Skip to main content

Future Marine Microbial Products for the Pharmaceuticals Industry

  • Chapter
  • First Online:
Microbial products for future industrialization

Abstract

The marine environment addresses endless and different assets of the pharmaceutical industries for new drugs in the terms of battling significant illnesses like cancer, malaria, etc. It additionally offers a natural asset involving an assortment of oceanic creatures such as microorganisms. These marine microorganisms are screened for anticancer, antifungal, antimicrobial, antibacterial, immunomodulatory, neuroprotective, analgesic, anti-inflammatory, and antimalarial properties. They are utilized in the pharmaceutical industry for the development of new drugs widely across the world. The enormous development of the world’s total population has overburdened the current assets for drugs. Furthermore, subsequently, the manufacturers of drugs are generally looking out for new resources to build effective as well as safe drugs to fulfill the rising requests of the total population. Marine-derived products are viewed as a novel method for satisfying the worldwide need for pharma, food, as well as energy. According to this viewpoint, this chapter explores the future marine microbial-derived products, their resources, as well as their applications in the pharmaceutical industries. Apart from these it also describes the economic contribution of the marine microbial-derived products to global needs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abou-Elela GM, Ibrahim HA, Hassan SW, Abd-Elnaby H, El-Toukhy NM (2011) Alkaline protease production by alkaliphilic marine bacteria isolated from Marsa-Matrouh (Egypt) with special emphasis on Bacillus cereus purified protease. Afr J Biotechnol 10(22):4631–4642

    CAS  Google Scholar 

  • Aklakur M (2018) Natural antioxidants from sea: a potential industrial perspective in aquafeed formulation. Rev Aquac 10(2):385–399

    Article  Google Scholar 

  • Anithajothi R, Nagarani N, Umagowsalya G, Duraikannu K, Ramakritinan CM (2014) Screening, isolation and characterization of protease producing moderately halophilic microorganism Halomonas meridiana associated with coral mucus. Toxicol Environ Chem 96(2):296–306

    Article  CAS  Google Scholar 

  • Arnosti C, Bell C, Moorhead DL, Sinsabaugh RL, Steen AD, Stromberger M, Wallenstein M, Weintraub MN (2014) Extracellular enzymes in terrestrial, freshwater, and marine environments: perspectives on system variability and common research needs. Biogeochemistry 117(1):5–21

    Article  CAS  Google Scholar 

  • Arumugam V, Venkatesan M, Ramachandran S, Sundaresan U (2018) Bioactive peptides from marine ascidians and future drug development–a review. Int J Pept Res Ther 24(1):13–18

    Article  CAS  Google Scholar 

  • Asha B, Palaniswamy M (2018) Optimization of alkaline protease production by Bacillus cereus FT 1 isolated from soil. J Appl Pharm Sci 8(02):119–127

    CAS  Google Scholar 

  • Asolkar RN, Jensen PR, Kauffman CA, Fenical W (2006) Daryamides A−C, weakly cytotoxic polyketides from a marine-derived actinomycete of the genus Streptomyces strain CNQ-085. J Nat Prod 69(12):1756–1759

    Article  CAS  PubMed  Google Scholar 

  • Beygmoradi A, Homaei A (2017) Marine microbes as a valuable resource for brand new industrial biocatalysts. Biocatal Agric Biotechnol 11:131–152

    Article  Google Scholar 

  • Beygmoradi A, Homaei A, Hemmati R, Santos-Moriano P, Hormigo D, Fernández-Lucas J (2018) Marine chitinolytic enzymes, a biotechnological treasure hidden in the ocean? Appl Microbiol Biotechnol 102(23):9937–9948

    Article  CAS  PubMed  Google Scholar 

  • Bijina B, Chellappan S, Krishna JG, Basheer SM, Elyas KK, Bahkali AH, Chandrasekaran M (2011) Protease inhibitor from Moringa oleifera with potential for use as therapeutic drug and as seafood preservative. Saudi J Biol Sci 18(3):273–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cha KH, Koo SY, Lee DU (2008) Antiproliferative effects of carotenoids extracted from Chlorella ellipsoidea and Chlorella vulgaris on human colon cancer cells. J Agric Food Chem 56(22):10521–10526

