancing the trade-off between the defence network and grains quality. Ecotoxicol Environ Saf 174:637–648

    Article  CAS  PubMed  Google Scholar 

  • Kumar RR, Arora K, Goswami S, Sakhare A, Singh B, Chinnusamy V, Praveen S (2020) MAPK enzymes: a ROS activated signaling sensors involved in modulating heat stress response, tolerance and grain stability of wheat under heat stress. 3 Biotech 109:1–11

    Google Scholar 

  • Lämke J, Bäurle I (2017) Epigenetic and chromatin-based mechanisms in environmental stress adaptation and stress memory in plants. Genome Biol 181:1–11

    Google Scholar 

  • Lämke J, Brzezinka K, Altmann S, Bäurle I (2016) A hit-and-run heat shock factor governs sustained histone methylation and transcriptional stress memory. EMBO J 352:162–175

    Article  Google Scholar 

  • Lang-Mladek C, Popova O, Kiok K, Berlinger M, Rakic B, Aufsatz W, Luschnig C (2010) Transgenerational inheritance and resetting of stress-induced loss of epigenetic gene silencing in Arabidopsis. Mol Plant 33:594–602

    Article  Google Scholar 

  • Laohavisit A, Brown AT, Cicuta P, Davies JM (2010) Annexins: components of the calcium and reactive oxygen signaling network. Plant Physiol 1524:1824–1829

    Article  Google Scholar 

  • Laohavisit A, Shang Z, Rubio L, Cuin TA, Véry AA, Wang A, Davies JM (2012) Arabidopsis annexin1 mediates the radical-activated plasma membrane Ca2+-and K+-permeable conductance in root cells. Plant Cell 244:1522–1533

    Article  Google Scholar 

  • Laohavisit A, Richards SL, Shabala L, Chen C, Colaço RD, Swarbreck SM, Davies JM (2013) Salinity-induced calcium signaling and root adaptation in Arabidopsis require the calcium regulatory protein annexin1. Plant Physiol 1631:253–262

    Article  Google Scholar 

  • Larkindale J, Vierling E (2008) Core genome responses involved in acclimation to high temperature. Plant Physiol 1462:748–761

    Google Scholar 

  • Larkindale J, Hall JD, Knight MR, Vierling E (2005) Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiol 1382:882–897

    Article  Google Scholar 

  • Lee H, Cha J, Choi C, Choi N, Ji HS, Park SR, Hwang DJ (2018) Rice WRKY11 plays a role in pathogen defense and drought tolerance. Rice 111:1–12

    Google Scholar 

  • Lemtiri-Chlieh F, MacRobbie EA, Webb AA, Manison NF, Brownlee C, Skepper JN, Brearley CA (2003) Inositol hexakisphosphate mobilizes an endomembrane store of calcium in guard cells. Proc Natl Acad Sci 10017:10091–10095

    Article  Google Scholar 

  • Lesk C, Rowhani P, Ramankutty N (2016) Influence of extreme weather disasters on global crop production. Nature 5297584:84–87

    Article  Google Scholar 

  • Li S, Zhou X, Chen L, Huang W, Yu D (2010) Functional characterization of Arabidopsis thaliana WRKY39 in heat stress. Mol Cells 295:475–483

    Article  Google Scholar 

  • Li S, Fu Q, Chen L, Huang W, Yu D (2011) Arabidopsis thaliana WRKY25, WRKY26, and WRKY33 coordinate induction of plant thermotolerance. Planta 2336:1237–1252

    Article  Google Scholar 

  • Li PS, Yu TF, He GH, Chen M, Zhou YB, Chai SC, Ma YZ (2014a) Genome-wide analysis of the Hsf family in soybean and functional identification of GmHsf-34 involvement in drought and heat stresses. BMC Genom 151:1–16

    Google Scholar 

  • Li S, Liu J, Liu Z, Li X, Wu F, He Y (2014b) Heat-induced TAS1 TARGET1 mediates thermotolerance via heat stress transcription factor A1a-directed pathways in Arabidopsis. Plant Cell 264:1764–1780

    Article  Google Scholar 

  • Li N, Sun L, Zhang L, Song Y, Hu P, Li C, Hao FS (2015a) AtrbohD and AtrbohF negatively regulate lateral root development by changing the localized accumulation of superoxide in primary roots of Arabidopsis. Planta 2413:591–602

    Article  Google Scholar 

  • Li XM, Chao DY, Wu Y, Huang X, Chen K, Cui LG, Lin HX (2015b) Natural alleles of a proteasome α2 subunit gene contribute to thermotolerance and adaptation of African rice. Nat Genet 477:827–833

    Article  Google Scholar 

  • Li B, Gao K, Ren H, Tang W (2018) Molecular mechanisms governing plant responses to high temperatures. J Integr Plant Biol 609:757–779

