Skip to main content

Advertisement

Log in

Marine Streptomyces as a novel source of bioactive substances

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Marine actinobacteria are the most economically as well as biotechnologically valuable prokaryotes. Representative genera of marine actinobacteria include Actinomadura, Aeromicrobium, Dietzia, Gordonia, Marinophilus, Micromonospora, Nonomuraea, Rhodococcus, Saccharomonospora, Saccharopolyspora, Salinispora, Streptomyces, Solwaraspora, Williamsia, Verrucosispora and several others. Among the genera of marine actinobacteria, the genus Streptomyces is represented in nature by the largest number of species and varieties, which differ greatly in their morphology, physiology, and biochemical activities. Marine Streptomyces occur in different biological sources such as fishes, molluscs, sponges, seaweeds and mangroves, besides seawater and sediments. In this review an evaluation is made on the present state of research on marine Streptomyces and its perspectives. The highlights include the production of metabolites such as antibiotics, anticancer compounds, enzymes, enzyme inhibitors and pigments by marine Streptomyces and their application as single cell protein and as probiotics in aquaculture. The marine environment contains a wide range of distinct Streptomyces that are not present in the terrestrial environment. With increasing advancement in science and technology, there would be greater demands in future for new bioactive compounds synthesised by Streptomyces from various marine sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adinarayana G, Venkateshan MR, Bpiraju VV, Sujatha P, Premkumar J, Ellaiah P, Zeeck A (2006) Cytotoxic compounds from the marine actinobacterium. Bio Org Khim 32:328–334

    CAS  Google Scholar 

  • Anderson AS, Wellington EH (2001) The taxonomy of Streptomyces and related genera. Int J Syst Evol Microbiol 51:797–814

    Article  CAS  Google Scholar 

  • Antony-Babu S, Stach JEM, Goodfellow M (2008) Genetic and phenotypic evidence for Streptomyces griseus ecovars isolated from a beach and dune sand system. Antonie van Leeuwenhoek 94:63–74

    Article  CAS  Google Scholar 

  • Aoyagi T, Hatsu M, Imada C, Naganawa H, Okami Y, Takeuchi T (1992) Pyrizinostatin: a new inhibitor of pyroglutamyl peptidase. J Antibiot (Tokyo) 45:1795–1796

    CAS  Google Scholar 

  • Aoyama T, Kojima F, Imada C, Muraoka Y, Naqanawa H, Okami Y, Takeuchi T, Aoyaqi T (1995) Pyrostatins A and B, new inhibitors of N-acetyl-beta-d-glucosamidase, produced by Streptomyces sp. SA3501. J Enzyme Inhib 8:223–232

    Article  CAS  Google Scholar 

  • Asolkar RN, Maskey RP, Helmke E, Laatsch H (2002) Chalcomycin B, a new antibiotic from a marine Streptomyces sp. B7064. J Antibiot 55:893–898

    CAS  Google Scholar 

  • Asolkar RN, Jensen PR, Kauffman CA, Fenical W (2006) Daryamides A-C weakly cytotoxic polyketides from a marine derived actinomycete of the genus Streptomyces strain CNQ-085. J Nat Prod 69:1756–1759

    Article  CAS  Google Scholar 

  • Bae MA, Yamada K, Ijyuin Y, Tsuji T, Yazawa K, Tomono Y, Uemura D (1996) Aburatubolactam A, a novel inhibitor of superoxide anion generation from a marine microorganism. Heterocycl Commun 2:315–318

    Article  CAS  Google Scholar 

  • Basha NS, Rekha R, Komala M, Ruby S (2009) Production of extracellular antileukaemic enzyme L-asparaginase from marine actinomycetes by solid state and submerged fermentation: purification and characterisation. Tropical J Pharmaceutical Res 8:353–360

    CAS  Google Scholar 

  • Berdy J (2005) Bioactive microbial metabolites. J Antibiot (Tokyo) 58:1–26

    Article  CAS  Google Scholar 

  • Bull AT (2004) Microbial diversity and bioprospecting. ASM Press, Washington

    Google Scholar 

  • Bull AT, Ward AC, Goodfellow M (2000) Search and discovery strategies for biotechnology: the paradigm shift. Microbiol Mol Biol Rev 64:573–606

