Skip to main content
Log in

Meta-analysis of heat- and chemically upregulated chaperone genes in plant and human cells

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Molecular chaperones are central to cellular protein homeostasis. In mammals, protein misfolding diseases and aging cause inflammation and progressive tissue loss, in correlation with the accumulation of toxic protein aggregates and the defective expression of chaperone genes. Bacteria and non-diseased, non-aged eukaryotic cells effectively respond to heat shock by inducing the accumulation of heat-shock proteins (HSPs), many of which molecular chaperones involved in protein homeostasis, in reducing stress damages and promoting cellular recovery and thermotolerance. We performed a meta-analysis of published microarray data and compared expression profiles of HSP genes from mammalian and plant cells in response to heat or isothermal treatments with drugs. The differences and overlaps between HSP and chaperone genes were analyzed, and expression patterns were clustered and organized in a network. HSPs and chaperones only partly overlapped. Heat-shock induced a subset of chaperones primarily targeted to the cytoplasm and organelles but not to the endoplasmic reticulum, which organized into a network with a central core of Hsp90s, Hsp70s, and sHSPs. Heat was best mimicked by isothermal treatments with Hsp90 inhibitors, whereas less toxic drugs, some of which non-steroidal anti-inflammatory drugs, weakly expressed different subsets of Hsp chaperones. This type of analysis may uncover new HSP-inducing drugs to improve protein homeostasis in misfolding and aging diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aalinkeel R, Bindukumar B, Reynolds JL, Sykes DE, Mahajan SD, Chadha KC, Schwartz SA (2008) The dietary bioflavonoid, quercetin, selectively induces apoptosis of prostate cancer cells by down-regulating the expression of heat shock protein 90. Prostate 68(16):1773–1789. doi:10.1002/Pros.20845

    Article  PubMed  CAS  Google Scholar 

  • Albanese V, Yam AYW, Baughman J, Parnot C, Frydman J (2006) Systems analyses reveal two chaperone networks with distinct functions in eukaryotic cells. Cell 124(1):75–88

    Article  PubMed  CAS  Google Scholar 

  • Amin J, Ananthan J, Voellmy R (1988) Key features of heat-shock regulatory elements. Mol Cell Biol 8(9):3761–3769

    PubMed  CAS  Google Scholar 

  • Aparicio F, Thomas CL, Lederer C, Niu Y, Wang DW, Maule AJ (2005) Virus induction of heat shock protein 70 reflects a general response to protein accumulation in the plant cytosol. Plant Physiol 138(1):529–536. doi:10.1104/pp.104.058958

    Article  PubMed  CAS  Google Scholar 

  • Azem A, Diamant S, Kessel M, Weiss C, Goloubinoff P (1995) The protein-folding activity of chaperonins correlates with the symmetric GroEL(14)(GroES(7))(2) heterooligomer. Proc Natl Acad Sci USA 92(26):12021–12025

    Article  PubMed  CAS  Google Scholar 

  • Becker J, Craig EA (1994) Heat-shock proteins as molecular chaperones. Eur J Biochem 219(1–2):11–23

    Article  PubMed  CAS  Google Scholar 

  • Ben-Zvi A, De los Rios P, Dietler G, Goloubinoff P (2004) Active solubilization and refolding of stable protein aggregates by cooperative unfolding action of individual Hsp70 chaperones. J Biol Chem 279(36):37298–37303. doi:10.1074/jbc.M405627200

    Article  PubMed  CAS  Google Scholar 

  • Ben-Zvi A, Miller EA, Morimoto RI (2009) Collapse of proteostasis represents an early molecular event in Caenorhabditis elegans aging. Proc Natl Acad Sci USA 106(35):14914–14919. doi:10.1073/pnas.0902882106

    Article  PubMed  Google Scholar 

  • Blatch GL, Lassle M (1999) The tetratricopeptide repeat: a structural motif mediating protein–protein interactions. Bioessays 21(11):932–939

    Article  PubMed  CAS  Google Scholar 

  • Booth CR, Meyer AS, Cong Y, Topf M, Sali A, Ludtke SJ, Chiu W, Frydman J (2008) Mechanism of lid closure in the eukaryotic chaperonin TRiC/CCT. Nat Struct Mol biol 15(7):746–753. doi:10.1038/Nsmb.1436

    Article  PubMed  CAS  Google Scholar 

  • Calabrese V, Cornelius C, Mancuso C, Pennisi G, Calafato S, Bellia F, Bates TE, Stella AMG, Schapira T, Kostova ATD, Rizzarelli E (2008) Cellular stress response: a novel target for chemoprevention and nutritional neuroprotection in aging, neurodegenerative disorders and longevity. Neurochem Res 33(12):2444–2471. doi:10.1007/s11064-008-9775-9

    Article  PubMed  CAS  Google Scholar 

  • Cintron NS, Toft D (2006) Defining the requirements for Hsp40 and Hsp70 in the Hsp90 chaperone pathway. J Biol Chem 281(36):26235–26244. doi:10.1074/jbc.M605417200

