Skip to main content

Novel Plant Growth Regulators in In Vitro Establishment of Horticulture and Plantation Crops

  • Chapter
  • First Online:
Commercial Scale Tissue Culture for Horticulture and Plantation Crops
  • 636 Accesses

Abstract

Several integrated signals and molecules control growth and development in plants. Plant growth regulators are such molecules, which are either present in natural form or in synthetic compounds. The former are called plant hormones and the latter are known as plant growth regulators (PGRs). These molecules have a wide range of applications in horticulture and plantation crops. The prior research evident the success obtained by the use of PGRs in plant processes such as floral induction and fruit formation, harvesting and post-harvesting of horticulture crops. The micropropagation using meristem and shoot culture produced a large number of identical plants. This technique has been commercially used in horticulture crops. Recently, several novel PGRs have been exploited with their dynamics role in horticulture and plantation crops such as jasmonate (JA), chlormequat chloride (CC), brassinosteroids (BR), salicylic acid (SA), nitric oxide (NO), strigolactone (SL), and polyamines like putrescine (Put), spermidine, and spermine. Karrikins, EDHA (a PGR containing 27% ethephon and 3% DA-6) and paclobutrazol. This chapter provides us the insight information of novel plant growth regulators, which are used in establishment for in vitro growing horticulture and plantation crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ajithan, C., V. Vasudevan, D. Sathish, S. Sathish, V. Krishnan, and M. Manickavasagam. 2020. The influential role of polyamines on the in vitro regeneration of pea (Pisum sativum L.) and genetic fidelity assessment by SCoT and RAPD markers. Plant Cell, Tissue and Organ Culture (PCTOC) 139 (3): 547–561.

    Article  CAS  Google Scholar 

  • Ali, B. 2020. Salicylic acid: An efficient elicitor of secondary metabolite production in plants. Biocatalysis and Agricultural Biotechnology 31: 101884.

    Article  CAS  Google Scholar 

  • Altpeter, F., N.M. Springer, L.E. Bartley, A.E. Blechl, T.P. Brutnell, V. Citovsky, L.J. Conrad, S.B. Gelvin, D.P. Jackson, A.P. Kausch, and P.G. Lemaux. 2016. Advancing crop transformation in the era of genome editing. The Plant Cell 28 (7): 1510–1520.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alutbi, S.D., A.L. Malik, S.A.A. Saadi, and Z.J. Madhi. 2017. The effect of salicylic acid on the growth and microtuberization of potato (Solanum tuberosum L.) cv. Arizona propagated in vitro. Journal of Biology, Agriculture and Healthcare 7: 64–69.

    Google Scholar 

  • Alvarado, A.M., H. Aguirre-Becerra, M.C. Vázquez-Hernández, E. Magaña-Lopez, I. Parola-Contreras, L.H. Caicedo-Lopez, L.M. Contreras-Medina, J.F. Garcia-Trejo, R.G. Guevara-Gonzalez, and A.A. Feregrino-Perez. 2019. Influence of elicitors and eustressors on the production of plant secondary metabolites. In Natural bio-active compounds, 333–388. Singapore: Springer.

    Chapter  Google Scholar 

  • Andrys, D., D. Kulpa, M. Grzeszczuk, and B. BiaÅ‚ecka. 2018. Influence of jasmonic acid on the growth and antimicrobial and antioxidant activities of Lavandula angustifolia mill. Propagated in vitro. Folia Horticulturae 30 (1): 3–13.

    Article  Google Scholar 

  • Avalbaev, A., R. Yuldashev, K. Fedorova, K. Somov, L. Vysotskaya, C. Allagulova, and F. Shakirova. 2016. Exogenous methyl jasmonate regulates cytokinin content by modulating cytokinin oxidase activity in wheat seedlings under salinity. Journal of Plant Physiology 191: 101–110.

    Article  CAS  PubMed  Google Scholar 

  • Baghel, M., A. Nagaraja, M. Srivastav, N.K. Meena, M.S. Kumar, A. Kumar, and R.R. Sharma. 2019. Pleiotropic influences of brassinosteroids on fruit crops: A review. Plant Growth Regulation 87 (2): 375–388.

