Skip to main content
Log in

LlDREB1G, a novel DREB subfamily gene from Lilium longiflorum, can enhance transgenic Arabidopsis tolerance to multiple abiotic stresses

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

In plants, most DREB1s/CBFs proteins with a single AP2/ERF domain participate in responses to abiotic stresses. Here, we cloned a DREB subfamily gene from Lilium longiflorum (designated as LlDREB1G). Sequence analyses revealed that it is composed of 219 amino acids, and contains an AP2/ERF domain, a putative nuclear localization signal (NLS), a DSAW/R and LWSY motif. LlDREB1G, which was localized to the nucleus, showed strongly induced expression under low temperature, and was also stimulated by mechanical agitation, heat shock, ABA and H2O2 stresses. Moreover, the LlDREB1G gene had an obvious circadian rhythm and organ specificity in expression. The LlDREB1G transcription factor was functional in the heterologous system (Arabidopsis). Transgenic Arabidopsis plants with higher transcription of LlDREB1G gene exhibited increased acquired thermotolerance and resistance to freezing and dehydration stresses. Besides, the transgenic seeds were insensitive to exogenous ABA treatment than those of the wild type (WT) in germination experiments. Compared with the WT seedlings, the seedlings of transgenic Arabidopsis overexpressing LlDREB1G showed strongly upregulated expression of stress-related genes after cold, drought or acclimation to heat shock treatments. Furthermore, overexpression of LlDREB1G increased the proline levels and survival rates, but decreased the electrolyte leakage and H2O2 accumulation in the transgenic plants after freezing, dehydration and high temperature treatments. These results imply that LlDREB1G gene may be involved in the responses to multiple abiotic stresses in an ABA-dependent and -independent manner.

Key message

LlDREB1G gene, a DREB subfamily gene from Lilium longiflorum, may be involved in the responses to multiple abiotic stresses in an ABA-dependent and -independent manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

ABRE:

ABA responsive elements

ATSR:

Acquired thermotolerance after short recovery

BT:

Basal thermotolerance

CAT:

Catalase

DAB:

3, 3′-Diaminobenzidine

DAPI:

4′, 6-Diamidino-2-phenylindole

DREB:

Dehydration responsive element binding protein

GFP:

Green fluorescent protein

HS:

Heat shock

HSF:

Heat stress transcription factor

HSP:

Heat shock protein

LTRE:

Low temperature responsive elements

MV:

Methyl viologen

NAA:

α-naphthaleneacetic acid

NLS:

Nuclear localization signal

ORF:

Open reading frame

QPCR:

Quantitative real-time PCR

RACE:

Rapid amplification of cDNA ends

ROS:

Reactive oxygen species

TAIL-PCR:

Thermal asymmetric interlaced PCR

WT:

Wild type

References

  • Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15(1):63–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agarwal PK, Agarwal P, Reddy MK, Sopory SK (2006) Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep 25(12):1263–1274

    Article  CAS  PubMed  Google Scholar 

  • Allen MD, Yamasaki K, Ohme-Takagi M, Tateno M, Suzuki M (2014) A novel mode of DNA recognition by a beta-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA. EMBO J 17(18):5484–5496

    Article  Google Scholar 

  • Anderson NO (1986) The distribution of the genus Lilium with reference to its evolution. Herbertia 42:31–50

    Google Scholar 

  • Artlip TS, Wisniewski ME, Bassett CL, Norelli JL (2013) CBF gene expression in peach leaf and bark tissues is gated by a circadian clock. Tree Physiol 33(8):866–877

    Article  CAS  PubMed  Google Scholar 

  • Baker SS, Wilhelm KS, Thomashow MF (1994) The 5′-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought-and ABA-regulated gene expression. Plant Mol Biol 24(5):701–713

    Article  CAS  PubMed  Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218(4571):443–448

    Article  CAS  PubMed  Google Scholar 

  • Cai M, Qiu D, Yuan T, Ding X, Li H, Duan L, Xu C, Li X, Wang S (2008) Identification of novel pathogen-responsive cis-elements and their binding proteins in the promoter of OsWRKY13, a gene regulating rice disease resistance. Plant, Cell Environ 31(1):86–96

    CAS  Google Scholar 

  • Charng Y, Liu H, Liu N, Hsu F, Ko S (2006) Arabidopsis Hsa32, a novel heat shock protein, is essential for acquired thermotolerance during long recovery after acclimation. Plant Physiol 140(4):1297–1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Yang J, Wang Z, Zhang H, Mao X, Li C (2013) Gene structures, classification, and expression models of the DREB transcription factor subfamily in Populus trichocarpa. Sci World J 2013:954640