    Article  Google Scholar 

  • Li Z, Tang J, Srivastava R, Bassham DC, Howell SH (2020a) The Transcription factor bZIP60 links the unfolded protein response to the heat stress response in maize. Plant Cell 3211:3559–3575

    Article  Google Scholar 

  • Li G, Zhang C, Zhang G, Fu W, Feng B, Chen T, Fu G (2020b) Abscisic acid negatively modulates heat tolerance in rolled leaf rice by increasing leaf temperature and regulating energy homeostasis. Rice 131:1–16

    Google Scholar 

  • Liao C, Zheng Y, Guo Y (2017) MYB30 transcription factor regulates oxidative and heat stress responses through ANNEXIN-mediated cytosolic calcium signaling in Arabidopsis. New Phytol 2161:163–177

    Article  Google Scholar 

  • Lin F, Ding H, Wang J, Zhang H, Zhang A, Zhang Y, Jiang M (2009) Positive feedback regulation of maize NADPH oxidase by mitogen-activated protein kinase cascade in abscisic acid signaling. J Exp Bot 6011:3221–3238

    Article  Google Scholar 

  • Liu JX, Howell SH (2016) Managing the protein folding demands in the endoplasmic reticulum of plants. New Phytol 2112:418–428

    Article  Google Scholar 

  • Liu HT, Li B, Shang ZL, Li XZ, Mu RL, Sun DY, Zhou RG (2003) Calmodulin is involved in heat shock signal transduction in wheat. Plant Physiol 1323:1186–1195

    Article  Google Scholar 

  • Liu HT, Li GL, Chang HUI, Sun DY, Zhou RG, Li B (2007) Calmodulin-binding protein phosphatase PP7 is involved in thermotolerance in Arabidopsis. Plant Cell Environ 302:156–164

    Article  Google Scholar 

  • Liu HT, Gao F, Li GL, Han JL, Liu DL, Sun DY, Zhou RG (2008) The calmodulin-binding protein kinase 3 is part of heat-shock signal transduction in Arabidopsis thaliana. Plant J 555:760–773

    Article  Google Scholar 

  • Liu Y, Zhang C, Chen J, Guo L, Li X, Li W, Zhang L (2013) Arabidopsis heat shock factor HsfA1a directly senses heat stress, pH changes, and hydrogen peroxide via the engagement of redox state. Plant Physiol Biochem 64:92–98

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Asseng S, Müller C, Ewert F, Elliott J, Lobell DB, Zhu Y (2016) Similar estimates of temperature impacts on global wheat yield by three independent methods. Nat Clim Chang 612:1130–1136

    Article  Google Scholar 

  • Liu B, Zhou Y, Lan W, Zhou Q, Li F, Chen F, Liu G (2019a) LlDREB1G, a novel DREB subfamily gene from Lilium longiflorum, can enhance transgenic Arabidopsis tolerance to multiple abiotic stresses. Plant Cell Tissue Organ Cult 1383:489–506

    Article  Google Scholar 

  • Liu J, Feng L, Gu X, Deng X, Qiu Q, Li Q, He Z (2019b) An H3K27me3 demethylase-HSFA2 regulatory loop orchestrates transgenerational thermomemory in Arabidopsis. Cell Res 295:379–390

    Article  Google Scholar 

  • Liu XH, Lyu YS, Yang W, Yang ZT, Lu SJ, Liu JX (2020) A membrane-associated NAC transcription factor OsNTL3 is involved in thermotolerance in rice. Plant Biotechnol J 185:1317–1329

    Article  Google Scholar 

  • Locato V, De Gara L (2018) Programmed cell death in plants: an overview. Plant Programmed Cell Death 1–8

  • Lohmann C, Eggers-Schumacher G, Wunderlich M, Schöffl F (2004) Two different heat shock transcription factors regulate immediate early expression of stress genes in Arabidopsis. Mol Genet Genom 2711:11–21

    Article  Google Scholar 

  • Lu K, Guo W, Lu J, Yu H, Qu C, Tang Z, Liang Y (2015) Genome-wide survey and expression profile analysis of the mitogen-activated protein kinase (MAPK) gene family in Brassica rapa. PLoS ONE 107:e0132051

    Article  Google Scholar 

  • Manghwar H, Lindsey K, Zhang X, Jin S (2019) CRISPR/Cas system: recent advances and future prospects for genome editing. Trends Plant Sci 2412:1102–1125

    Article  Google Scholar 

  • Mäser P, Thomine S, Schroeder JI, Ward JM, Hirschi K, Sze H, Guerinot ML (2001) Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol 1264:1646–1667