    Article  PubMed  CAS  Google Scholar 

  • Connell P, Ballinger CA, Jiang JH, Wu YX, Thompson LJ, Hohfeld J, Patterson C (2001) The co-chaperone CHIP regulates protein triage decisions mediated by heat-shock proteins. Nat Cell Biol 3(1):93–96

    Article  PubMed  CAS  Google Scholar 

  • Csermely P (2001) Chaperone overload is a possible contributor to ‘civilization diseases’. Trends Genet 17(12):701–704

    Article  PubMed  CAS  Google Scholar 

  • Csermely P, Korcsmáros T, Kovács IA, Szalay MS, Soti C (2008) Systems biology of molecular chaperone networks. In: Derek J, Chadwick JG (eds) The biology of extracellular molecular chaperones., pp 45–58

  • Daniels CJ, Mckee AHZ, Doolittle WF (1984) Archaebacterial heat-shock proteins. EMBO J 3(4):745–749

    PubMed  CAS  Google Scholar 

  • De los Rios P, Ben-Zvi A, Slutsky O, Azem A, Goloubinoff P (2006) Hsp70 chaperones accelerate protein translocation and the unfolding of stable protein aggregates by entropic pulling. Proc Natl Acad Sci USA 103(16):6166–6171. doi:10.1073/pnas.0510496103

    Article  PubMed  CAS  Google Scholar 

  • de Marco A, Vigh L, Diamant S, Goloubinoff P (2005) Native folding of aggregation-prone recombinant proteins in Escherichia coli by osmolytes, plasmid- or benzyl alcohol-overexpressed molecular chaperones. Cell Stress Chaperones 10(4):329–339

    Article  PubMed  Google Scholar 

  • Deuerling E, Schulze-Specking A, Tomoyasu T, Mogk A, Bukau B (1999) Trigger factor and DnaK cooperate in folding of newly synthesized proteins. Nature 400(6745):693–696

    Article  PubMed  CAS  Google Scholar 

  • Diamant S, Ben-Zvi AP, Bukau B, Goloubinoff P (2000) Size-dependent disaggregation of stable protein aggregates by the DnaK chaperone machinery. J Biol Chem 275(28):21107–21113

    Article  PubMed  CAS  Google Scholar 

  • Didelot C, Lanneau D, Brunet M, Joly AL, De Thonel A, Chiosis G, Garrido C (2007) Anti-cancer therapeutic approaches based on intracellular and extracellular heat shock proteins. Curr Med Chem 14(27):2839–2847

    Article  PubMed  CAS  Google Scholar 

  • El-Samad H, Kurata H, Doyle JC, Gross CA, Khammash M (2005) Surviving heat shock: control strategies for robustness and performance. Proc Natl Acad Sci USA 102(8):2736–2741. doi:10.1073/pnas.0403510102

    Article  PubMed  CAS  Google Scholar 

  • Ellis RJ, Vandervies SM, Hemmingsen SM (1989) The molecular chaperone concept. Biochem Soc Symp 55:145–153

    PubMed  CAS  Google Scholar 

  • Fonte V, Kipp DR, Yerg J, Merin D, Forrestal M, Wagner E, Roberts CM, Link CD (2008) Suppression of in vivo beta-amyloid peptide toxicity by overexpression of the HSP-16.2 small chaperone protein. J Biol Chem 283(2):784–791. doi:10.1074/jbc.M703339200

    Article  PubMed  CAS  Google Scholar 

  • Garrido C, Brunet M, Didelot C, Zermati Y, Schmitt E, Kroemer G (2006) Heat shock proteins 27 and 70. Cell Cycle 5(22):2592–2601

    Article  PubMed  CAS  Google Scholar 

  • Gidalevitz T, Kikis EA, Morimoto RI (2010) A cellular perspective on conformational disease: the role of genetic background and proteostasis networks. Curr Opin Struck Biol 20(1):23–32. doi:10.1016/j.sbi.2009.11.001

    Article  CAS  Google Scholar 

  • Glover JR, Lindquist S (1998) Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 94(1):73–82

    Article  PubMed  CAS  Google Scholar 

  • Goloubinoff P, Christeller JT, Gatenby AA, Lorimer GH (1989) Reconstitution of active dimeric ribulose bisphosphate carboxylase from an unfolded state depends on 2 chaperonin proteins and Mg-ATP. Nature 342(6252):884–889

    Article  PubMed  CAS  Google Scholar 

  • Goloubinoff P, Mogk A, Ben Zvi AP, Tomoyasu T, Bukau B (1999) Sequential mechanism of solubilization and refolding of stable protein aggregates by a bichaperone network. Proc Natl Acad Sci USA 96(24):13732–13737

    Article  PubMed  CAS  Google Scholar 

  • Hageman J, Kampinga HH (2009) Computational analysis of the human HSPH/HSPA/DNAJ family and cloning of a human HSPH/HSPA/DNAJ expression library. Cell Stress Chaperones 14(1):1–21. doi:10.1007/s12192-008-0060-2

    Article  PubMed  CAS  Google Scholar 

  • Hageman J, Vos MJ, van Waarde MAWH, Kampinga HH (2007) Comparison of intra-organellar chaperone capacity for dealing with stress-induced protein unfolding. J Biol Chem 282(47):34334–34345. doi:10.1074/jbc.M703876200