    Article  CAS  Google Scholar 

  • Bais, H.P., R. Madhusudhan, N. Bhagyalakshmi, T. Rajasekaran, B.S. Ramesh, and G.A. Ravishankar. 2000. Influence of polyamines on growth and formation of secondary metabolites in hairy root cultures of Beta vulgaris and Tagetes patula. Acta Physiologiae Plantarum 22: 151–158.

    Article  CAS  Google Scholar 

  • Bergstrand, K.J.I. 2017. Methods for growth regulation of greenhouse produced ornamental pot-and bedding plants–a current review. Folia Horticulturae 29: 63–74.

    Article  Google Scholar 

  • Bieberach, C.Y., B. De Leon, O.T. Centurion, J.A. Ramirez, E.G. Gros, and L.R. Galagovsky. 2000. Effect of two brassinosteroids on the in vitro growth of yuca, name and pina. In Anales-asociacion quimica argentina, vol. 88(2), 1–8. Fernando Garcia Cambeiro.

    Google Scholar 

  • Casanova, E., A.E. Valdés, B. Fernández, L. Moysset, and M.I. Trillas. 2004. Levels and immunolocalization of endogenous cytokinins in thidiazuron-induced shoot organogenesis in carnation. Journal of Plant Physiology 161 (1): 95–104.

    Article  CAS  PubMed  Google Scholar 

  • Cenzano, A., A. Vigliocco, T. Kraus, and G. Abdala. 2003. Exogenously applied jasmonic acid induces changes in apical meristem morphology of potato stolons. Annals of Botany 91 (7): 915–919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cipollini, D. 2005. Interactive effects of lateral shading and jasmonic acid on morphology, phenology, seed production, and defense traits in Arabidopsis thaliana. International Journal of Plant Sciences 166: 955–959.

    Article  CAS  Google Scholar 

  • Dathe, W., H. Rönsch, A. Preiss, W. Schade, G. Sembdner, and K. Schreiber. 1981. Endogenous plant hormones of the broad bean, Vicia faba L.(−)-jasmonic acid, a plant growth inhibitor in pericarp. Planta 153 (6): 530–535.

    Article  CAS  PubMed  Google Scholar 

  • Debnath, M., C.P. Malik, and P.S. Bisen. 2006. Micropropagation: A tool for the production of high quality plant-based medicines. Current Pharmaceutical Biotechnology 7 (1): 33–49.

    Article  CAS  PubMed  Google Scholar 

  • Dempsey, D.M.A., A.C. Vlot, M.C. Wildermuth, and D.F. Klessig. 2011. Salicylic acid biosynthesis and metabolism. The Arabidopsis book/American Society of Plant Biologists 9: e0156.

    PubMed Central  Google Scholar 

  • Dewir, Y.H., Y. Naidoo, and J.A.T. Da Silva. 2018. Thidiazuron-induced abnormalities in plant tissue cultures. Plant Cell Reports 37: 1451–1470.

    Article  CAS  PubMed  Google Scholar 

  • Dey, A., A.K. Hazra, P. Nongdam, S. Nandy, L. Tikendra, A. Mukherjee, S. Banerjee, S. Mukherjee, and D.K. Pandey. 2019. Enhanced bacoside content in polyamine treated in-vitro raised Bacopa monnieri (L.) Wettst. South African Journal of Botany 123: 259–269.

    Article  CAS  Google Scholar 

  • Dias, J.P.T. 2019. Plant growth regulators in horticulture: Practices and perspectives. Biotecnología Vegetal 19 (1): 3–14.

    Google Scholar 

  • Diwan, R., and N. Malpathak. 2008. Novel technique for scaling up of micropropagated Ruta graveolens shoots using liquid culture systems: A step towards commercialization. New Biotechnology 25 (1): 85–91.

    Article  CAS  PubMed  Google Scholar 

  • El-Dawayati, M.M., H.S. Ghazzawy, and M. Munir. 2018. Somatic embryogenesis enhancement of date palm cultivar Sewi using different types of polyamines and glutamine amino acid concentration under in-vitro solid and liquid media conditions. International Journal of Biosciences 12 (1): 149–159.

    CAS  Google Scholar 

  • Fahad, S., S. Hussain, S. Saud, F. Khan, S. Hassan, W. Nasim, M. Arif, F. Wang, and J. Huang. 2016. Exogenously applied plant growth regulators affect heat-stressed rice pollens. Journal of Agronomy and Crop Science 202 (2): 139–150.