    Article  CAS  Google Scholar 

  • Bull AT, Stach JEM, Ward AC, Goodfellow M (2005) Marine actinobacteria: perspectives, challenges, future directions. Antonie Van Leeuwenhoek 87:65–79

    Article  Google Scholar 

  • Cho JY, Kwon HC, Williams PG, Jensen PR, Fenical W (2006a) Azamerone, a terpenoid phthalazinone from a marine derived bacterium related to the genus Streptomyces (Actinomycetales). Org Lett 8:2471–2474

    Article  CAS  Google Scholar 

  • Cho JY, Kwon HC, Williams PG, Kauffman CA, Jensen PR, Fenical W (2006b) Actinofuranones A and B, polyketides from a marine derived bacterium related to the genus Streptomyces (Actinomycetales). J Nat Prod 69:425–428

    Article  CAS  Google Scholar 

  • Das S, Lyla PS, Ajmal Khan S (2006a) Marine microbial diversity and ecology: importance and future perspectives. Curr Sci 25:1325–1335

    Google Scholar 

  • Das S, Lyla PS, Ajmal Khan S (2006b) Application of Streptomyces as a probiotic in the laboratory culture of Penaeus monodon (Fabricius). Isr J Aquac Bamidgeh 58:198–204

    Google Scholar 

  • Dhanasekaran D, Thajuddin N, Panneerselvam A (2008) An antifungal compound: 4′ phenyl -1-napthyl -phenyl acetamide from Streptomyces sp. DPTB16. Med Biol 15:7–12

    Google Scholar 

  • Dharmaraj S, Sumantha A (2009) Bioactive potential of Streptomyces isolated from marine sponges. World J Microbiol Biotechnol 25:1971–1979

    Article  CAS  Google Scholar 

  • Dharmaraj S, Ashokkumar B, Dhevendaran K (2009) Food-grade pigments from Streptomyces sp. isolated from the marine sponge Callyspongia diffusa. Food Res Int 42:487–492

    Article  CAS  Google Scholar 

  • Dhevagi P, Poorani E (2006) Isolation and characterization of l-asparaginase from marine actinomycetes. Ind J Biotech 5:514–520

    CAS  Google Scholar 

  • Ding L, Pfoh R, Rühl S, Qin S, Laatsch H (2009) T-muurolol sesquiterpenes from the marine Streptomyces sp. M491 and revision of the configuration of previously reported amorphanes. J Nat Prod 72:99–101

    Article  CAS  Google Scholar 

  • Donia M, Hamann MT (2003) Marine natural products and their potential applications as anti-infective agents. Lancet Infect Dis 3:338–348

    Article  CAS  Google Scholar 

  • El-Gendy MMA, Shaaban M, El-Bondkly AM, Shaaban KA (2008a) Bioactive benzopyrone derivatives from new recombinant fusant of marine Streptomyces. Appl Biochem Biotechnol 150:85–96

    Article  CAS  Google Scholar 

  • El-Gendy MMA, Shaaban M, Shaaban KA, El-Bondkly AM, Laatsch H (2008b) Essramycin: a first Triazolopyrimidine antibiotic isolated from nature. J Antibiot 61:149–157

    Article  CAS  Google Scholar 

  • El-Shatoury SA, El-Shenawy NS, Abd El-Salam IM (2009) Antimicrobial, antitumour and in vivo cytotoxicity of actinomycetes inhabiting marine shellfish. World J Microbiol Biotechnol 25:1547–1555

    Article  CAS  Google Scholar 

  • Fenical W, Jensen PR (2006) Developing a new resource for drug discovery: marine actinomycete bacteria. Nat Chem Biol 2:666–673

    Article  CAS  Google Scholar 

  • Fenical W, Baden D, Burg M, Goyet CV, Grimes JD, Katz M, Marcus NH, Pomponi S, Rhines P, Tester P, Vena J (1999) Marine-derived pharmaceuticals and related bioactive compounds. In: Fenical W (ed) From monsoons to microbes: understanding the ocean’s role in human health. National Academies Press, Washington, pp 71–86