    Article  Google Scholar 

  • Matsukura S, Mizoi J, Yoshida T, Todaka D, Ito Y, Maruyama K, Yamaguchi-Shinozaki K (2010) Comprehensive analysis of rice DREB2-type genes that encode transcription factors involved in the expression of abiotic stress-responsive genes. Mol Genet Genom 2832:185–196

    Article  Google Scholar 

  • Meng X, Wang JR, Wang GD, Liang XQ, Li XD, Meng QW (2015) An R2R3-MYB gene, LeAN2, positively regulated the thermo-tolerance in transgenic tomato. J Plant Physiol 175:1–8

    Article  CAS  PubMed  Google Scholar 

  • Meshi T, Iwabuchi M (1995) Plant transcription factors. Plant cell physiol 36(8):1405–1420

  • Miller GAD, Mittler RON (2006) Could heat shock transcription factors function as hydrogen peroxide sensors in plants? Ann Bot 982:279–288

    Article  Google Scholar 

  • Miller G, Suzuki N, Rizhsky L, Hegie A, Koussevitzky S, Mittler R (2007) Double mutants deficient in cytosolic and thylakoid ascorbate peroxidase reveal a complex mode of interaction between reactive oxygen species, plant development, and response to abiotic stresses. Plant Physiol 1444:1777–1785

    Article  Google Scholar 

  • Miller G, Schlauch K, Tam R, Cortes D, Torres MA, Shulaev V, Mittler R (2009) The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli. Sci Signal 284:ra45

    Google Scholar 

  • Miller MJ, Barrett-Wilt GA, Hua Z, Vierstra RD (2010) Proteomic analyses identify a diverse array of nuclear processes affected by small ubiquitin-like modifier conjugation in Arabidopsis. Proc Natl Acad Sci 10738:16512–16517

    Article  Google Scholar 

  • Miozzo F, Sabéran-Djoneidi D, Mezger V (2015) HSFs, stress sensors and sculptors of transcription compartments and epigenetic landscapes. J Mol Biol 42724:3793–3816

    Article  Google Scholar 

  • Mishkind M, Vermeer JE, Darwish E, Munnik T (2009) Heat stress activates phospholipase D and triggers PIP2 accumulation at the plasma membrane and nucleus. Plant J 601:10–21

    Article  Google Scholar 

  • Mishra SK, Tripp J, Winkelhaus S, Tschiersch B, Theres K, Nover L, Scharf KD (2002) In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato. Genes Dev 1612:1555–1567

    Article  Google Scholar 

  • Mittler R (2017) ROS are good. Trends Plant Sci 221:11–19

    Article  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 910:490–498

    Article  Google Scholar 

  • Mittler R, Vanderauwera S, Suzuki N, Miller GAD, Tognetti VB, Vandepoele K, Van Breusegem F (2011) ROS signaling: the new wave? Trends Plant Sci 166:300–309

    Article  Google Scholar 

  • Mittler R, Finka A, Goloubinoff P (2012) How do plants feel the heat? Trends Biochem Sci 373:118–125

    Article  Google Scholar 

  • Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) AP2/ERF family transcription factors in plant abiotic stress responses. Biochimica et Biophysica Acta (BBA)-Gene Regulat Mech 18192:86–96

    Article  Google Scholar 

  • Morimoto K, Mizoi J, Qin F, Kim JS, Sato H, Osakabe Y, Yamaguchi-Shinozaki K (2013) Stabilization of Arabidopsis DREB2A is required but not sufficient for the induction of target genes under conditions of stress. PLoS One 8(12):e80457

  • Morimoto K, Ohama N, Kidokoro S, Mizoi J, Takahashi F, Todaka D, Yamaguchi-Shinozaki K (2017) BPM-CUL3 E3 ligase modulates thermotolerance by facilitating negative regulatory domain-mediated degradation of DREB2A in Arabidopsis. Proc Natl Acad Sci 11440:E8528–E8536

    Google Scholar 

  • Morrison DK (2012) MAP kinase pathways. Cold Spring Harb Perspect Biol 411:a011254

    Google Scholar 

  • Nakagami H, Soukupová H, Schikora A, Zárský V, Hirt H (2006) A mitogen-activated protein kinase kinase kinase mediates reactive oxygen species homeostasis in Arabidopsis. J Biol Chem 28150:38697–38704

    Article  Google Scholar 

  • Newton RP, Smith CJ (2004) Cyclic nucleotides. Phytochemistry 6517:2423–2437

    Article  Google Scholar 

  • Ng HH, Robert F, Young RA, Struhl K (2003) Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity. Mol Cell 113:709–719

    Article  Google Scholar 

  • Nishizawa A, Yabuta Y, Yoshida E, Maruta T, Yoshimura K, Shigeoka S (2006) Arabidopsis heat shock transcription factor A2 as a key regulator in response to several types of environmental stress. Plant J 484:535–547