    Google Scholar 

  • Chinnusamy V, Schumaker K, Zhu JK (2004) Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. J Exp Bot 55(395):225–236

    Article  CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743

    Article  CAS  PubMed  Google Scholar 

  • Cong L, Chai TY, Zhang YX (2008) Characterization of the novel gene BjDREB1B encoding a DRE-binding transcription factor from Brassica juncea L. Biochem Biophys Res Commun 371(4):702–706

    Article  CAS  PubMed  Google Scholar 

  • Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high- salt- and cold- responsive gene expression. Plant J 33(4):751–763

    Article  CAS  PubMed  Google Scholar 

  • Ellis BW (2001) Taylor’s guide to bulbs : how to select and grow 480 species of spring and summer bulbs. Houghton Mifflin, Boston

    Google Scholar 

  • Espinoza C, Bieniawska Z, Hincha DK, Hannah MA (2008) Interactions between the circadian clock and cold-response in Arabidopsis. Plant Signal Behav 3(8):593–594

    Article  PubMed  PubMed Central  Google Scholar 

  • Finkelstein RR, Lynch TJ (2000) The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell 12(4):599–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fowler SG, Cook D, Thomashow MF (2005) Low temperature induction of Arabidopsis CBF1, 2, and 3 is gated by the circadian clock. Plant Physiol 137(3):961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita M, Fujita Y, Maruyama K, Seki M, Hiratsu K, Ohme-Takagi M, Tran L-SP, Yamaguchi-Shinozaki K, Shinozaki K (2004) A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant J 39(6):863–876

    Article  CAS  PubMed  Google Scholar 

  • Gilmour SJ, Zarka DG, Stockinger EJ, Salazar MP, Houghton JM, Thomashow MF (1998) Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J 16(4):433–442

    Article  CAS  PubMed  Google Scholar 

  • Gong B, Yi J, Wu J, Sui J, Khan MA, Wu Z, Zhong X, Seng S, He J, Yi M (2014) LlHSFA1, a novel heat stress transcription factor in lily (Lilium longiflorum), can interact with LlHSFA2 and enhance the thermotolerance of transgenic Arabidopsis thaliana. Plant Cell Rep 33(9):1519–1533

    Article  CAS  PubMed  Google Scholar 

  • Gujjar RS, Akhtar M, Singh M (2014) Transcription factors in abiotic stress tolerance. Indian J Plant Physiol 19(4):306–316

    Article  Google Scholar 

  • Guo Y, Xiong L, Ishitani M, Zhu J-K (2002) An Arabidopsis mutation in translation elongation factor 2 causes superinduction of CBF/DREB1 transcription factor genes but blocks the induction of their downstream targets under low temperatures. Proc Natl Acad Sci USA 99(11):7786–7791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haake V, Cook D, Riechmann JL, Pineda O, Thomashow MF, Zhang JZ (2002) Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol 130(2):639–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database. Nucleic Acids Res 27(1):297–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoshi Y, Kondo M, Mori S, Adachi Y, Nakano M, Kobayashi H (2004) Production of transgenic lily plants by Agrobacterium-mediated transformation. Plant Cell Rep 22(6):359–364

    Article  CAS  PubMed  Google Scholar 

  • Huang X-S, Liu J-H, Chen X-J (2010) Overexpression of PtrABF gene, a bZIP transcription factor isolated from Poncirus trifoliata, enhances dehydration and drought tolerance in tobacco via scavenging ROS and modulating expression of stress-responsive genes. BMC Plant Biol 10(1):230

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jaeyong R, Hong SY, Sinhye J, Jechang W, Sangmin L, Chungmo P (2014) Molecular and functional characterization of cold-responsive C-repeat binding factors from Brachypodium distachyon. BMC Plant Biol 14(1):15

    Article  Google Scholar 

  • Jakoby M, Weisshaar B, Dröge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F (2002) bZIP transcription factors in Arabidopsis. Trends Plant Sci 7(3):106–111

    Article  CAS  PubMed  Google Scholar 

  • Kang H-G, Kim J, Kim B, Jeong H, Choi SH, Kim EK, Lee H-Y, Lim PO (2011) Overexpression of FTL1/DDF1, an AP2 transcription factor, enhances tolerance to cold, drought, and heat stresses in Arabidopsis thaliana. Plant Sci 180(4):634–641