    Article  CAS  PubMed  Google Scholar 

  • Chellappan S, Jasmin C, Basheer SM, Elyas KK, Bhat SG, Chandrasekaran M (2006) Production, purification and partial characterization of a novel protease from marine Engyodontium album BTMFS10 under solid state fermentation. Process Biochem 41(4):956–961

    Article  CAS  Google Scholar 

  • Chi Z, Ma C, Wang P, Li HF (2007) Optimization of medium and cultivation conditions for alkaline protease production by the marine yeast Aureobasidium pullulans. Bioresour Technol 98(3):534–538

    Article  CAS  PubMed  Google Scholar 

  • Choudhury P, Bhunia B (2015) Industrial application of lipase: a review. Biopharm J 1(2):41–47

    Google Scholar 

  • Chysirichote T, Reiji T, Asami K, Ohtaguchi K (2014) Quantification of the glucosamine content in the filamentous fungus Monascus ruber cultured on solid surfaces. J Basic Microbiol 54(5):350–357

    Article  CAS  PubMed  Google Scholar 

  • D’Costa VM, Griffiths E, Wright GD (2007) Expanding the soil antibiotic resistome: exploring environmental diversity. Curr Opin Microbiol 10(5):481–489

    Article  PubMed  Google Scholar 

  • Davidson MH, Rosenson RS (2009) Novel targets that affect high-density lipoprotein metabolism: the next frontier. Am J Cardiol 104(10):52E–57E

    Article  CAS  PubMed  Google Scholar 

  • Deng D, Zhang Y, Sun A, Liang J, Hu Y (2016) Functional characterization of a novel marine microbial GDSL lipase and its utilization in the resolution of (±)-1-phenylethanol. Appl Biochem Biotechnol 179(1):75–93

    Article  CAS  PubMed  Google Scholar 

  • De Swaaf ME, Sijtsma L, Pronk JT (2003) High-cell-density fed-batch cultivation of the docosahexaenoic acid producing marine alga Crypthecodinium cohnii. Biotechnol Bioeng 81(6):666–672

    Article  PubMed  Google Scholar 

  • Devlin MG, Gasser RB, Cocks TM (2007) Initial support for the hypothesis that PAR2 is involved in the immune response to Nippostrongylus brasiliensis in mice. Parasitol Res 101(1):105–109

    Article  PubMed  Google Scholar 

  • Dharmaraj S (2010) Marine Streptomyces as a novel source of bioactive substances. World J Microbiol Biotechnol 26:2123–2139. https://doi.org/10.1007/s11274-010-0415-6

    Article  CAS  Google Scholar 

  • Du J, Duan S, Miao J, Zhai M, Cao Y (2021) Purification and characterization of chitinase from Paenibacillus sp. Biotechnol Appl Biochem 68(1):30–40

    Article  CAS  PubMed  Google Scholar 

  • Elibol M, Moreira AR (2005) Optimizing some factors affecting alkaline protease production by a marine bacterium Teredinobacter turnirae under solid substrate fermentation. Process Biochem 40(5):1951–1956

    Article  CAS  Google Scholar 

  • Feijoo-Siota L, Blasco L, Luis Rodriguez-Rama J, Barros-Velázquez J, de Miguel T, Sánchez-Pérez A, Villa G, T. (2014) Recent patents on microbial proteases for the dairy industry. Recent Adv DNA Gene Seq 8(1):44–55

    CAS  PubMed  Google Scholar 

  • Fenice M, Leuba JL, Federici F (1998) Chitinolytic enzyme activity of Penicillium janthinellum P9 in bench-top bioreactor. J Ferment Bioeng 86(6):620–623

    Article  CAS  Google Scholar 

  • Fiedler HP, Bruntner C, Riedlinger J, Bull AT, Knutsen G, Goodfellow M, Jones A, Maldonado L, Pathom-Aree W, Beil W, Schneider K (2008) Proximicin A, B and C, novel aminofuran antibiotic and anticancer compounds isolated from marine strains of the actinomycete Verrucosispora. J Antibiot 61(3):158–163