    Article  Google Scholar 

  • Oberkofler V, Pratx L, Bäurle I (2021) Epigenetic regulation of abiotic stress memory: maintaining the good things while they last. Curr Opin Plant Biol 61:102007

    Article  CAS  PubMed  Google Scholar 

  • Ogasawara Y, Kaya H, Hiraoka G, Yumoto F, Kimura S, Kadota Y, Kuchitsu K (2008) Synergistic activation of the Arabidopsis NADPH oxidase AtrbohD by Ca2+ and phosphorylation. J Biol Chem 28314:8885–8892

    Article  Google Scholar 

  • Ohama N, Kusakabe K, Mizoi J, Zhao H, Kidokoro S, Koizumi S, Yamaguchi-Shinozaki K (2016) The transcriptional cascade in the heat stress response of Arabidopsis is strictly regulated at the level of transcription factor expression. Plant Cell 28(1):181–201

    Article  CAS  PubMed  Google Scholar 

  • Ohama N, Sato H, Shinozaki K, Yamaguchi-Shinozaki K (2017) Transcriptional regulatory network of plant heat stress response. Trends Plant Sci 221:53–65

    Article  Google Scholar 

  • Parankusam S, Bhatnagar-Mathur P, Sharma KK (2017) Heat responsive proteome changes reveal molecular mechanisms underlying heat tolerance in chickpea. Environ Exp Bot 141:132–144

    Article  CAS  Google Scholar 

  • Pecinka A, Dinh HQ, Baubec T, Rosa M, Lettner N, Scheid OM (2010) Epigenetic regulation of repetitive elements is attenuated by prolonged heat stress in Arabidopsis. Plant Cell 229:3118–3129

    Article  Google Scholar 

  • Peng S, Huang J, Sheehy JE, Laza RC, Visperas RM, Zhong X, Cassman KG (2004) Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci 10127:9971–9975

    Article  Google Scholar 

  • Pérez-Salamó I, Papdi C, Rigó G, Zsigmond L, Vilela B, Lumbreras V, Szabados L (2014) The heat shock factor A4A confers salt tolerance and is regulated by oxidative stress and the mitogen-activated protein kinases MPK3 and MPK6. Plant Physiol 1651:319–334

    Article  Google Scholar 

  • Petrov VD, Van Breusegem F (2012) Hydrogen peroxide—a central hub for information flow in plant cells. AoB Plants

  • Poor P, Nawaz K, Gupta R, Ashfaque F, Khan MIR (2021) Ethylene involvement in the regulation of heat stress tolerance in plants. Plant Cell Rep 1–24

  • Qiao B, Zhang Q, Liu D, Wang H, Yin J, Wang R, Zhu Z (2015) A calcium-binding protein, rice annexin OsANN1, enhances heat stress tolerance by modulating the production of H2O2. J Exp Bot 6619:5853–5866

    Article  Google Scholar 

  • Qin F, Kakimoto M, Sakuma Y, Maruyama K, Osakabe Y, Tran LSP, Yamaguchi-Shinozaki K (2007) Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. Plant J 501:54–69

    Article  Google Scholar 

  • Qin D, Wu H, Peng H, Yao Y, Ni Z, Li Z, Zhou C, Sun Q (2008a) Heat stress-responsive transcriptome analysis in heat susceptible and tolerant wheat (Triticum aestivum L.) by using Wheat Genome Array. BMC Genom 91:1–19

    Google Scholar 

  • Qin F, Sakuma Y, Tran LSP, Maruyama K, Kidokoro S, Fujita Y, Yamaguchi-Shinozaki K (2008b) Arabidopsis DREB2A-interacting proteins function as RING E3 ligases and negatively regulate plant drought stress–responsive gene expression. Plant Cell 206:1693–1707

    Article  Google Scholar 

  • Queitsch C, Hong SW, Vierling E, Lindquist S (2000) Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis. Plant Cell 124:479–492

    Article  Google Scholar 

  • Raja V, Qadir SU, Alyemeni MN, Ahmad P (2020) Impact of drought and heat stress individually and in combination on physio-biochemical parameters, antioxidant responses, and gene expression in Solanum lycopersicum. 3 Biotech 105:1–18

    Google Scholar 

  • Rechsteiner M, Rogers SW (1996) PEST sequences and regulation by proteolysis. Trends Biochem Sci 217:267–271

    Article  Google Scholar 

  • Reddy AS, Ali GS, Celesnik H, Day IS (2011) Coping with stresses: roles of calcium-and calcium/calmodulin-regulated gene expression. Plant Cell 236:2010–2032