    Article  CAS  Google Scholar 

  • Faizal, A., and A.V. Sari. 2019. Enhancement of saponin accumulation in adventitious root culture of Javanese ginseng (Talinum paniculatum Gaertn.) through methyl jasmonate and salicylic acid elicitation. African Journal of Biotechnology 18 (6): 130–135.

    Article  CAS  Google Scholar 

  • Ferguson, L., and E.E. Grafton-Cardwell, eds. 2014. Citrus production manual. Vol. Vol. 3539. UCANR Publications.

    Google Scholar 

  • Flematti, G.R., D.J. Merritt, M.J. Piggott, R.D. Trengove, S.M. Smith, K.W. Dixon, and E.L. Ghisalberti. 2011. Burning vegetation produces cyanohydrins that liberate cyanide and stimulate seed germination. Nature Communications 2 (1): 1–6.

    Article  CAS  Google Scholar 

  • Fletcher, R.A., and G. Hofstra. 1990. Improvement of uniconazole induced protection in wheat seedlings. Journal of Plant Growth Regulation 9: 207–212.

    Article  CAS  Google Scholar 

  • Ghasemi Pirbalouti, A., S.E. Sajjadi, and K. Parang. 2014. A review (research and patents) on jasmonic acid and its derivatives. Archiv der Pharmazie 347 (4): 229–239.

    Article  CAS  PubMed  Google Scholar 

  • Ghazanfari, P., M.R. Abdollahi, A. Moieni, and S.S. Moosavi. 2012. Effect of plant-derived smoke extract on in vitro plantlet regeneration from rapeseed (Brassica napus L. cv. Topas) microspore-derived embryos. International Journal of Plant Production 6: 1735–6814.

    Google Scholar 

  • Giridhar, P., S. Vaddadi, P. Matam, and S.V. Shreelakshmi. 2018. TDZ induced diverse in vitro responses in some economically important plants. In Thidiazuron: From urea derivative to plant growth regulator, 329–341. Singapore: Springer.

    Chapter  Google Scholar 

  • Golkar, P., M. Moradi, and G.A. Garousi. 2019. Elicitation of stevia glycosides using salicylic acid and silver nanoparticles under callus culture. Sugar Tech 21 (4): 569–577.

    Article  CAS  Google Scholar 

  • Gopi, R., and C. Jaleel. 2009. Photosynthetic alterations in Amorphophallus campanulatus with triazoles drenching. Global Journal of Molecular Sciences 4: 15–18.

    CAS  Google Scholar 

  • Guo, B., B.H. Abbasi, A. Zeb, L.L. Xu, and Y.H. Wei. 2011. Thidiazuron: A multi-dimensional plant growth regulator. African Journal of Biotechnology 10 (45): 8984–9000.

    Article  CAS  Google Scholar 

  • Guo, Q., Y. Yoshida, I.T. Major, K. Wang, K. Sugimoto, G. Kapali, N.E. Havko, C. Benning, and G.A. Howe. 2018. JAZ repressors of metabolic defense promote growth and reproductive fitness in Arabidopsis. Proceedings of the National Academy of Sciences 115 (45): E10768–E10777.

    CAS  Google Scholar 

  • Gupta, S., J. Hrdlicka, N. Ngoroyemoto, N.K. Nemahunguni, T. Gucký, O. Novák, M.G. Kulkarni, K. Doležal, and J. Van Staden. 2020. Preparation and standardisation of smoke-water for seed germination and plant growth stimulation. Journal of Plant Growth Regulation 39: 338–345.

    Article  CAS  Google Scholar 

  • Gupta, S., M.G. Kulkarni, J.F. White, W.A. Stirk, H.B. Papenfus, K. Doležal, V. Ördög, J. Norri, A.T. Critchley, and J.V. Staden. 2021. Categories of various plant biostimulants—Mode of application and shelf-life. In Biostimulants for crops from seed germination to plant development—A practical Approach, ed. S. Gupta and J. Van Staden, 1–72. Academic Press.