    Article  CAS  Google Scholar 

  • Fujiwara A, Hoshino T, Westley JW (1985) Anthracycline antibiotics. Crit Rev Biotechnol 3(2):133–157

    Article  Google Scholar 

  • Ghasemian A, Al-marzoqi AH, Al-abodi HR, Alghanimi YK, Kadhum SA, Shokouhi Mostafavi SK, Fattahi A (2019) Bacterial L-asparaginases for cancer therapy: current knowledge and future perspectives. J Cell Physiol 234(11):19271–19279

    Article  CAS  PubMed  Google Scholar 

  • González JM, Moran MA (1997) Numerical dominance of a group of marine bacteria in the alpha-subclass of the class Proteobacteria in coastal seawater. Appl Environ Microbiol 63(11):4237–4242

    Article  PubMed  PubMed Central  Google Scholar 

  • Habbu P, Warad V, Shastri R, Madagundi S, Kulkarni VH (2016) Antimicrobial metabolites from marine microorganisms. Chin J Nat Med 14(2):101–116

    CAS  PubMed  Google Scholar 

  • Han XX, Cui CB, Gu QQ, Zhu WM, Liu HB, Gu JY, Osada H (2005) ZHD-0501, a novel naturally occurring staurosporine analog from Actinomadura sp. 007. Tetrahedron Lett 46(36):6137–6140

    Article  CAS  Google Scholar 

  • Hayakawa Y, Shirasaki S, Shiba S, Kawasaki T, Matsuo Y, Adachi K, Shizuri Y (2007) Piericidins C7 and C8, new cytotoxic antibiotics produced by a marine Streptomyces sp. J Antibiot 60(3):196–200

    Article  CAS  Google Scholar 

  • Hohmann C, Schneider K, Bruntner C, Brown R, Jones AL, Goodfellow M, Krämer M, Imhoff JF, Nicholson G, Fiedler HP, Süssmuth RD (2009) Albidopyrone, a new α-pyrone-containing metabolite from marine-derived Streptomyces sp. NTK 227. J Antibiot 62(2):75–79

    Article  CAS  Google Scholar 

  • Hollstein U (1974) Actinomycin. Chemistry and mechanism of action. Chem Rev 74(6):625–652

    Article  CAS  Google Scholar 

  • Holz R, Finkelstein A (1970) The water and nonelectrolyte permeability induced in thin lipid membranes by the polyene antibiotics nystatin and amphotericin B. J Gen Physiol 56(1):125–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jahromi ST, Barzkar N (2018) Marine bacterial chitinase as sources of energy, eco-friendly agent, and industrial biocatalyst. Int J Biol Macromol 120:2147–2154

    Article  Google Scholar 

  • Jensen PR, Williams PG, Oh DC, Zeigler L, Fenical W (2007) Species-specific secondary metabolite production in marine actinomycetes of the genus Salinispora. Appl Environ Microbiol 73(4):1146–1152

    Article  CAS  PubMed  Google Scholar 

  • Jeong SY, Shin HJ, Kim TS, Lee HS, Park SK, Kim HM (2006) Streptokordin, a new cytotoxic compound of the methylpyridine class from a marine-derived Streptomyces sp. KORDI-3238. J Antibiot 59(4):234–240

    Article  CAS  Google Scholar 

  • Jovanovic S, Dietrich D, Becker J, Kohlstedt M, Wittmann C (2021) Microbial production of polyunsaturated fatty acids—high-value ingredients for aquafeed, superfoods, and pharmaceuticals. Curr Opin Biotechnol 69:199–211

    Article  CAS  PubMed  Google Scholar 

  • Kao PM, Huang SC, Chang YC, Liu YC (2007) Development of continuous chitinase production process in a membrane bioreactor by Paenibacillus sp. CHE-N1. Process Biochem 42(4):606–611