    Google Scholar 

  • Fiedler HP, Bruntner C, Bull AT, Ward AC, Goodfellow M, Potterat O, Puder C, Mihm G (2005) Marine actinomycetes as a source of novel secondary metabolites. Antonie Van Leeuwenhoek 87:37–42

    Article  CAS  Google Scholar 

  • Gandhimathi R, Arunkumar M, Selvin J, Thangavelu T, Sivaramakrishnan S, Kiran GS, Shanmughapriya S, Natarajaseenivasan K (2008) Antimicrobial potential of sponge associated marine Actinobacteria. J Mycol Med 18:16–22

    Google Scholar 

  • Goosen MFA (1997) Applications of chitin and chitosan. Technomic, Lancaster, p 336

    Google Scholar 

  • Gorajana A, Venkatesan M, Vinjamuri S, Kurada BV, Peela S, Jangam P, Poluri E, Zeeck A (2006) Resistoflavine cytotoxic compound from a marine actinomycete, Streptomyces chibaensis AUBN(1)/7. Microbiol Res 162:322–327

    Article  CAS  Google Scholar 

  • Gupta N, Mishra S, Basak UC (2007) Occurrence of Streptomyces aurantiacus in mangroves of Bhitarkanika. Malaysian J Microbiol 3:7–14

    Google Scholar 

  • Hakvag S, Fjaervik E, Josefsen KD, Ian E, Ellingsen TE, Zotchev SB (2008) Characterization of Streptomyces spp. isolated from the Sea Surface Microlayer in the Trondheim Fjord, Norway. Mar Drugs 6:620–635

    Article  CAS  Google Scholar 

  • Han Y, Yang B, Zhang F, Miao X, Li Z (2009) Characterization of antifungal chitinase from marine Streptomyces sp. DA11 associated with South China Sea sponge Craniella australiensis. Mar Biotechnol 11:132–140

    Article  CAS  Google Scholar 

  • Hayakawa Y, Shirasaki S, Shiba S, Kawasaki T, Matsuo Y, Adachi K, Shizuri Y (2007) Piericidins C7 and C8, new cytotoxic antibiotics produced by a marine Streptomyces sp. J Antibiot (Tokyo) 60:196–200

    Article  CAS  Google Scholar 

  • Hernandez ILC, Macedo ML, Berlinck RGS, Ferreira AG, Godinho MJL (2004) Dipeptide metabolites from the marine derived bacterium Streptomyces acrymicini. J Braz Chem Soc 15:441–444

    Article  CAS  Google Scholar 

  • Hong REN, Qianqun GU, Chengbin CUI, Weiming ZHU (2006) The cytotoxic constituents from marine-derived Streptomyces 3320. China J Ocean Univ 5:75–81

    Article  Google Scholar 

  • Hou YH, Qin S, Li YX, Li FC, Xia HZ, Zhao FQ (2006) Heterologous expression and purification of recombinant allophycocyanin in marine Streptomyces sp. isolate M097. World J Microbiol Biotechnol 22:525–529

    Article  CAS  Google Scholar 

  • Hu SC, Hong K, Song YC, Liu JY, Tan RX (2009) Biotransformation of soybean isoflavones by a marine Streptomyces sp. 060524 and cytotoxicity of the products. World J Microbiol Biotechnol 25:115–121

    Article  CAS  Google Scholar 

  • Huang YF, Tian L, Fu HW, Hua HM, Pei YH (2006) One new anthraquinone from marine Streptomyces sp. FX-58. Nat Prod Res 20:1207–1210

    Article  CAS  Google Scholar 

  • Hughes CC, Prieto-Davo A, Jensen PR, Fenical W (2008) The marinopyrroles, antibiotics of an unprecedented structure class from a marine Streptomyces sp. Org Lett 10:629–631

    Article  CAS  Google Scholar 

  • Imada C (2004) Enzyme inhibitors of marine microbial origin with pharmaceutical importance. Mar Biotechnol 6:193–198

    Article  CAS  Google Scholar 

  • Imada C (2005) Enzyme inhibitors and other bioactive compounds from marine actinomycetes. Antonie van Leeuwenhoek 87:59–63