    Google Scholar 

  • Hummel, G.M., U. Schurr, I.T. Baldwin, and A. Walter. 2009. Herbivore-induced jasmonic acid bursts in leaves of Nicotiana attenuata mediate short-term reductions in root growth. Plant, Cell and Environment 32 (2): 134–143.

    Article  CAS  PubMed  Google Scholar 

  • Indrayanti, R., R.E. Putri, and A. Sedayu. 2019. Effect of paclobutrazol for in vitro medium-term storage of banana variant cv. Kepok (Musa acuminata X balbisiana Colla). The 9th international conference on global resource conservation (ICGRC).

    Google Scholar 

  • Iwasaki, T., and H. Shibaoka. 1991. Brassinosteroids act as regulators of tracheary-element differentiation in isolated zinnia mesophyll cells. Plant & Cell Physiology 32: 1007–1014.

    Article  CAS  Google Scholar 

  • Jain, N., W.A. Stirk, and J. Van Staden. 2008. Cytokinin-and auxin-like activity of a butenolide isolated from plant-derived smoke. South African Journal of Botany 74 (2): 327–331.

    Article  CAS  Google Scholar 

  • Jaleel, C.A., R. Gopi, P. Manivannan, and R. Panneerselvam. 2007. Responses of antioxidant defense system of Catharanthus roseus (L.) to paclobutrazol treatment under salinity. Acta Physiologiae Plantarum 29: 205–209.

    Article  CAS  Google Scholar 

  • Kaminska, M. 2021. Role and activity of jasmonates in plants under in vitro conditions. Plant Cell, Tissue and Organ Culture (PCTOC) 146: 425–447.

    Article  CAS  Google Scholar 

  • Kamountsis, A.P., and C. Sereli. 1999. Paclobutrazol affects growth and flower bud production in gardenia under different light regimes. Horticultural Science 34: 674–675.

    Google Scholar 

  • Kanwar, M.K., A. Bajguz, J. Zhou, and R. Bhardwaj. 2017. Analysis of brassinosteroids in plants. Journal of Plant Growth Regulation 36 (4): 1002–1030.

    Article  CAS  Google Scholar 

  • Kaur-Sawhney, R., F. Tiburcio, T. Altabella, and A.W. Galston. 2003. Polyamines in plants: An overview. Journal of Cellular and Molecular Biology 2: 1–12.

    Google Scholar 

  • Kepenek, K., and Z. Karoglu. 2011. The effect of paclobutrazol and diaminozide on in vitro micropropagation of some apple (Malus domestica) cultivars and M9 root stock. African Journal of Biotechnology 10 (24): 4851–4859.

    CAS  Google Scholar 

  • Khalil, S.A., N. Kamal, M. Sajid, N. Ahmad, R. Zamir, N. Ahmad, and S. Ali. 2016. Synergism of polyamines and plant growth regulators enhanced morphogenesis, stevioside content, and production of commercially important natural antioxidants in Stevia rebaudiana Bert. In Vitro Cellular & Developmental Biology Plant 52 (2): 174–184.

    Article  CAS  Google Scholar 

  • Khan, M.A., B.H. Abbasi, and Z.K. Shinwari. 2014. Thidiazuron enhanced regeneration and silymarin content in Silybum marianum L. Pakistan Journal of Botany 46 (1): 185–190.

    CAS  Google Scholar 

  • Kim, J.K., T.B. Baskar, and S.U. Park. 2016. Silver nitrate and putrescine enhance in vitro shoot organogenesis in polygonum tinctorium. Biosciences, Biotechnology Research Asia 13 (1): 53–58.

    Article  Google Scholar 

  • Kulkarni, M., S. Gupta, N. Ngoroyemoto, and J.V. Staden. 2021. Smoke, seaweed extracts, and vermicompost leachates—Classical natural plant biostimulants. In Biostimulants for crops from seed germination to plant development—A practical approach, ed. S. Gupta and J. Van Staden, 73–86. Academic Press.

    Chapter  Google Scholar 

  • Kumlay, A. 2016. The effect of jasmonic acid on the micropropagation of potato (Solanum tuberosum L.) under long days conditions. Yüzüncü Yıl Ãœniversitesi Tarım Bilimleri Dergisi 26 (1): 79–88.