    Article  CAS  Google Scholar 

  • Kawamoto J, Kurihara T, Yamamoto K, Nagayasu M, Tani Y, Mihara H et al (2009) Eicosapentaenoic acid plays a beneficial role in membrane organization and cell division of a cold-adapted bacterium, Shewanella livingstonensis Ac10. J Bacteriol 191(2):632–640

    Article  CAS  PubMed  Google Scholar 

  • Kim W, Choi K, Kim Y, Park H, Choi J, Lee Y, Oh H, Kwon I, Lee S (1996) Purification and characterization of a fibrinolytic enzyme produced from Bacillus sp. strain CK 11-4 screened from Chungkook-Jang. Appl Environ Microbiol 62(7):2482–2488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kock I, Maskey RP, Biabani MA, Helmke E, Laatsch H (2005) 1-Hydroxy-1-norresistomycin and resistoflavin methyl ether: new antibiotics from marine-derived streptomycetes. J Antibiot 58(8):530–534

    Article  CAS  Google Scholar 

  • Kumar A, Singh SK, Kant C, Verma H, Kumar D, Singh PP, Modi A, Droby S, Kesawat MS, Alavilli H, Bhatia SK (2021) Microbial biosurfactant: a new frontier for sustainable agriculture and pharmaceutical industries. Antioxidants 10(9):1472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lam KS (2006) Discovery of novel metabolites from marine actinomycetes. Curr Opin Microbiol 9(3):245–251

    Article  CAS  PubMed  Google Scholar 

  • Lam KS, Tsueng G, McArthur KA, Mitchell SS, Potts BC, Xu J (2007) Effects of halogens on the production of salinosporamides by the obligate marine actinomycete Salinispora tropica. J Antibiot 60(1):13–19

    Article  CAS  Google Scholar 

  • Lancini G, Lorenzetti R (2013) Biotechnology of antibiotics and other bioactive microbial metabolites. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9522-6

    Book  Google Scholar 

  • Li F, Maskey RP, Qin S, Sattler I, Fiebig HH, Maier A, Zeeck A, Laatsch H (2005) Chinikomycins A and B: isolation, structure elucidation, and biological activity of novel antibiotics from a marine Streptomyces sp. isolate M045, 1. J Nat Prod 68(3):349–353

    Article  CAS  PubMed  Google Scholar 

  • Li DH, Zhu TJ, Liu HB, Fang YC, Gu QQ, Zhu WM (2006) Four butenolides are novel cytotoxic compounds isolated from the marine-derived bacterium, Streptoverticillium luteoverticillatum 11014. Arch Pharm Res 29(8):624–626

    Article  CAS  PubMed  Google Scholar 

  • Li J, Lu CH, Zhao BB, Zheng ZH, Shen YM (2008) Phaeochromycins F–H, three new polyketide metabolites from Streptomyces sp. DSS-18. Beilstein J Org Chem 4(1):46

    Article  PubMed  PubMed Central  Google Scholar 

  • Li M, Liu GL, Chi Z, Chi ZM (2010a) Single cell oil production from hydrolysate of cassava starch by marine-derived yeast Rhodotorula mucilaginosa TJY15a. Biomass Bioenergy 34(1):101–107

    Article  CAS  Google Scholar 

  • Li J, Chi Z, Wang X (2010b) Cloning of the SAP6 gene of Metschnikowia reukaufii and its heterologous expression and characterization in Escherichia coli. Microbiol Res 165(3):173–182

    Article  CAS  PubMed  Google Scholar 

  • Lindequist U (2016) Marine-derived pharmaceuticals–challenges and opportunities. Biomol Ther 24(6):561–571

    Article  CAS  Google Scholar 

  • Liu BL, Kao PM, Tzeng YM, Feng KC (2003) Production of chitinase from Verticillium lecanii F091 using submerged fermentation. Enzym Microb Technol 33(4):410–415

    Article  CAS  Google Scholar 

  • Lu Y, Dong X, Liu S, Bie X (2009) Characterization and identification of a novel marine Streptomyces sp. produced antibacterial substance. Mar Biotechnol 11(6):717–724