    Article  CAS  PubMed  Google Scholar 

  • Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17(3):287

    Article  CAS  PubMed  Google Scholar 

  • Katiyar-Agarwal S, Zhu J, Kim K, Agarwal M, Fu X, Huang A, Zhu J-K (2006) The plasma membrane Na+/H+ antiporter SOS1 interacts with RCD1 and functions in oxidative stress tolerance in Arabidopsis. Proc Natl Acad Sci USA 103(49):18816–18821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan MS (2014) The role of DREB transcription factors in abiotic stress tolerance of plants. Biotechnol Biotechnol Equip 25(3):2433–2442

    Article  CAS  Google Scholar 

  • Li X, Cheng J, Zhang J, da Silva JAT, Wang C, Sun H (2015a) Validation of reference genes for accurate normalization of gene expression in Lilium davidii var. unicolor for real time quantitative PCR. PLoS ONE 10(10):e0141323

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li X, Ning G, Han X, Liu C, Bao M (2015b) The identification of novel PMADS3 interacting proteins indicates a role in post-transcriptional control. Gene 564(1):87–95

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression, respectively Arabidopsis. Plant Cell 10(8):1391–1406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Q, Wei C, Zhang M-F, Jia G-X (2016) Evaluation of putative reference genes for quantitative real-time PCR normalization in Lilium regale during development and under stress. PeerJ 4:e1837

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu D, Yang L, Luo M, Wu Q, Liu S, Liu Y (2017) Molecular cloning and characterization of PtrZPT2-1, a ZPT2 family gene encoding a Cys2/His2-type zinc finger protein from trifoliate orange (Poncirus trifoliata (L.) Raf.) that enhances plant tolerance to multiple abiotic stresses. Plant Sci 263:66–78

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Molina L, Chua N-H (2000) A null mutation in a bZIP factor confers ABA-insensitivity in Arabidopsis thaliana. Plant Cell Physiol 41(5):541–547

    Article  CAS  PubMed  Google Scholar 

  • Mizoi J, Shinozaki K, K Yamaguchi-Shinozaki (2012) AP2/ERF family transcription factors in plant abiotic stress responses. BBA-Gene Regul Mech 1819(2):86–96

    CAS  Google Scholar 

  • Nakamichi N, Kiba T, Kamioka M, Suzuki T, Yamashino T, Higashiyama T, Sakakibara H, Mizuno T (2012) Transcriptional repressor PRR5 directly regulates clock-output pathways. Proc Natl Acad Sci USA 109(42):17123–17128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakano T, Suzuki K (2006) Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol 140(2):411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakashima K, Fujita Y, Katsura K, Maruyama K, Narusaka Y, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Transcriptional regulation of ABI3-and ABA-responsive genes including RD29B and RD29A in seeds, germinating embryos, and seedlings of Arabidopsis. Plant Mol Biol 60(1):51–68

    Article  CAS  PubMed  Google Scholar 

  • Nhut DT, Van Le B, Minh NT, de Silva JT, Fukai S, Tanaka M, Van KTT (2002) Somatic embryogenesis through pseudo-bulblet transverse thin cell layer of Lilium longiflorum. Plant Growth Regul 37(2):193–198

    Article  CAS  Google Scholar 

  • Nicholas KB (1997) GeneDoc: analysis and visualization of genetic variation. Embnew. News 4:14

    Google Scholar 

  • Ohmetakagi M, Shinshi H (1995) Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell 7(2):173–182

    CAS  Google Scholar 

  • Panikulangara TJ, Eggers-Schumacher G, Wunderlich M, Stransky H, Schöffl F (2004) Galactinol synthase1. A novel heat shock factor target gene responsible for heat-induced synthesis of raffinose family oligosaccharides in Arabidopsis. Plant Physiol 136(2):3148–3158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng T, Guo C, Yang J, Xu M, Zuo J, Bao M, Zhang J (2016) Overexpression of a Mei (Prunus mume) CBF gene confers tolerance to freezing and oxidative stress in Arabidopsis. Plant Cell Tiss Org 126(3):373–385

    Article  CAS  Google Scholar 

  • Qin QL (2007) Isolation, optimization, and functional analysis of the cDNA encoding transcription factor DREB1 in Oryza sativa L. Mol Breed 19(4):329–340

    Article  CAS  Google Scholar 

  • Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchishinozaki K (2002) DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophys Res Commun 290(3):998–1009

    Article  CAS  PubMed  Google Scholar 

  • Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006a) Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell 18(5):1292–1309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakuma Y, Maruyama K, Qin F, Osakabe Y, Shinozaki K, Yamaguchishinozaki K (2006b) Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. Proc Natl Acad Sci USA 103(49):18822–18827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen YG, Zhang WK, He SJ, Zhang JS, Liu Q, Chen SY (2003) An EREBP/AP2-type protein in Triticum aestivum was a DRE-binding transcription factor induced by cold, dehydration and ABA stress. Theor Appl Genet 106(5):923–930