    Article  CAS  Google Scholar 

  • Imada C, Simidu U (1988) Isolation and characterization of an alpha amylase inhibitor producing actinomycete from marine environment. Nippon Suisan Gakkaishi 54:1839–1845

    Google Scholar 

  • Itoh T, Kinoshita M, Aoki S, Kobayashi M (2003) Komodoquinone A, a novel neuritogenic anthracycline from marine Streptomyces sp. KS3. J Nat Prod 66:1373–1377

    Article  CAS  Google Scholar 

  • Jae SH, Jeong HS, Lee HS, Park SK, Kim HM, Kwon HJ (2007) Isolation and structure determination of Streptochlorin, an antiproliferative agent from a marine-derived Streptomyces sp. 04DH110. J Microbiol Biotechnol 17:1403–1406

    Google Scholar 

  • Jensen PR, Gontang E, Mafnas C, Mincer TJ, Fenical W (2005a) Culturable marine actinomycete diversity from tropical Pacific Ocean sediments. Environ Microbiol 7:1039–1048

    Article  Google Scholar 

  • Jensen PR, Mincer TJ, Williams PG, Fenical W (2005b) Marine actinomycete diversity and natural product discovery. Antonie Van Leeuwenhoek 87:43–48

    Article  CAS  Google Scholar 

  • Jeong SY, Shin HJ, Kim TS, Lee HS, Park SK, Kim HM (2006) Streptokordin a new cytotoxic compound of the methylpyridine class from a marine derived Streptomyces sp. KORDI-3238. J Antibiot (Tokyo) 59:234–240

    Article  CAS  Google Scholar 

  • Jiang ZD, Jensen PR, Fenical W (1997) Actinoflavoside, a novel flavonoid like glycoside produced by a marine bacterium of the genus Streptomyces. Tetrahedron Lett 38:5065–5068

    Article  CAS  Google Scholar 

  • Jose MS, Marta MI, Julia PB, Jose LF, Librada CH (2003) New cytotoxic indolic metabolites from a marine Streptomyces. J Nat Prod 66:863–864

    Article  CAS  Google Scholar 

  • Kato F, Hino T, Nakaji A, Tanaka M, Koyama Y (1995) Carotenoid synthesis in Streptomyces setonii ISP5395 is induced by the gene crtS, whose product is similar to a sigma factor. Mol Gen Genet 247:387–390

    Article  CAS  Google Scholar 

  • Kim DE, Lee EY, Kim HS (2009) Cloning and characterization of alginate lyase from a marine bacterium Streptomyces sp. ALG-5. Mar Biotechnol 11:10–16

    Article  CAS  Google Scholar 

  • Kock I, Maskey RP, Biabani MAF, Helmke E, Laatsch H (2005) 1-hydroxy-1- norresistomycin and resistoflavine methyl ether new antibiotics from marine derived Streptomycetes. J Antibiot (Tokyo) 58:530–534

    Article  CAS  Google Scholar 

  • Kumar SS, Philip R, Achuthankutty CT (2006) Antiviral property of marine actinomycetes against white spot syndrome virus in penaeid shrimps. Curr Sci 91:807–811

    Google Scholar 

  • Lakshmipathy DT, Krishnan K (2009) A report on the antidermatophytic activity of actinomycetes. Int J Integr Biol 6:132–136

    Google Scholar 

  • Lam KS (2006) Discovery of novel metabolites from marine actinomycetes. Curr Opin Microbiol 9:245–251

    Article  CAS  Google Scholar 

  • Lee HS, Ohnishi Y, Horinouchi S (2001) A σB-like factor responsible for carotenoid biosynthesis in Streptomyces griseus. J Mol Microbiol Biotechnol 3:95–101

    CAS  Google Scholar 

  • Lee HS, Shin HJ, Jang KH, Kim TS, Oh KB, Shin J (2005) Cyclic peptides of the Nocardamine class from a marine derived bacterium of the genus Streptomyces. J Nat Prod 68:623–625

    Article  CAS  Google Scholar 

  • Li A, Piel J (2002) A gene cluster from a marine Streptomyces encoding the biosynthesis of the aromatic spiroketal polyketide Griseorhodin A. Chem Biol 9:1017–1026