    Article  PubMed  CAS  Google Scholar 

  • Harrison C (2003) GrpE, a nucleotide exchange factor for DnaK. Cell Stress Chaperones 8(3):218–224

    Article  PubMed  CAS  Google Scholar 

  • Hartl FU, Hayer-Hartl M (2009) Converging concepts of protein folding in vitro and in vivo. Nat Struct Mol biol 16(6):574–581. doi:10.1038/Nsmb.1591

    Article  PubMed  CAS  Google Scholar 

  • Hasan CMM, Shimizu K (2008) Effect of temperature up-shift on fermentation and metabolic characteristics in view of gene expressions in Escherichia coli. Microb Cell Fact 7:35. doi:10.1186/1475-2859-7-35

    Google Scholar 

  • Haslbeck M, Franzmann T, Weinfurtner D, Buchner J (2005) Some like it hot: the structure and function of small heat-shock proteins. Nat Struct Mol biol 12(10):842–846. doi:10.1038/Nsmb993

    Article  PubMed  CAS  Google Scholar 

  • Hendrick JP, Hartl FU (1993) Molecular chaperone functions of heat-shock proteins. Annu Rev Biochem 62:349–384

    Article  PubMed  CAS  Google Scholar 

  • Hightower LE (1980) Cultured animal-cells exposed to amino-acid-analogs or puromycin rapidly synthesize several polypeptides. J Cell Physiol 102(3):407–427

    Article  PubMed  CAS  Google Scholar 

  • Hinault MP, Goloubinoff P (2007) Molecular crime and cellular punishment: active detoxification of misfolded and aggregated proteins in the cell by the chaperone and protease networks. Adv Exp Mol Biol 594:47–54

    Article  Google Scholar 

  • Hinault MP, Ben-Zvi A, Goloubinoff P (2006) Chaperones and proteases—cellular fold-controlling factors of proteins in neurodegenerative diseases and aging. J Mol Neurosci 30(3):249–265. doi:10.1385/Jmn/30:03:249

    Article  PubMed  CAS  Google Scholar 

  • Hooper SD, Bork P (2005) Medusa: a simple tool for interaction graph analysis. Bioinformatics 21(24):4432–4433. doi:10.1093/bioinformatics/bti696

    Article  PubMed  CAS  Google Scholar 

  • Horváth I, Glatz A, Varvasovszki V, Török Z, Pali T, Balogh G, Kovacs E, Nadasdi L, Benko S, Joo F, Vígh L (1998) Membrane physical state controls the signaling mechanism of the heat shock response in Synechocystis PCC 6803: identification of hsp17 as a “fluidity gene”. Proc Natl Acad Sci USA 95(7):3513–3518

    Article  PubMed  Google Scholar 

  • Horvath I, Multhoff G, Sonnleitner A, Vigh L (2008) Membrane-associated stress proteins: more than simply chaperones. Biochim Biophys Act 1778(7–8):1653–1664. doi:10.1016/j.bbamem.2008.02.012

    Article  CAS  Google Scholar 

  • Jakob U, Gaestel M, Engel K, Buchner J (1993) Small heat-shock proteins are molecular chaperones. J Biol Chem 268(3):1517–1520

    PubMed  CAS  Google Scholar 

  • Jensen LJ, Kuhn M, Stark M, Chaffron S, Creevey C, Muller J, Doerks T, Julien P, Roth A, Simonovic M, Bork P, von Mering C (2009) STRING 8—a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res 37:D412–D416. doi:10.1093/Nar/Gkn760

    Article  PubMed  CAS  Google Scholar 

  • Jolly C, Morimoto RI (2000) Role of the heat shock response and molecular chaperones in oncogenesis and cell death. J Natl Cancer Inst 92(19):1564–1572

    Article  PubMed  CAS  Google Scholar 

  • Kabani M, McLellan C, Raynes DA, Guerriero V, Brodsky JL (2002) HspBP1, a homologue of the yeast Fes1 and S1s1 proteins, is an Hsc70 nucleotide exchange factor. FEBS Lett 531(2):339–342. doi:S0014-5793(02)03570-6

    Article  PubMed  CAS  Google Scholar 

  • Kabbage M, Dickman MB (2008) The BAG proteins: a ubiquitous family of chaperone regulators. Cell Mol Life Sci 65(9):1390–1402. doi:10.1007/s00018-008-7535-2

    Article  PubMed  CAS  Google Scholar 

  • Kampinga HH, Hageman J, Vos MJ, Kubota H, Tanguay RM, Bruford EA, Cheetham ME, Chen B, Hightower LE (2009) Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 14(1):105–111. doi:10.1007/s12192-008-0068-7

    Article  PubMed  CAS  Google Scholar 

  • Kanemura H, Kusumoto K, Miyake H, Tashiro S, Rokutan K, Shimada M (2009) Geranylgeranylacetone prevents acute liver damage after massive hepatectomy in rats through suppression of a CXC chemokine GRO1 and induction of heat shock proteins. J Gastrointest Surg 13(1):66–73. doi:10.1007/s11605-008-0604-x