    Article  CAS  Google Scholar 

  • Mahajan PM, Nayak S, Lele SS (2012) Fibrinolytic enzyme from newly isolated marine bacterium Bacillus subtilis ICTF-1: media optimization, purification and characterization. J Biosci Bioeng 113(3):307–314

    Article  CAS  PubMed  Google Scholar 

  • Mahendran S, Sankaralingam S, Shankar T, Vijayabaskar P (2010) Alkalophilic protease enzyme production from estuarine Bacillus aquimaris. World J Fish Mar Sci 2:436–443

    CAS  Google Scholar 

  • Maloney KN, MacMillan JB, Kauffman CA, Jensen PR, DiPasquale AG, Rheingold AL, Fenical W (2009) Lodopyridone, a structurally unprecedented alkaloid from a marine actinomycete. Org Lett 11(23):5422–5424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manikprabhu D, Li W (2015) Antimicrobial agents from actinomycetes. In: Antimicrobials Synthetic and Natural Compounds, pp 99–116

    Chapter  Google Scholar 

  • Manivasagan P, Venkatesan J, Sivakumar K, Kim SK (2013) Retracted: marine actinobacterial metabolites: current status and future perspectives. Microbiol Res 168(6):311–332

    Article  CAS  PubMed  Google Scholar 

  • Manivasagan P, Kang KH, Sivakumar K, Li-Chan EC, Oh HM, Kim SK (2014) Marine actinobacteria: an important source of bioactive natural products. Environ Toxicol Pharmacol 38(1):172–188

    Article  CAS  PubMed  Google Scholar 

  • Maruthiah T, Esakkiraj P, Immanuel G, Palavesam A (2014) Alkaline serine protease from marine Bacillus flexus APCMST-RS2P: purification and characterization. Curr Biotechnol 3(3):238–243

    Article  CAS  Google Scholar 

  • Matsubara K, Hori K, Matsuura Y, Miyazawa K (2000) Purification and characterization of a fibrinolytic enzyme and identification of fibrinogen clotting enzyme in a marine green alga, Codiumdivaricatum. Comp Biochem Physiol B: Biochem Mol Biol 125(1):137–143

    Article  CAS  PubMed  Google Scholar 

  • Miller ED, Kauffman CA, Jensen PR, Fenical W (2007) Piperazimycins: cytotoxic hexadepsipeptides from a marine-derived bacterium of the genus Streptomyces. J Organomet Chem 72(2):323–330

    Article  CAS  Google Scholar 

  • Moi IM, Leow ATC, Ali MSM, Rahman RNZRA, Salleh AB, Sabri S (2018) Polyunsaturated fatty acids in marine bacteria and strategies to enhance their production. Appl Microbiol Biotechnol 102(14):5811–5826

    Article  CAS  PubMed  Google Scholar 

  • Muffler K, Sana B, Mukherjee J, Ulber R (2015) Marine enzymes–production & applications. In: Springer handbook of marine biotechnology. Springer, Berlin, Heidelberg, pp 413–429

    Chapter  Google Scholar 

  • Nampoothiri KM, Baiju TV, Sandhya C, Sabu A, Szakacs G, Pandey A (2004) Process optimization for antifungal chitinase production by Trichoderma harzianum. Process Biochem 39(11):1583–1590

    Article  CAS  Google Scholar 

  • Naveed M, Nadeem F, Mehmood T, Bilal M, Anwar Z, Amjad F (2021) Protease—a versatile and ecofriendly biocatalyst with multi-industrial applications: an updated review. Catal Lett 151(2):307–323

    Article  CAS  Google Scholar 

  • Navvabi A, Razzaghi M, Fernandes P, Karami L, Homaei A (2018) Novel lipases discovery specifically from marine organisms for industrial production and practical applications. Process Biochem 70:61–70

    Article  CAS  Google Scholar 

  • Ni X, Yue L, Chi Z, Li J, Wang X, Madzak C (2009) Alkaline protease gene cloning from the marine yeast Aureobasidium pullulans HN2-3 and the protease surface display on Yarrowia lipolytica for bioactive peptide production. Mar Biotechnol 11(1):81–89