    Article  Google Scholar 

  • Reindl A, Schoffl F, Schell J, Koncz C, Bako L (1997) Phosphorylation by a cyclin-dependent kinase modulates DNA binding of the Arabidopsis heat-shock transcription factor HSF1 in vitro. Plant Physiol 1151:93–100

    Article  Google Scholar 

  • Rizhsky L, Liang H, Shuman J, Shulaev V, Davletova S, Mittler R (2004) When defense pathways collide the response of Arabidopsis to a combination of drought and heat stress. Plant Physiol 1344:1683–1696

    Article  Google Scholar 

  • Roy SJ, Tucker EJ, Tester M (2011) Genetic analysis of abiotic stress tolerance in crops. Curr Opin Plant Biol 143:232–239

    Article  Google Scholar 

  • Russo S, Marchese AF, Sillmann J, Immé G (2016) When will unusual heat waves become normal in a warming Africa? Environ Res Lett 115:054016

    Article  Google Scholar 

  • Rytz TC, Miller MJ, McLoughlin F, Augustine RC, Marshall RS, Juan YT, Vierstra RD (2018) SUMOylome profiling reveals a diverse array of nuclear targets modified by the SUMO ligase SIZ1 during heat stress. Plant Cell 305:1077–1099

    Article  Google Scholar 

  • Saidi Y, Finka A, Muriset M, Bromberg Z, Weiss YG, Maathuis FJ, Goloubinoff P (2009) The heat shock response in moss plants is regulated by specific calcium-permeable channels in the plasma membrane. Plant Cell 219:2829–2843

    Article  Google Scholar 

  • Sakuma Y, Maruyama K, Qin F, Osakabe Y, Shinozaki K, Yamaguchi-Shinozaki K (2006) Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. Proc Natl Acad Sci 10349:18822–18827

    Article  Google Scholar 

  • Sangwan V, Örvar BL, Beyerly J, Hirt H, Dhindsa RS (2002) Opposite changes in membrane fluidity mimic cold and heat stress activation of distinct plant MAP kinase pathways. Plant J 315:629–638

    Article  Google Scholar 

  • Sanyal RP, Misra HS, Saini A (2018) Heat-stress priming and alternative splicing-linked memory. J Exp Bot 6910:2431–2434

    Article  Google Scholar 

  • Sarwar M, Saleem MF, Ullah N, Rizwan M, Ali S, Shahid MR, Ahmad P (2018) Exogenously applied growth regulators protect the cotton crop from heat-induced injury by modulating plant defense mechanism. Sci Rep 81:1–15

    Google Scholar 

  • Sarwat M, Ahmad P, Nabi G, Hu X (2013) Ca2+ signals: the versatile decoders of environmental cues. Crit Rev Biotechnol 331:97–109

    Article  Google Scholar 

  • Sato H, Mizoi J, Tanaka H, Maruyama K, Qin F, Osakabe Y, Yamaguchi-Shinozaki K (2014) Arabidopsis DPB3-1, a DREB2A interactor, specifically enhances heat stress-induced gene expression by forming a heat stress-specific transcriptional complex with NF-Y subunits. Plant Cell 2612:4954–4973

    Article  Google Scholar 

  • Scharf KD, Berberich T, Ebersberger I, Nover L (2012) The plant heat stress transcription factor (Hsf) family: structure, function and evolution. Biochimica et Biophysica Acta (BBA)-Gene Regulat Mech 18192:104–119

    Article  Google Scholar 

  • Schöffl F, Prändl R, Reindl A (1998) Regulation of the heat-shock response. Plant Physiol 1174:1135–1141

    Article  Google Scholar 

  • Schulz-Raffelt M, Lodha M, Schroda M (2007) Heat shock factor 1 is a key regulator of the stress response in Chlamydomonas. Plant J 522:286–295

    Article  Google Scholar 

  • Sedaghatmehr M, Thirumalaikumar VP, Kamranfar I, Marmagne A, Masclaux-Daubresse C, Balazadeh S (2019) A regulatory role of autophagy for resetting the memory of heat stress in plants. Plant Cell Environ 423:1054–1064

    Article  Google Scholar 

  • Srivastava R, Deng Y, Howell SH (2014) Stress sensing in plants by an ER stress sensor/transducer, bZIP28. Front Plant Sci 5:59

    Article  PubMed  PubMed Central  Google Scholar 

  • Stief A, Altmann S, Hoffmann K, Pant BD, Scheible WR, Bäurle I (2014a) Arabidopsis miR156 regulates tolerance to recurring environmental stress through SPL transcription factors. Plant Cell 264:1792–1807

    Article  Google Scholar 

  • Stief A, Brzezinka K, Lämke J, Bäurle I (2014b) Epigenetic responses to heat stress at different time scales and the involvement of small RNAs. Plant Signal Behav 910:e970430