    Article  PubMed  Google Scholar 

  • Kanitkar M, Bhonde RR (2008) Curcumin treatment enhances islet recovery by induction of heat shock response proteins, Hsp70 and heme oxygenase-1, during cryopreservation. Life Sci 82(3–4):182–189. doi:10.1016/j.lfs.2007.10.026

    Article  PubMed  CAS  Google Scholar 

  • Kieran D, Kalmar B, Dick JRT, Riddoch-Contreras J, Burnstock G, Greensmith L (2004) Treatment with arimoclomol, a coinducer of heat shock proteins, delays disease progression in ALS mice. Nat Med 10(4):402–405. doi:10.1038/Nm1021

    Article  PubMed  CAS  Google Scholar 

  • Kimpel JA, Key JL (1985) Presence of heat-shock mRNAs in field grown soybeans. Plant Physiol 79(3):672–678

    Article  PubMed  CAS  Google Scholar 

  • Kirshner JR, He SQ, Balasubramanyam V, Kepros J, Yang CY, Zhang M, Du ZJ, Barsoum J, Bertin J (2008) Elesclomol induces cancer cell apoptosis through oxidative stress. Mol Cancer Ther 7(8):2319–2327. doi:10.1158/1535-7163.Mct-08-0298

    Article  PubMed  CAS  Google Scholar 

  • Kitamura A, Kubota H, Pack CG, Matsumoto G, Hirayama S, Takahashi Y, Kimura H, Kinjo M, Morimoto RI, Nagata K (2006) Cytosolic chaperonin prevents polyglutamine toxicity with altering the aggregation state. Nat Cell Biol 8(10):1163–1224. doi:10.1038/Ncb1478

    Article  PubMed  CAS  Google Scholar 

  • Kopito RR (2000) Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol 10(12):524–530

    Article  PubMed  CAS  Google Scholar 

  • Kroeger PE, Morimoto RI (1994) Selection of new Hsf1 and Hsf2 DNA-binding sites reveals differences in trimer cooperativity. Mol Cell Biol 14(11):7592–7603

    PubMed  CAS  Google Scholar 

  • Kumar SV, Wigge PA (2010) H2A.Z-Containing nucleosomes mediate the thermosensory response in Arabidopsis. Cell 140(1):136–147. doi:10.1016/j.cell.2009.11.006

    Article  PubMed  CAS  Google Scholar 

  • Lanka V, Wieland S, Barber J, Cudkowicz M (2009) Arimoclomol: a potential therapy under development for ALS. Expert Opin Investig Drugs 18(12):1907–1918. doi:10.1517/13543780903357486

    Article  PubMed  CAS  Google Scholar 

  • Large AT, Goldberg MD, Lund PA (2009) Chaperones and protein folding in the archaea. Biochem Soc Trans 37:46–51. doi:10.1042/Bst0370046

    Article  PubMed  CAS  Google Scholar 

  • Lashuel HA, Hartley D, Petre BM, Walz T, Lansbury PT (2002) Neurodegenerative disease—amyloid pores from pathogenic mutations. Nature 418(6895):291

    Article  PubMed  CAS  Google Scholar 

  • Laskey RA, Honda BM, Mills AD, Finch JT (1978) Nucleosomes are assembled by an acidic protein which binds histones and transfers them to DNA. Nature 275(5679):416–420

    Article  PubMed  CAS  Google Scholar 

  • Liberek K, Georgopoulos C (1993) Autoregulation of the Escherichia coli heat-shock response by the Dnak and Dnaj heat-shock proteins. Proc Natl Acad Sci USA 90(23):11019–11023

    Article  PubMed  CAS  Google Scholar 

  • Liberek K, Lewandowska A, Zietkiewicz S (2008) Chaperones in control of protein disaggregation. EMBO J 27(2):328–335. doi:10.1038/sj.emboj.7601970

    Article  PubMed  CAS  Google Scholar 

  • Macario AJL, de Macario EC (1999) The archaeal molecular chaperone machine: peculiarities and paradoxes. Genetics 152(4):1277–1283

    PubMed  CAS  Google Scholar 

  • Mogk A, Tomoyasu T, Goloubinoff P, Rudiger S, Roder D, Langen H, Bukau B (1999) Identification of thermolabile Escherichia coli proteins: prevention and reversion of aggregation by DnaK and ClpB. EMBO J 18(24):6934–6949

    Article  PubMed  CAS  Google Scholar 

  • Mogk A, Hasiberger T, Tessarz P, Bukau B (2008) Common and specific mechanisms of AAA plus proteins involved in protein quality control. Biochem Soc Trans 36:120–125. doi:10.1042/Bst0360120

    Article  PubMed  CAS  Google Scholar 

  • Morimoto RI (2008) Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging. Gen Dev 22(11):1427–1438. doi:10.1101/Gad.1657108

    Article  CAS  Google Scholar 

  • Motohashi K, Watanabe Y, Yohda M, Yoshida M (1999) Heat-inactivated proteins are rescued by the DnaK.J-GrpE set and ClpB chaperones. Proc Natl Acad Sci USA 96(13):7184–7189