    Article  CAS  Google Scholar 

  • Nickel JC, Ruseska I, Wright JB, Costerton JW (1985) Tobramycin resistance of Pseudomonas aeruginosa cells growing as a biofilm on urinary catheter material. Antimicrob Agents Chemother 27(4):619–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olatunde OO, Benjakul S (2022) Antioxidants from crustaceans: a panacea for lipid oxidation in marine-based foods. Food Rev Int 38(1):1–31

    Article  CAS  Google Scholar 

  • Prudhomme J, McDaniel E, Ponts N, Bertani S, Fenical W, Jensen P, Le Roch K (2008) Marine actinomycetes: a new source of compounds against the human malaria parasite. PLoS One 3(6):e2335

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramesh S, Rajesh M, Mathivanan N (2009) Characterization of a thermostable alkaline protease produced by marine Streptomyces fungicidicus MML1614. Bioprocess Biosyst Eng 32(6):791–800

    Article  CAS  PubMed  Google Scholar 

  • Reed KA, Manam RR, Mitchell SS, Xu J, Teisan S, Chao TH, Deyanat-Yazdi G, Neuteboom ST, Lam KS, Potts BC (2007) Salinosporamides D−J from the marine actinomycete Salinispora tropica, bromosalinosporamide, and thioester derivatives are potent inhibitors of the 20S proteasome. J Nat Prod 70(2):269–276

    Article  CAS  PubMed  Google Scholar 

  • Reilly HC (1947) Isolation of streptomycin-producing strains of Streptomyces griseus. J Bacteriol 54:27

    CAS  PubMed  Google Scholar 

  • Robinson PK (2015) Enzymes: principles and biotechnological applications. Essays Biochem 59:1–41

    Article  PubMed  PubMed Central  Google Scholar 

  • Ryan J, Farr H, Visnovsky S, Vyssotski M, Visnovsky G (2010) A rapid method for the isolation of eicosapentaenoic acid-producing marine bacteria. J Microbiol Methods 82(1):49–53

    Article  CAS  PubMed  Google Scholar 

  • Sana B, Ghosh D, Saha M, Mukherjee J (2006) Purification and characterization of a salt, solvent, detergent and bleach tolerant protease from a new gamma-Proteobacterium isolated from the marine environment of the Sundarbans. Process Biochem 41(1):208–215

    Article  CAS  Google Scholar 

  • Shanmughapriya S, Krishnaveni J, Selvin J, Gandhimathi R, Arunkumar M, Thangavelu T, Thangavelu GS, Kiran & Natarajaseenivasan, K. (2008) Optimization of extracellular thermotolerant alkaline protease produced by marine Roseobacter sp. (MMD040). Bioprocess Biosyst Eng 31(5):427–433

    Article  CAS  PubMed  Google Scholar 

  • Sijtsma L, De Swaaf ME (2004) Biotechnological production and applications of the ω-3 polyunsaturated fatty acid docosahexaenoic acid. Appl Microbiol Biotechnol 64(2):146–153

    Article  CAS  PubMed  Google Scholar 

  • Silva CJ, Zhang Q, Shen J, Cavaco-Paulo A (2006) Immobilization of proteases with a water soluble–insoluble reversible polymer for treatment of wool. Enzym Microb Technol 39(4):634–640

    Article  CAS  Google Scholar 

  • Singh R, Mittal A, Kumar M, Mehta PK (2016) Microbial proteases in commercial applications. J Pharm Chem Biol Sci 4(3):365–374

    CAS  Google Scholar 

  • Smidt H, Fischer A, Fischer P, Schmid RD (1996) Preparation of optically pure chiral amines by lipase-catalyzed enantioselective hydrolysis of N-acyl-amines. Biotechnol Tech 10:335–338

    Article  CAS  Google Scholar 

  • Sujatha P, Raju KB, Ramana T (2005) Studies on a new marine streptomycete BT-408 producing polyketide antibiotic SBR-22 effective against methicillin resistant Staphylococcus aureus. Microbiol Res 160(2):119–126