    Article  CAS  Google Scholar 

  • Li F, Maskey RP, Qin S, Sattler I, Fiebig HH, Maier A, Zeeck A, Laatsch H (2005) Chinikomycins A and B isolation, structure elucidation and biological activity of novel antibiotics from a marine Streptomyces sp. isolate MO45. J Nat Prod 68:349–353

    Article  CAS  Google Scholar 

  • Li J, Lu CH, Zhao BB, Zheng ZH, Shen YM (2008) Phaeochromycins F–H, three new polyketide metabolites from Streptomyces sp. DSS-18. Beilstein J Org Chem 4:1–5

    CAS  Google Scholar 

  • Lin CC, Lin HL (2005) Remediation of soil contaminated with the heavy metal (Cd2+). J Hazard Mater 122:7–15

    Article  CAS  Google Scholar 

  • Lu Y, Dong X, Liu S, Bie X (2009) Characterization and identification of a novel marine Streptomyces sp. produced antibacterial substance. Mar Biotechnol 11:717–724

    Article  CAS  Google Scholar 

  • Macherla VR, Liu J, Bellows C, Teisan S, Nicholson B, Lam KS, Potts BCM (2005) Glaciapyrroles A, B and C pyrrolosesquiterpenes from a Streptomyces sp. isolated from an Alaskan marine sediment. J Nat Prod 68:780–783

    Article  CAS  Google Scholar 

  • Magarvey NA, Keller JM, Bernan V, Dworkin M, Sherman DH (2004) Isolation and characterization of novel marine-derived actinomycete taxa rich in bioactive metabolites. Appl Environ Microbiol 70:7520–7529

    Article  CAS  Google Scholar 

  • Mahyudin NA (2008) Actinomycetes and fungi associated with marine invertebrates: a potential source of bioactive compounds. Thesis, University of Canterbury, Christchurch, New Zealand

  • Manam RR, Teisan S, White DJ, Nicholson B, Grodberg J, Neuteboom STC, Lam KS, Mosca DA, Lloyd GK, Potts BC (2005) Lajollamycin, a Nitro-tetraene Spiro- β-lactone-γ-lactam antibiotic from the marine actinomycete Streptomyces nodosus. J Nat Prod 68:240–243

    Article  CAS  Google Scholar 

  • Manju KG, Dhevendaran K (1997) Effect of bacteria and actinomycetes as single cell protein feed on growth of juveniles of Macrobrachium idella (Hilgendorf). Indian J Exp Biol 35:53–55

    Google Scholar 

  • Mann J (2001) Natural products as immunosuppressive agents. Nat Prod Rep 18:417–430

    Article  CAS  Google Scholar 

  • Maskey RP, Puseckera K, Speitlinga M, Moneckea P, Helmkeb E, Laatscha H (2002) 2″-Chartreusin-monoacetate, a new natural product with unusual anisotropy effects from the marine isolate Streptomyces sp. B5525, and its 4″-isomer. Z Naturforsch 57:823–829

    CAS  Google Scholar 

  • Maskey RP, Helmke E, Laatsch H (2003) Himalomycin A and B isolation and structure elucidation of new fridamycin type antibiotics from a marine Streptomyces isolate. J Antibiot (Tokyo) 56:942–949

    CAS  Google Scholar 

  • Maskey RP, Helmke E, Kayser O, Fiebig HH, Maier A, Busche A, Laatsch H (2004) Anticancer and antibacterial trioxacarcins with high anti-malaria activity from a marine Streptomycete and their absolute stereochemistry. J Antibiot (Tokyo) 57:771–779

    CAS  Google Scholar 

  • Miller ED, Kauffman CA, Jensen PR, Fenical W (2007) Piperazimycins cytotoxic hexadepsipeptides from a marine derived bacterium of the genus Streptomyces. J Org Chem 72:323–330

    Article  CAS  Google Scholar 

  • Mitchell SS, Nicholson B, Teisan S, Lam KS, Potts BC (2004) Aureoverticillactam, a novel 22-atom macrocyclic lactam from the marine actinomycete Streptomyces aureoverticillatus. J Nat Prod 67:1400–1402