    Article  PubMed  CAS  Google Scholar 

  • Nakamoto H, Vigh L (2007) The small heat shock proteins and their clients. Cell Mol Life Sci 64(3):294–306. doi:10.1007/s00018-006-6321-2

    Article  PubMed  CAS  Google Scholar 

  • Narayanan NK, Narayanan BA, Bosland M, Condon MS, Nargi D (2006) Docosahexaenoic acid in combination with celecoxib modulates HSP70 and p53 proteins in prostate cancer cells. Int J Cancer 119(7):1586–1598. doi:10.1002/Ijc.22031

    Article  PubMed  CAS  Google Scholar 

  • Nardai G, Csermely P, Soti C (2002) Chaperone function and chaperone overload in the aged. A preliminary analysis. Exp Gerontol 37(10–11):1257–1262. doi:S0531-5565(02)00134-1

    Article  PubMed  CAS  Google Scholar 

  • Onuoha SC, Couistock ET, Grossmann JG, Jackson SE (2008) Structural studies on the co-chaperone hop and its complexes with Hsp90. J Mol Biol 379(4):732–744. doi:10.1016/j.jmb.2008.02.013

    Article  PubMed  CAS  Google Scholar 

  • Palotai R, Szalay MS, Csermely P (2008) Chaperones as integrators of cellular networks: changes of cellular integrity in stress and diseases. IUBMB Life 60(1):10–18. doi:10.1002/Iub.8

    Article  PubMed  CAS  Google Scholar 

  • Pelham HRB (1986) Speculations on the functions of the major heat-shock and glucose-regulated proteins. Cell 46(7):959–961

    Article  PubMed  CAS  Google Scholar 

  • Perrin V, Regulier E, Abbas-Terki T, Hassig R, Brouillet E, Aebischer P, Luthi-Carter R, Deglon N (2007) Neuroprotection by Hsp104 and Hsp27 in lentiviral-based rat models of Huntington’s disease. Mol Ther 15(5):903–911. doi:10.1038/mt.sj.6300141

    Article  PubMed  CAS  Google Scholar 

  • Picard D (2006) Chaperoning steroid hormone action. Trends Endocrinol Metab 17(6):229–235. doi:10.1016/j.tem.2006.06.003

    Article  PubMed  CAS  Google Scholar 

  • Pouppirt PS (1929) Treatment of Parkinson’s syndrome with fever produced by baths: report of case. Cal West Med 31(3):192–195

    PubMed  CAS  Google Scholar 

  • Rodriguez F, Arsene-Ploetze F, Rist W, Rudiger S, Schneider-Mergener J, Mayer MP, Bukau B (2008) Molecular basis for regulation of the heat shock transcription factor sigma(32) by the DnaK and DnaJ chaperones. Mol Cell 32(3):347–358. doi:10.1016/j.molcel.2008.09.016

    Article  PubMed  CAS  Google Scholar 

  • Ross CA, Poirier MA (2004) Protein aggregation and neurodegenerative disease. Nat Rev Neurosci 10(Suppl):S10–S17. doi:10.1038/Nm1066

    Google Scholar 

  • Saidi Y, Finka A, Chakhporanian M, Zryd JP, Schaefer DG, Goloubinoff P (2005) Controlled expression of recombinant proteins in Physcomitrella patens by a conditional heat-shock promoter: a tool for plant research and biotechnology. Plant Mol Biol 59(5):697–711. doi:10.1007/s11103-005-0889-z

    Article  PubMed  CAS  Google Scholar 

  • Saidi Y, Domini M, Choy F, Zryd JP, Schwitzguebel JP, Goloubinoff P (2007) Activation of the heat shock response in plants by chlorophenols: transgenic Physcomitrella patens as a sensitive biosensor for organic pollutants. Plant Cell Environ 30(6):753–763. doi:10.1111/j.1365-3040.2007.01664.x

    Article  PubMed  CAS  Google Scholar 

  • Saidi Y, Finka A, Muriset M, Bromberg Z, Weiss YG, Maathuis FJM, Goloubinoff P (2009) The heat shock response in moss plants is regulated by specific calcium-permeable channels in the plasma membrane. Plant Cell 21(9):2829–2843. doi:10.1105/tpc.108.065318

    Article  PubMed  CAS  Google Scholar 

  • Saldanha AJ (2004) Java Treeview—extensible visualization of microarray data. Bioinformatics 20(17):3246–3248. doi:10.1093/bioinformatics/bth349

    Article  PubMed  CAS  Google Scholar 

  • Sanchez Y, Lindquist SL (1990) Hsp104 required for induced thermotolerance. Science 248(4959):1112–1115

    Article  PubMed  CAS  Google Scholar 

  • Sato T, Minagawa S, Kojima E, Okamoto N, Nakamoto H (2010) HtpG, the prokaryotic homologue of Hsp90, stabilizes a phycobilisome protein in the cyanobacterium Synechococcus elongatus PCC 7942. Mol Microbiol 76(3):576–589. doi:10.1111/j.1365-2958.2010.07139.x

    Article  PubMed  CAS  Google Scholar 

  • Schroder M, Kaufman RJ (2005) The mammalian unfolded protein response. Annu Rev Biochem 74:739–789. doi:10.1146/annurev.biochem.73.011303.074134