    Article  Google Scholar 

  • Stocker T (ed) (2014) Climate change 2013: the physical science basis: Working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Struhl K, Segal E (2013) Determinants of nucleosome positioning. Nat Struct Mol Biol 203:267

    Article  Google Scholar 

  • Su PH, Li HM (2008) Arabidopsis stromal 70-kD heat shock proteins are essential for plant development and important for thermotolerance of germinating seeds. Plant Physiol 1463:1231–1241

    Article  Google Scholar 

  • Sugio A, Dreos R, Aparicio F, Maule AJ (2009) The cytosolic protein response as a subcomponent of the wider heat shock response in Arabidopsis. Plant Cell 21(2):642–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun AZ, Guo FQ (2016) Chloroplast retrograde regulation of heat stress responses in plants. Front Plant Sci 7:398

    Article  PubMed  PubMed Central  Google Scholar 

  • Sura W, Kabza M, Karlowski WM, Bieluszewski T, Kus-Slowinska M, Pawełoszek Ł, Ziolkowski PA (2017) Dual role of the histone variant H2A Z in transcriptional regulation of stress-response genes. Plant Cell 294:791–807

    Article  Google Scholar 

  • Suzuki N, Bajad S, Shuman J, Shulaev V, Mittler R (2008) The transcriptional co-activator MBF1c is a key regulator of thermotolerance in Arabidopsis thaliana. J Biol Chem 28314:9269–9275

    Article  Google Scholar 

  • Suzuki N, Miller G, Morales J, Shulaev V, Torres MA, Mittler R (2011a) Respiratory burst oxidases: the engines of ROS signaling. Curr Opin Plant Biol 146:691–699

    Article  Google Scholar 

  • Suzuki N, Sejima H, Tam R, Schlauch K, Mittler R (2011b) Identification of the MBF1 heat-response regulon of Arabidopsis thaliana. Plant J 665:844–851

    Article  Google Scholar 

  • Takahashi Y, Zhang J, Hsu PK, Ceciliato PH, Zhang L, Dubeaux G, Schroeder JI (2020) MAP3Kinase-dependent SnRK2-kinase activation is required for abscisic acid signal transduction and rapid osmotic stress response. Nat Commun 111:1–12

    Google Scholar 

  • Tilman D, Balzer C, Hill J, Befort BL (2011) Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci 10850:20260–20264

    Article  Google Scholar 

  • Tsuda L, Nagaraj R, Zipursky SL, Banerjee U (2002) An EGFR/Ebi/Sno pathway promotes delta expression by inactivating Su (H)/SMRTER repression during inductive notch signaling. Cell 1105:625–637

    Article  Google Scholar 

  • Tunc-Ozdemir M, Tang C, Ishka MR, Brown E, Groves NR, Myers CT, Harper JF (2013) A cyclic nucleotide-gated channel (CNGC16) in pollen is critical for stress tolerance in pollen reproductive development. Plant Physiol 1612:1010–1020

    Article  Google Scholar 

  • Vainonen JP, Jaspers P, Wrzaczek M, Lamminmäki A, Reddy RA, Vaahtera L, Kangasjärvi J (2012) RCD1–DREB2A interaction in leaf senescence and stress responses in Arabidopsis thaliana. Biochem J 4423:573–581

    Article  Google Scholar 

  • Volkov RA, Panchuk II, Mullineaux PM, Schöffl F (2006) Heat stress-induced H2O2 is required for effective expression of heat shock genes in Arabidopsis. Plant Mol Biol 614:733–746

    Article  Google Scholar 

  • Von Koskull-Döring P, Scharf KD, Nover L (2007) The diversity of plant heat stress transcription factors. Trends Plant Sci 1210:452–457

    Article  Google Scholar 

  • Vranová E, Inzé D, Van Breusegem F (2002) Signal transduction during oxidative stress. J Exp Bot 53372:1227–1236

    Article  Google Scholar 

  • Vu DL, Gevaert K, De Smet I (2019) Feeling the heat: searching for plant thermosensors. Trends Plant Sci 243:210–219

    Article  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61(3):199–223

  • Walter P, Ron D (2011) The unfolded protein response: from stress pathway to homeostatic regulation. Science 3346059:1081–1086

    Article  Google Scholar 

  • Wang LC, Wu JR, Chang WL, Yeh CH, Ke YT, Lu CA, Wu SJ (2013) Arabidopsis HIT4 encodes a novel chromocentre-localized protein involved in the heat reactivation of transcriptionally silent loci and is essential for heat tolerance in plants. J Exp Bot 646:1689–1701

    Article  Google Scholar 

  • Wang L, Guo Y, Jia L, Chu H, Zhou S, Chen K, Zhao L (2014) Hydrogen peroxide acts upstream of nitric oxide in the heat shock pathway in Arabidopsis seedlings. Plant Physiol 1644:2184–2196