    Article  CAS  Google Scholar 

  • Moore BS, Trischman JA, Seng D, Kho D, Jensen PR, Fenical W (1999) Salinamides, anti-inflammatory depsipeptides from a marine Streptomyces. J Org Chem 64:1145–1150

    Article  CAS  Google Scholar 

  • Mukku VJRV, Speitling M, Laatsch H, Helmke E (2000) New Butenolides from two marine Streptomycetes. J Nat Prod 63:1570–1572

    Article  CAS  Google Scholar 

  • Okami Y (1984) Marine microorganisms as a source of bioactive agents. In: Klug MJ, Reddy CA (eds) Current perspective in microbial ecology. American Society for Microbiology, Washington, pp 615–655

    Google Scholar 

  • Okami Y, Hotta K (1988) Search and discovery of new antibiotics. In: Goodfellow M, Williams ST, Mordarski M (eds) Actinomycetes in biotechnology. Academic press, London, pp 33–67

    Google Scholar 

  • Olano C, Méndez C, Salas JA (2009) Antitumour compounds from marine actinomycetes. Mar Drugs 7:210–248

    Article  CAS  Google Scholar 

  • Oldfield C, Wood NT, Gilbert SC, Murray FD, Faure FR (1998) Desulphurisation of benzothiophene and dibenzothiophene by actinomycete organisms belonging to the genus Rhodococcus, and related taxa. Antonie Van Leeuwenhoek 74:119–132

    Article  CAS  Google Scholar 

  • Pathom-aree W, Stach JEM, Ward AC, Horikoshi K, Bull AT, Goodfellow M (2006) Diversity of actinomycetes isolated from Challenger Deep sediment (10, 898 m) from the Mariana Trench. Extremophiles 10:181–189

    Article  CAS  Google Scholar 

  • Patil R, Jeyasekaran G, Shanmugam SA, Jeya Shakila R (2001) Control of bacterial pathogens, associated with fish diseases, by antagonistic marine actinomycetes isolated from marine sediments. Indian J Mar Sci 30:264–267

    Google Scholar 

  • Pecznska-Czoch W, Mordarski M (1988) Actinomycete enzymes. In: Goodfellow M, Williams ST, Mordarski M (eds) Actinomycetes in biotechnology. Academic Press, London, pp 219–283

    Google Scholar 

  • Rabea EI, Badawy ME, Stevens CV, Smagghe G, Steurbaut W (2003) Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 4:1457–1465

    Article  CAS  Google Scholar 

  • Ramesh S, Rajesh M, Mathivanan N (2009) Characterization of a thermostable alkaline protease produced by marine Streptomyces fungicidicus MML1614. Bioprocess Biosyst Eng 32:791–800

    Article  CAS  Google Scholar 

  • Renner MK, Shen YC, Cheng XC, Jensen PR, Frankmoelle W, Kauffman CA, Fenical W, Lobkovsky E, Cladry J (1999) Cyclomarins A-C, new anti-inflammatory cyclic peptides produced by a marine bacterium (Streptomyces sp.). J Am Chem Soc 121:11273–11276

    Article  CAS  Google Scholar 

  • Salmon CE, Magarvey NA, Sherman DH (2003) Merging the potential of microbial genetics with biological and chemical diversity: an even brighter future for marine natural product drug discovery. Nat Prod Rep 21:105–121

    Article  CAS  Google Scholar 

  • Schumacher RW, Talmage SC, Miller SA, Sarris KE, Davidson BS, Goldberg A (2003) Isolation and structure determination of an antimicrobial ester from a marine sediment derived bacterium. J Nat Prod 66:1291–1293

    Article  CAS  Google Scholar 

  • Schumann G, Nurnberger H, Sandmann G, Krugel H (1996) Activation and analysis of cryptic crt genes for carotenoid biosynthesis from Streptomyces griseus. Mol Gen Genet 252:658–666

    CAS  Google Scholar 

  • Selvin J (2009) Exploring the antagonistic producer Streptomyces MSI051: implications of polyketide synthase gene type II and a ubiquitous defense enzyme phospholipase A2p in the host sponge Dendrilla nigra. Curr Microbiol 58:459–463