    Article  PubMed  CAS  Google Scholar 

  • Schuermann JP, Jiang JW, Cuellar J, Llorca O, Wang LP, Gimenez LE, Jin SP, Taylor AB, Demeler B, Morano KA, Hart PJ, Valpuesta JM, Lafer EM, Sousa R (2008) Structure of the Hsp110: Hsc70 nucleotide exchange machine. Mol Cell 31(2):232–243. doi:10.1016/j.molcel.2008.05.006

    Article  PubMed  CAS  Google Scholar 

  • Shaner L, Morano KA (2007) All in the family: atypical Hsp70 chaperones are conserved modulators of Hsp70 activity. Cell Stress Chaperones 12(1):1–8

    Article  PubMed  CAS  Google Scholar 

  • Sharma SK, Christen P, Goloubinoff P (2009) Disaggregating chaperones: an unfolding story. Curr Prot Pept Sci 10:432–446

    Article  CAS  Google Scholar 

  • Shi LX, Theg SM (2010) A stromal heat shock protein 70 system functions in protein import into chloroplasts in the moss Physcomitrella patens. Plant Cell 22(1):205–220. doi:10.1105/tpc.109.071464

    Article  PubMed  CAS  Google Scholar 

  • Shorter J, Lindquist S (2008) Hsp104, Hsp70 and Hsp40 interplay regulates formation, growth and elimination of Sup35 prions. EMBO J 27(20):2712–2724. doi:10.1038/emboj.2008.194

    Article  PubMed  CAS  Google Scholar 

  • Shtilerman M, Lorimer GH, Englander SW (1999) Chaperonin function: folding by forced unfolding. Science 284(5415):822–825

    Article  PubMed  CAS  Google Scholar 

  • Sinha RA, Khare P, Rai A, Maurya SK, Pathak A, Mohan V, Nagar GK, Mudiam MKR, Godbole MM, Bandyopadhyay S (2009) Anti-apoptotic role of omega-3-fatty acids in developing brain: perinatal hypothyroid rat cerebellum as apoptotic model. Int J Dev Neurosci 27(4):377–383. doi:10.1016/j.ijdevneu.2009.02.003

    Article  PubMed  CAS  Google Scholar 

  • Smalley WE, Ray WA, Daugherty JR, Griffin MR (1995) Nonsteroidal antiinflammatory drugs and the incidence of hospitalizations for peptic-ulcer disease in elderly persons. Am J Epidemiol 141(6):539–545

    PubMed  CAS  Google Scholar 

  • Solit DB, Chiosis G (2008) Development and application of Hsp90 inhibitors. Drug Discov Today 13(1–2):38–43

    Article  PubMed  CAS  Google Scholar 

  • Soll J (2002) Protein import into chloroplasts. Curr Opin Plant Biol 5(6):529–535

    Article  PubMed  CAS  Google Scholar 

  • Soti C, Pal C, Papp B, Csermely P (2005) Molecular chaperones as regulatory elements of cellular networks. Curr Opin Cell Biol 17(2):210–215. doi:10.1016/j.ceb.2005.02.012

    Article  PubMed  CAS  Google Scholar 

  • Szabadkai G, Bianchi K, Varnai P, De Stefani D, Wieckowski MR, Cavagna D, Nagy AI, Balla T, Rizzulo R (2006) Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J Cell Biol 175(6):901–911

    Article  PubMed  CAS  Google Scholar 

  • Szalay MS, Kovacs IA, Korcsmaros T, Bode C, Csermely P (2007) Stress-induced rearrangements of cellular networks: consequences for protection and drug design. FEBS Lett 581(19):3675–3680. doi:10.1016/j.1ebsiet.2007.03.083

    Article  PubMed  CAS  Google Scholar 

  • Tarun AS, Peng X, Dumpit RF, Ogata Y, Silva-Rivera H, Camargo N, Daly TM, Bergman LW, Kappe SHI (2008) A combined transcriptome and proteome survey of malaria parasite liver stages. Proc Natl Acad Sci USA 105(1):305–310. doi:10.1073/pnas.0710780104

    Article  PubMed  Google Scholar 

  • Tissieres A, Mitchell HK, Tracy UM (1974) Protein synthesis in salivary glands of Drosophila melanogaster—relation to chromosome puffs. J Mol Biol 84(3):389–398

    Article  PubMed  CAS  Google Scholar 

  • Tomoyasu T, Mogk A, Langen H, Goloubinoff P, Bukau B (2001) Genetic dissection of the roles of chaperones and proteases in protein folding and degradation in the Escherichia coli cytosol. Mol Microbiol 40(2):397–413

    Article  PubMed  CAS  Google Scholar 

  • van der Spuy J, Kana BD, Dirr HW, Blatch GL (2000) Heat shock cognate protein 70 chaperone-binding site in the co-chaperone murine stress-inducible protein 1 maps to within three consecutive tetratricopeptide repeat motifs. Biochem J 345:645–651