    Article  Google Scholar 

  • Wang X, Ma X, Wang H, Li B, Clark G, Guo Y, Tang W (2015) Proteomic study of microsomal proteins reveals a key role for Arabidopsis annexin 1 in mediating heat stress-induced increase in intracellular calcium levels. Mol Cell Proteomics 143:686–694

    Article  Google Scholar 

  • Wang F, Liu Y, Shi Y, Han D, Wu Y, Ye W, Yang C (2020a) SUMOylation stabilizes the transcription factor DREB2A to improve plant thermotolerance. Plant Physiol 1831:41–50

    Article  Google Scholar 

  • Wang G, Liang YH, Zhang JY, Cheng ZMM (2020b) Cloning, molecular and functional characterization by overexpression in Arabidopsis of MAPKK genes from grapevine (Vitis vinifera). BMC Plant Biol 20:1–15

    Google Scholar 

  • Wen J, Jiang F, Weng Y, Sun M, Shi X, Zhou Y, Wu Z (2019) Identification of heat-tolerance QTLs and high-temperature stress-responsive genes through conventional QTL mapping, QTL-seq and RNA-seq in tomato. BMC Plant Biol 191:1–17

    Google Scholar 

  • Weng M, Yang YUE, Feng H, Pan Z, Shen WH, Zhu YAN, Dong A (2014) Histone chaperone ASF1 is involved in gene transcription activation in response to heat stress in Arabidopsis thaliana. Plant Cell Environ 379:2128–2138

    Article  Google Scholar 

  • Wi SJ, Ji NR, Park KY (2012) Synergistic biosynthesis of biphasic ethylene and reactive oxygen species in response to hemibiotrophic Phytophthora parasitica in tobacco plants. Plant Physiol 1591:251–265

    Article  Google Scholar 

  • Wu X, Shiroto Y, Kishitani S, Ito Y, Toriyama K (2009) Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter. Plant Cell Rep 281:21–30

    Article  Google Scholar 

  • Wu A, Allu AD, Garapati P, Siddiqui H, Dortay H, Zanor MI, Balazadeh S (2012) JUNGBRUNNEN1, a reactive oxygen species–responsive NAC transcription factor, regulates longevity in Arabidopsis. Plant Cell 242:482–506

    Article  Google Scholar 

  • Xu C, Liu R, Zhang Q, Chen X, Qian Y, Fang W (2017) The diversification of evolutionarily conserved MAPK cascades correlates with the evolution of fungal species and development of lifestyles. Genome Biol Evol 92:311–322

    Google Scholar 

  • Xue GP, Drenth J, McIntyre CL (2015) TaHsfA6f is a transcriptional activator that regulates a suite of heat stress protection genes in wheat (Triticum aestivum L.) including previously unknown Hsf targets. J Exp Bot 663:1025–1039

    Article  Google Scholar 

  • Yamada K, Fukao Y, Hayashi M, Fukazawa M, Suzuki I, Nishimura M (2007) Cytosolic HSP90 regulates the heat shock response that is responsible for heat acclimation in Arabidopsis thaliana. J Biol Chem 28252:37794–37804

    Article  Google Scholar 

  • Yan LJ (2014) Protein redox modification as a cellular defense mechanism against tissue ischemic injury. Oxidative Med Cell Longevity

  • Yan J, Yu L, Xuan J, Lu Y, Lu S, Zhu W (2016) De novo transcriptome sequencing and gene expression profiling of spinach (Spinacia oleracea L.) leaves under heat stress. Sci Rep 61:1–10

    Google Scholar 

  • Yao Y, He RJ, Xie QL, Zhao XH, Deng XM, He JB, Wu AM (2017) ETHYLENE RESPONSE FACTOR 74 (ERF74) plays an essential role in controlling a respiratory burst oxidase homolog D (RbohD)-dependent mechanism in response to different stresses in Arabidopsis. New Phytol 2134:1667–1681

    Article  Google Scholar 

  • Yokotani N, Ichikawa T, Kondou Y, Matsui M, Hirochika H, Iwabuchi M, Oda K (2008) Expression of rice heat stress transcription factor OsHsfA2e enhances tolerance to environmental stresses in transgenic Arabidopsis. Planta 2275:957–967

    Article  Google Scholar 

  • Yoo CY, Miura K, Jin JB, Lee J, Park HC, Salt DE, Hasegawa PM (2006) SIZ1 small ubiquitin-like modifier E3 ligase facilitates basal thermotolerance in Arabidopsis independent of salicylic acid. Plant Physiol 1424:1548–1558