    Article  CAS  PubMed  Google Scholar 

  • Sutar II, Srinivasan MC, Vartak HG (1992) Production of an alkaline proteinase fromConidiobolus coronatus and its use to resolvedl-phenylalanine anddl-phenylglycine. World J Microbiol Biotechnol 8(3):254–258

    Article  CAS  PubMed  Google Scholar 

  • Trincone A (2013) Marine enzymes for biocatalysis: sources, biocatalytic characteristics and bioprocesses of marine enzymes. Elsevier

    Google Scholar 

  • Turkiewicz M, Pazgier M, Kalinowska H, Bielecki S (2003) A cold-adapted extracellular serine proteinase of the yeast Leucosporidium antarcticum. Extremophiles 7(6):435–442

    Article  CAS  PubMed  Google Scholar 

  • Vo TS, Kim SK (2013) Fucoidans as a natural bioactive ingredient for functional foods. J Funct Foods 5(1):16–27

    Article  CAS  Google Scholar 

  • Vora VR, Raikwar MK (2013) Determination of chloramphenicol and thiamphenicol residues in fish, shrimp and milk by ESI-LCMSMS. Int J Agric Food Sci Technol 4:2249–3050

    Google Scholar 

  • Wang J, Zhu L, Li T, Li X, Huang K, Xu W (2022) Multiple functionalities of functional nucleic acids for developing high-performance lateral flow assays. TrAC Trends Anal Chem 148:116529

    Article  CAS  Google Scholar 

  • Waters AL, Hill RT, Place AR, Hamann MT (2010) The expanding role of marine microbes in pharmaceutical development. Curr Opin Biotechnol 21(6):780–786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams PG, Asolkar RN, Kondratyuk T, Pezzuto JM, Jensen PR, Fenical W (2007) Saliniketals A and B, bicyclic polyketides from the marine actinomycete Salinispora arenicola. J Nat Prod 70(1):83–88

    Article  CAS  PubMed  Google Scholar 

  • Wu SJ, Fotso S, Li F, Qin S, Kelter G, Fiebig HH, Laatsch H (2006) N-carboxamido-staurosporine and selina-4 (14), 7 (11)-diene-8, 9-diol, new metabolites from a marine Streptomyces sp. The Journal of Antibiotics 59(6):331–337

    Article  CAS  PubMed  Google Scholar 

  • Wu S, Liu G, Zhang D, Li C, Sun C (2015) Purification and biochemical characterization of an alkaline protease from marine bacteria Pseudoalteromonas sp. 129-1. J Basic Microbiol 55(12):1427–1434

    Article  CAS  PubMed  Google Scholar 

  • Xia S, Wang K, Wan L, Li A, Hu Q, Zhang C (2013) Production, characterization, and antioxidant activity of fucoxanthin from the marine diatom Odontella aurita. Mar Drugs 11(7):2667–2681

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Kim SK (2012) Application of marine microbial enzymes in the food and pharmaceutical industries. Adv Food Nutr Res 65:423–435

    Article  PubMed  Google Scholar 

  • Zhang H, Zhou Y, Kong Q, Dong W, Lin Z (2021) Toxicity of naphthenic acids on the chlorophyll fluorescence parameters and antioxidant enzyme activity of Heterosigma akashiwo. Antioxidants 10(10):1582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu HY, Tian Y, Hou YH, Wang TH (2009) Purification and characterization of the cold-active alkaline protease from marine cold-adaptive Penicillium chrysogenum FS010. Mol Biol Rep 36(8):2169–2174

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the help and the platform provided by National Institute of Technology (NIT) Rourkela and also express their gratitude to Dr. Angana Sarkar, corresponding author, for the guidance throughout writing this chapter. Authors would also like to thank their friends and family who supported and offered deep insight into the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angana Sarkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dokania, P. et al. (2023). Future Marine Microbial Products for the Pharmaceuticals Industry. In: Sarkar, A., Ahmed, I.A. (eds) Microbial products for future industrialization. Interdisciplinary Biotechnological Advances. Springer, Singapore. https://doi.org/10.1007/978-981-99-1737-2_11

Download citation

Publish with us

Policies and ethics