    Article  Google Scholar 

  • Veinger L, Diamant S, Buchner J, Goloubinoff P (1998) The small heat-shock protein IbpB from Escherichia coli stabilizes stress-denatured proteins for subsequent refolding by a multichaperone network. J Biol Chem 273(18):11032–11037

    Article  PubMed  CAS  Google Scholar 

  • Vigh L, Literati PN, Horvath I, Torok Z, Balogh G, Glatz A, Kovacs E, Boros I, Ferdinandy P, Farkas B, Jaszlits L, Jednakovits A, Koranyi L, Maresca B (1997) Bimoclomol: a nontoxic, hydroxylamine derivative with stress protein-inducing activity and cytoprotective effects. Nat Med 3(10):1150–1154

    Article  PubMed  CAS  Google Scholar 

  • Vigh L, Maresca B, Harwood JL (1998) Does the membrane’s physical state control the expression of heat shock and other genes? Trends Biochem Sci 23(10):369–374

    Article  PubMed  CAS  Google Scholar 

  • Vigh L, Horvath I, Maresca B, Harwood JL (2007) Can the stress protein response be controlled by ‘membrane-lipid therapy’? Trends Biochem Sci 32(8):357–363. doi:10.1016/j.tibs.2007.06.009

    Article  PubMed  CAS  Google Scholar 

  • Voellmy R, Boellmann F (2007) Chaperone regulation of the heat shock protein response. Adv Exp Mol Biol 594:89–99

    Article  Google Scholar 

  • Weiss YG, Bromberg Z, Raj N, Raphael J, Goloubinoff P, Ben-Neriah Y, Deutschman CS (2007) Enhanced heat shock protein 70 expression alters proteasomal degradation of I kappa B kinase in experimental acute respiratory distress syndrome. Crit Care Med 35(9):2128–2138. doi:10.1097/01.Ccm.0000278915.78030.74

    Article  PubMed  CAS  Google Scholar 

  • Whelan SA, Hightower LE (1985) Induction of stress proteins in chicken-embryo cells by low-level zinc contamination in amino acid-free media. J Cell Physiol 122(2):205–209

    Article  PubMed  CAS  Google Scholar 

  • Whitesell L, Lindquist SL (2005) HSP90 and the chaperoning of cancer. Nat Rev Cancer 5(10):761–772

    Article  PubMed  CAS  Google Scholar 

  • Whitesell L, Mimnaugh EG, Decosta B, Myers CE, Neckers LM (1994) Inhibition of heat-shock protein Hsp90-Pp60(V-Src) heteroprotein complex-formation by benzoquinone ansamycins—essential role for stress proteins in oncogenic transformation. Proc Natl Acad Sci USA 91(18):8324–8328

    Article  PubMed  CAS  Google Scholar 

  • Wickner RB (1994) [Ure3] as an altered Ure2 protein—evidence for a prion analog in Saccharomyces cerevisiae. Science 264(5158):566–569

    Article  PubMed  CAS  Google Scholar 

  • Wiech H, Buchner J, Zimmermann R, Jakob U (1992) Hsp90 chaperones protein folding in vitro. Nature 358(6382):169–170

    Article  PubMed  CAS  Google Scholar 

  • Wu YJ, Cao ZM, Klein WL, Luo Y (2010) Heat shock treatment reduces beta amyloid toxicity in vivo by diminishing oligomers. Neurobiol Aging 31(6):1055–1058. doi:10.1016/j.neurobiolaging.2008.07.013

    Article  PubMed  CAS  Google Scholar 

  • Xing HY, Wilkerson DC, Mayhew CN, Lubert EJ, Skaggs HS, Goodson ML, Hong YL, Park-Sarge OK, Sarge KD (2005) Mechanism of Hsp70i gene bookmarking. Science 307(5708):421–423. doi:10.1126/science.1106478

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto N, Takemori Y, Sakurai M, Sugiyama K, Sakurai H (2009) Differential recognition of heat shock elements by members of the heat shock transcription factor family. FEBS J 276(7):1962–1974. doi:10.1111/j.1742-4658.2009.06923.x

    Article  PubMed  CAS  Google Scholar 

  • Yao J, Munson KM, Webb WW, Lis JT (2006) Dynamics of heat shock factor association with native gene loci in living cells. Nature 442(7106):1050–1053. doi:10.1038/Nature05025

    Article  PubMed  CAS  Google Scholar 

  • Zhao RM, Davey M, Hsu YC, Kaplanek P, Tong A, Parsons AB, Krogan N, Cagney G, Mai D, Greenblatt J, Boone C, Emili A, Houry WA (2005) Navigating the chaperone network: an integrative map of physical and genetic interactions mediated by the Hsp90 chaperone. Cell 120(5):715–727. doi:10.1016/j.cell.2004.12.024

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136(1):2621–2632. doi:10.1104/pp.104.046367

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann R, Eyrisch S, Ahmad M, Helms V (2010) Protein translocation across the ER membrane. Biochim Biophys Acta. doi:10.1016/j.bbamem.2010.06.015

    Google Scholar 

  • Zourlidou A, Smith MDP, Latchman DS (2004) HSP27 but not HSP70 has a potent protective effect against alpha-synuclein-induced cell death in mammalian neuronal cells. J Neurochem 88(6):1439–1448. doi:10.1046/j.1471-4159.2003.02273.x