    Article  CAS  Google Scholar 

  • Selvin J, Soniya J, Asha KRT, Manjusha WA, Sangeetha VS, Jayaseema DM, Antony MC, Densilin Vinitha AJ (2004) Antibacterial potential of antagonistic Streptomyces sp. isolated from the marine sponge Dendrilla nigra. FEMS Microbiol Ecol 50:117–122

    Article  CAS  Google Scholar 

  • Shi C, Zhu Y, Ran X, Wang M, Su Y, Cheng T (2006) Therapeutic potential of chitosan and its derivatives in regenerative medicine. J Surg Res 133:185–192

    Article  CAS  Google Scholar 

  • Shiono Y, Shiono N, Seo S, Oka S, Yamazaki Y (2002) Effects of polyphenolic anthrone derivatives resistomycin and hypericin on apoptois in human megakaryoblastic leukemia CMK-7cell2. Natuforsch 57:923–929

    CAS  Google Scholar 

  • Sobolevskaya MP, Denisenko VA, Moiseenko AS, Shevchenko LS, Menzorova NI, Sibirtsev YT, Kim NY, Kuznetsova TA (2007) Bioactive metabolites of the marine actinobacterium Streptomyces sp. KMM 7210. Russ Chem Bulletin 56:838–840

    Article  CAS  Google Scholar 

  • Stach JEM, Maldonado LA, Ward AC, Goodfellow M, Bull AT (2003) New primers for the class Actinobacteria: application to marine and terrestrial environments. Environ Microbiol 5:828–841

    Article  CAS  Google Scholar 

  • Stach JEM, Maldonado LA, Ward AC, Bull AT, Goodfellow M (2004) Williamsia maris sp. nov., a novel actinomycete isolated from the Sea of Japan. Int J Syst Evol Microbiol 54:191–194

    Article  CAS  Google Scholar 

  • Stackebrandt SP (2000) The prokaryotes: an evolving electronic resource for the microbiological community. Springer, New York

    Google Scholar 

  • Stackebrandt E, Rainey FA, Ward-Raine NL (1997) Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 47:479–491

    Article  Google Scholar 

  • Staunton J, Weissman KJ (2001) Polyketide biosynthesis: a millennium review. Nat Prod Rep 18:380–416

    Article  CAS  Google Scholar 

  • Stritzke K, Schulz S, Laatsch H, Helmke E, Beil W (2004) Novel caprolactones from a marine Streptomycete. J Nat Prod 67:395–401

    Article  CAS  Google Scholar 

  • Strohl WR (2004) Antimicrobials. In: Bull AT (ed) Microbial diversity and bioprospecting. ASM Press, Washington, pp 336–355

    Google Scholar 

  • Sujatha P, Bapiraju KV, Ramana T (2005a) Studies on antagonistic marine actinomycetes from the Bay of Bengal. World J Microbiol Biotechnol 21:583–585

    Article  CAS  Google Scholar 

  • Sujatha P, Bapiraju KV, Ramana T (2005b) Studies on a new marine Streptomycete BT 408 producing polyketide antibiotic SBR-22 effective against methicillin resistant Staphylococcus aureus. Microbiol Res 160:119–126

    Article  CAS  Google Scholar 

  • Takano H, Obitsu S, Beppu T, Ueda K (2005) Light-induced carotenogenesis in Streptomyces coelicolor A3(2): identification of an extracytoplasmic function sigma factor that directs photodependent transcription of the carotenoid biosynthesis gene cluster. J Bacteriol 187:1825–1832

    Article  CAS  Google Scholar 

  • Thumar JT, Singh SP (2007) Secretion of an alkaline protease from a salt-tolerant and alkaliphilic, Streptomyces clavuligerus strain MIT-1. Brazil J Microbiol 38:766–772

    Article  Google Scholar 

  • Ward AC, Bora N (2006) Diversity and biogeography of marine actinobacteria. Curr Opin Microbiol 9:279–286

    Article  CAS  Google Scholar 

  • Watve MG, Tickoo R, Jog MM, Bhole BD (2001) How many antibiotics are produced by the genus Streptomyces. Arch Microbiol 176:386–390