    Article  CAS  PubMed  Google Scholar 

  • Siddiqua M, Nassuth A (2011) Vitis CBF1 and Vitis CBF4 differ in their effect on Arabidopsis abiotic stress tolerance, development and gene expression. Plant Cell Environ 34(8):1345–1359

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Peng X, Fan W, Tang M, Liu J, Shen S (2014) Functional analysis of BpDREB2 gene involved in salt and drought response from a woody plant Broussonetia papyrifera. Gene 535(2):140–149

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tyagi E, Liu B, Li C, Liu T, Rutter J, Grossman D (2017) Loss of p16INK4A stimulates aberrant mitochondrial biogenesis through a CDK4/Rb-independent pathway. Oncotarget 8(34):55848

    Article  PubMed  PubMed Central  Google Scholar 

  • Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K (2000) Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc Natl Acad Sci USA 97(21):11632–11637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Ye S, Li J, Zheng B, Bao M, Ning G (2011) Fusion primer and nested integrated PCR (FPNI-PCR): a new high-efficiency strategy for rapid chromosome walking or flanking sequence cloning. BMC Biotechnol 11:109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang X, Zeng J, Li Y, Rong X, Sun J, Sun T, Li M, Wang L, Feng Y, Chai R (2015) Expression of TaWRKY44, a wheat WRKY gene, in transgenic tobacco confers multiple abiotic stress tolerances. Front Plant Sci 6:615

    PubMed  PubMed Central  Google Scholar 

  • Wang Z, Shen Y, Yang X, Pan Q, Ma G, Bao M, Zheng B, Duanmu D, Lin R, Larkin RM (2019) Overexpression of particular MADS-box transcription factors in heat-stressed plants induces chloroplast biogenesis in petals. Plant, Cell Environ 42(5):1545–1560

    Article  CAS  Google Scholar 

  • Weigel D (1995) The APETALA2 domain is related to a novel type of DNA binding domain. Plant Cell 7(4):388–389

    CAS  PubMed  PubMed Central  Google Scholar 

  • Winfield MO, Lu C, Wilson ID, Coghill JA, Edwards KJ (2010) Plant responses to cold: transcriptome analysis of wheat. Plant Biotechnol J 8(7):749–771

    Article  CAS  PubMed  Google Scholar 

  • Xin H, Zhang H, Chen L, Li X, Lian Q, Yuan X, Hu X, Cao L, He X, Yi M (2010) Cloning and characterization of HsfA2 from Lily (Lilium longiflorum). Plant Cell Rep 29(8):875–885

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Liu XD, Chi XJ, Wu CA, Li YZ, Song LL, Liu XM, Wang YF, Wang FW, Zhang C (2011) Dwarf apple MbDREB1 enhances plant tolerance to low temperature, drought, and salt stress via both ABA-dependent and ABA-independent pathways. Planta 233(2):219–229

    Article  CAS  PubMed  Google Scholar 

  • Ye H, Liu S, Tang B, Chen J, Xie Z, Nolan TM, Hao J, Guo H, Lin HY, Lei L (2017) RD26 mediates crosstalk between drought and brassinosteroid signalling pathways. Nat Commun 8:14573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Fowler SG, Cheng H, Lou Y, Rhee SY, Stockinger EJ, Thomashow MF (2004) Freezing-sensitive tomato has a functional CBF cold response pathway, but a CBF regulon that differs from that of freezing-tolerant Arabidopsis. Plant J 39(6):905–919

    Article  CAS  PubMed  Google Scholar 

  • Zhang JQ, Guo C, Liu GF, Li ZN, Li XM, Bao MZ (2011) Genetic alteration with variable intron/exon organization amongst five PI-homoeologous genes in Platanus acerifolia. Gene 473:82–91

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Special Fund for Agro-scientific Research in the Public Interest of China (Grant No. 201203071). We thank all colleagues in our laboratory for constructive discussion and technical support.

Author information

Authors and Affiliations

Authors

Contributions

GFL and MZB designed the study. BJL and WL wrote the paper. BJL, YZ, QZ, FL, FC performed the research and analyzed the data. All authors discussed the results and approved the final form of the manuscript.

Corresponding author

Correspondence to Guofeng Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Goetz Hensel.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1115 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, B., Zhou, Y., Lan, W. et al. LlDREB1G, a novel DREB subfamily gene from Lilium longiflorum, can enhance transgenic Arabidopsis tolerance to multiple abiotic stresses. Plant Cell Tiss Organ Cult 138, 489–506 (2019). https://doi.org/10.1007/s11240-019-01644-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-019-01644-0

Keywords

Navigation