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was financed in part by grant no. 3100A0-109290 from the Swiss National Science Foundation, the Alzheimer’s Drug Discovery Foundation New York, and the Zwahlen Grant from the Faculty of Biology and Medicine from Lausanne University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Goloubinoff.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Fig. 1

Correlation of Arabidopsis chaperome transcription in five independent heat shock treatments. Heat shock cognates are indicated by arrows. The microarray data were extracted from the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus under the series accession numbers GSE4760 (Hsf2 mutant, 4 days at 23°C to 2 h at 38°C), GSE16222 (5 days at 23°C to 1 h at 37°C), GSE12619 (7 days at 22°C to 1 h at 37°C), GSE4062 (15 days at 22°C to 2 h at 37°C), and GSE11758 (mature leaves at 20°C to 1 h at 37°C) (PDF 956 kb)

Supplemental Fig. 2

Clustering of RNA expression levels of the Arabidopsis chaperome under seven abiotic and chemical treatments: dithiothreitol (DTT), tunicamycin, salicylic acid, ibuprofen, 2,3,5- triiodobenzoicacid (TIBA), 2,4,6-trihydroxybenzamide (2,4,6-T), and heat treatment as indicated. Gene clusters typical of the of the cellular stress response (CSR) (a) or of the unfolded protein response (UPR) (b) are indicated with brackets. The presumed subcellular localizations are indicated with different background colors (PDF 1032 kb)

Supplemental Fig. 3

Clustering of RNA expression levels of 168 genes from the human chaperome under 21 treatments: A 2-deoxyglucose, B tunicamycin, C phorbol 12-myristate 13-acetate, D cadmium, E N-acetylcysteine, F paclitaxel, G doxycycline, H echinomycin, I heat shock study, J elesclomol, K smoking, L simvastatin, M etoposide, N VAF347, O sapphyrin PCI-5002, P propiconazole, Q myclobutanil, R rifampicin, S dihydrotestosterone, T estrogen, and U apple procyanidin. Gene clusters typical a of the cellular stress response (CSR), b of the unfolded protein response (UPR), and c of a main less specific cell response are indicated with brackets. The presumed subcellular localizations are indicated with different background colors of the gene names (PDF 442 kb)

Table 1a

List of identified human chaperone genes. (1) Small HSP, GroEL and CCT-like chaperonins, Hsp70, DNAJ, Hsp100 and Hsp90 families have been previously annotated (Kampinga et al. 2009). (2) The Bag family has been previously annotated (Takayama et al. 1999). (3) FKBP and CYP like peptide-prolyl isomerase families have been previously annotated (Barik 2006). (4) Protein disulfide isomerase family has been previously annotated (Ellgaard and Ruddock 2005). (5)Human Hsp90 co-chaperones have been identified according to www.picard.ch (XLS 45 kb)

Table 1b

List of identified heat shock elements (HSEs) in human chaperome. Nucleotide sequences of canonical HSEs in cis and trans orientations were identified between position −3000 and 300 bp from the translation start site of each chaperone gene (XLS 32 kb)

Table 2

List of identified Arabidopsis thaliana chaperome genes. (1) Small HSPs were obtained by BLAST using α-crystalline domain as queries against the Arabidopsis protein subset of the NCBI database. (2) Chaperonins have been previously annotated (Hill and Hemmingsen 2001). (3) DnaJ proteins were re-annotated as compared to the previous J-protein nomenclature (Rajan and D’Silva 2009, as shown in brackets). All isoforms, splice variants, and paralogous protein according to previous annotations have been removed. The gene loci At2g02200, At5g34895, At2g07010 (MWJ3.6), At1g31210, At2g14930, At2g13940, and At2g24660 (corresponding to AtDjC6, AtDjC7, AtDjC50, and AtDjC58–AtDjC61, respectively) contained transposable elements and were removed as such. (4) The Hsp70 and Hsp110 were obtained by BLAST using DnaK from E. coli as query against the Arabidopsis protein subset of the NCBI database. (5) The Hsp100 were obtained by BLAST using ClpB from E. coli as the query against Arabidopsis protein subset of the NCBI database. Only the most ClpB-like proteins were retained, while ClpA/C proteins that are associated to the ClpP protease were excluded. (6) The Bag family has been previously annotated (Yan 2003). (7) The Hsp90 family has been previously annotated (Krishna and Gloor 2001). (8) PPIase families have been previously annotated (Romano et al. 2005). (9) PDIs families have been previously annotated (Houston et al. 2005). (10) Human Hsp90 co-chaperones were identified in yeast and animals according to http://www.picard.ch and used as queries to identify Arabidopsis orthologs in the protein subset of the NCBI database (XLS 162 kb)

ESM 1

Supplemental references (DOC 39.5 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Finka, A., Mattoo, R.U.H. & Goloubinoff, P. Meta-analysis of heat- and chemically upregulated chaperone genes in plant and human cells. Cell Stress and Chaperones 16, 15–31 (2011). https://doi.org/10.1007/s12192-010-0216-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-010-0216-8

Keywords

Navigation