    Article  Google Scholar 

  • Yoshida T, Ohama N, Nakajima J, Kidokoro S, Mizoi J, Nakashima K, Yamaguchi-Shinozaki K (2011) Arabidopsis HsfA1 transcription factors function as the main positive regulators in heat shock-responsive gene expression. Mol Genet Genom 2865:321–332

    Article  Google Scholar 

  • Yu W, Wang L, Zhao R, Sheng J, Zhang S, Li R, Shen L (2019) Knockout of SlMAPK3 enhances tolerance to heat stress involving ROS homeostasis in tomato plants. BMC Plant Biol 191:1–13

    Google Scholar 

  • Zanetti ME, Blanco FA, Daleo GR, Casalongué CA (2003) Phosphorylation of a member of the MBF1 transcriptional co-activator family, St MBF1, is stimulated in potato cell suspensions upon fungal elicitor challenge. J Exp Bot 54383:623–632

    Article  Google Scholar 

  • Zentner GE, Henikoff S (2013) Regulation of nucleosome dynamics by histone modifications. Nat Struct Mol Biol 203:259

    Article  Google Scholar 

  • Zhang W, Zhou RG, Gao YJ, Zheng SZ, Xu P, Zhang SQ, Sun DY (2009a) Molecular and genetic evidence for the key role of AtCaM3 in heat-shock signal transduction in Arabidopsis. Plant Physiol 1494:1773–1784

    Google Scholar 

  • Zhang X, Bernatavichute YV, Cokus S, Pellegrini M, Jacobsen SE (2009b) Genome-wide analysis of mono-, di-and trimethylation of histone H3 lysine 4 in Arabidopsis thaliana. Genome Biol 106:1–14

    Google Scholar 

  • Zhang S, Xu ZS, Li P, Yang L, Wei Y, Chen M, Ma Y (2013) Overexpression of TaHSF3 in transgenic Arabidopsis enhances tolerance to extreme temperatures. Plant Mol Biol Rep 313:688–697

    Article  Google Scholar 

  • Zhang T, Cooper S, Brockdorff N (2015) The interplay of histone modifications–writers that read. EMBO Rep 1611:1467–1481

    Article  Google Scholar 

  • Zhang S, Wang S, Lv J, Liu Z, Wang Y, Ma N, Meng Q (2018) SUMO E3 ligase SlSIZ1 facilitates heat tolerance in tomato. Plant Cell Physiol 591:58–71

    Article  Google Scholar 

  • Zhang Y, Malzahn AA, Sretenovic S, Qi Y (2019) The emerging and uncultivated potential of CRISPR technology in plant science. Nat Plants 58:778–794

    Article  Google Scholar 

  • Zhao Y, Tian X, Wang F, Zhang L, Xin M, Hu Z, Peng H (2017) Characterization of wheat MYB genes responsive to high temperatures. BMC Plant Biol 171:1–14

    Google Scholar 

  • Zhao H, Jan A, Ohama N, Kidokoro S, Soma F, Koizumi S, Yamaguchi‐Shinozaki, K (2021) Cytosolic HSC70s repress heat stress tolerance and enhance seed germination under salt stress conditions. Plant Cell Environ

  • Zheng SZ, Liu YL, Li B, Shang ZL, Zhou RG, Sun DY (2012) Phosphoinositide-specific phospholipase C9 is involved in the thermotolerance of Arabidopsis. Plant J 694:689–700

    Article  Google Scholar 

  • Zhu JK (2016) Abiotic stress signaling and responses in plants. Cell 1672:313–324

    Article  Google Scholar 

  • Zhu B, Ye C, Lü H, Chen X, Chai G, Chen J, Wang C (2006) Identification and characterization of a novel heat shock transcription factor gene, GmHsfA1, in soybeans (Glycine max). J Plant Res 1193:247–256

    Article  Google Scholar 

  • Zlobin A, Bloodworth JC, Osipo C (2019) Mitogen-activated protein kinase (MAPK) signaling. Predictive Biomark Oncol 213–221

Download references

Funding

There was no external funding for this research.

Author information

Authors and Affiliations

Authors

Contributions

SH, JI and SN wrote the primary manuscript. TY, MS, HB and YA helped in literature review and write-up. HD and NLA added valuable comments during subsequent revision and improved the paper. TM supervised and finalized the manuscript. All the authors read and agree on finalized manuscript.

Corresponding authors

Correspondence to Javed Iqbal or Tariq Mahmood.

Ethics declarations

Conflict of interests

The authors declare that there is no conflict of interest.

Additional information

Communicated by Manzer H. Siddiqui.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haider, S., Iqbal, J., Naseer, S. et al. Molecular mechanisms of plant tolerance to heat stress: current landscape and future perspectives. Plant Cell Rep 40, 2247–2271 (2021). https://doi.org/10.1007/s00299-021-02696-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-021-02696-3

Keywords

Navigation