    Article  CAS  Google Scholar 

  • Weber T, Welzel K, Pelzer S, Vente A, Wohlleben W (2003) Exploiting the genetic potential of polyketide producing streptomycetes. J Biotechnol 106:221–232

    Article  CAS  Google Scholar 

  • Williams ST, Goodfellow M, Alderson G (1989) Genus Streptomyces Waksman and Henrici 1943, 339AL. In: Williams ST, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 4. Williams and Willkins, Baltimore, pp 2453–2492

    Google Scholar 

  • Woo JH, Kitamura E, Myouga H, Kamei Y (2002) An antifungal protein from the marine bacterium Streptomyces sp. strain AP77 is specific for Pythium porphyrae, a causative agent of red rot disease in Porphyra spp. Appl Environ Microbiol 68:2666–2675

    Article  CAS  Google Scholar 

  • Wu SH, Fotso S, Li F, Qin S, Kelter G, Fiebig HH, Laatsch H (2006) N-Carboxamido staurosporine and Selina-4(14), 7(11)-diene-8, 9-diol, New metabolites from a marine Streptomyces sp. J Antibiot 59:331–337

    Article  CAS  Google Scholar 

  • Wu SJ, Fotso S, Li F, Qin S, Laatsch H (2007) Amorphane sesquiterpenes from a marine Streptomyces sp. J Nat Prod 70:304–306

    Article  CAS  Google Scholar 

  • Xu J, Wang Y, Xie SJ, Xu J, Xiao J, Ruan JS (2009) Streptomyces xiamenensis sp. nov., isolated from mangrove sediment. Int J Syst Evol Microbiol 59:472–476

    Article  CAS  Google Scholar 

  • Yamada K, Kuramoto M, Uemura D (1999) Aburatubolactams and Zoanthamines, naturally occurring bioactive alkaloids. Recent Res Devel Pure Appl Chem 3:245–254

    CAS  Google Scholar 

  • Yan J, Li X, Liu L, Wang F, Zhu TW, Zhang Q (2006) Potential use of collagen-chitosan-hyaluronan tri-copolymer scaffold for cartilage tissue engineering. Artif Cells Blood Substit Immobil Biotechnol 34:27–39

    Article  CAS  Google Scholar 

  • Ye L, Zhou Q, Liu C, Luo X, Na G, Xi T (2009) Identification and fermentation optimization of a marine derived Streptomyces griseorubens with anti-tumour activity. Indian J Mar Sci 38:14–21

    CAS  Google Scholar 

  • Yoshida A, Seo Y, Suzuki S, Nishino T, Kobayashi T, Hamada-Sato N, Kogure K, Imada C (2008) Actinomycetal community structures in seawater and freshwater examined by DGGE analysis of 16S rRNA gene fragments. Mar Biotechnol 10:554–563

    Article  CAS  Google Scholar 

  • You J, Cao LX, Liu GF, Zhou SN, Tan HM, Lin YC (2005) Isolation and characterization of actinomycetes antagonistic to pathogenic Vibrio spp. from nearshore marine sediments. World J Microbiol Biotechnol 21:679–682

    Article  Google Scholar 

  • You J, Xue X, Cao L, Lu X, Wang J, Zhang L, Zhou S (2007) Inhibition of Vibrio biofilm formation by a marine actinomycete strain A66. Appl Microbiol Biotechnol 76:1137–1144

    Article  CAS  Google Scholar 

  • Zhang H, Lee YK, Zhang W, Lee HK (2006) Culturable actinobacteria from the marine sponge Hymeniacidon perleve: isolation and phylogenetic diversity by 16S rRNA gene-RFLP analysis. Antonie van Leeuwenhoek 90:159–169

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author is grateful to all the authors whose papers have been used for this review and to Ms. Sumantha Alagarsamy for correcting the manuscript. This work was supported by grants from DST-SERC (SR/S0/AS-57/2004) New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selvakumar Dharmaraj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dharmaraj, S. Marine Streptomyces as a novel source of bioactive substances. World J Microbiol Biotechnol 26, 2123–2139 (2010). https://doi.org/10.1007/s11274-010-0415-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-010-0415-6

Keywords

Navigation