    Article  Google Scholar 

  • Liu, H., L.C. Carvalhais, K. Kazan, and P.M. Schenk. 2016. Development of marker genes for jasmonic acid signaling in shoots and roots of wheat. Plant Signaling & Behavior 11 (5): e1176654.

    Article  CAS  Google Scholar 

  • Ma, G.H., E. Bunn, K. Dixon, and G. Flematti. 2006. Comparative enhancement of germination and vigor in seed and somatic embryos by the smoke chemical 3-methyl-2 H-furo [2, 3-C] pyran-2-one in Baloskion tetraphyllum (Restionaceae). In Vitro Cellular & Developmental Biology-Plant 42 (3): 305–308.

    Article  CAS  Google Scholar 

  • Major, I.T., Q. Guo, J. Zhai, G. Kapali, D.M. Kramer, and G.A. Howe. 2020. A phytochrome B-independent pathway restricts growth at high levels of jasmonate defense. Plant Physiology 183: 733–749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Major, I.T., Y. Yoshida, M.L. Campos, G. Kapali, X.F. Xin, K. Sugimoto, D. de Oliveira Ferreira, S.Y. He, and G.A. Howe. 2017. Regulation of growth–defense balance by the JASMONATE ZIM-DOMAIN (JAZ)-MYC transcriptional module. The New Phytologist 215 (4): 1533–1547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makenzi, N.G., W.M. Mbinda, R.O. Okoth, and M.P. Ngugi. 2018. In vitro plant regeneration of sweet potato through direct shoot organogenesis. Journal of Plant Biochemistry & Physiology 6 (01): 207.

    Article  Google Scholar 

  • Malabadi, R.B., J.A.T. da Silva, and G.S. Mulgund. 2008. Smoke-saturated water influences in vitro seed germination of Vanda parviflora Lindl. Seed Science Biotechnology 2: 65–69.

    Google Scholar 

  • Malabadi, R.B., and K. Nataraja. 2007a. Brassinosteroids influences in vitro regeneration using shoot tip sections of Cymbidium elegans Lindl. Asian Journal of Plant Sciences 6 (2): 308–313.

    Article  CAS  Google Scholar 

  • ———. 2007b. Smoke-saturated water influences somatic embryogenesis using vegetative shoot apices of mature trees of Pinus wallichiana AB jacks. Journal of Plant Sciences 2: 45–53.

    Article  Google Scholar 

  • Malabadi, R.B., S. Vijaykumar, J.A.T. da Silva, G.S. Mulgund, and K. Nataraja. 2011. In vitro seed germination of an epiphytic orchid Xenikophyton smeeanum (Reichb. F.) by using smoke-saturated-water as a natural growth promoter. International Journal of Biological Technology 2: 35–41.

    Google Scholar 

  • Matand, K., M. Shoemake, and C. Li. 2020. High frequency in vitro regeneration of adventitious shoots in daylilies (Hemerocallis sp) stem tissue using thidiazuron. BMC Plant Biology 20 (1): 1–10.

    Article  CAS  Google Scholar 

  • Maurya, B., K.K. Rai, N. Pandey, L. Sharma, N.K. Goswami, and S.P. Rai. 2019. Influence of salicylic acid elicitation on secondary metabolites and biomass production in in-vitro cultured Withania coagulans (L.) Dunal. Plant Archives 19 (1): 1045–1308.

    Google Scholar 

  • Mozafar, A.A., F. Havas, and N. Ghaderi. 2017. Application of iron nanoparticles and salicylic acid in in vitro culture of strawberries (Fragaria × ananassa Duch.) to cope with drought stress. Plant Cell, Tissue and Organ Culture (PCTOC) 132: 511–523.

    Article  CAS  Google Scholar 

  • Mustafavi, S.H., H.N. Badi, A. SÄ™kara, A. Mehrafarin, T. Janda, M. Ghorbanpour, and H. Rafiee. 2018. Polyamines and their possible mechanisms involved in plant physiological processes and elicitation of secondary metabolites. Acta Physiologiae Plantarum 40 (6): 1–19.

    Article  CAS  Google Scholar 

  • Nair, J.J., M. PoÅ¡ta, H.B. Papenfus, O.Q. Munro, P. Beier, and J. Van Staden. 2014. Synthesis, X-ray structure determination and germination studies on some smoke-derived karrikins. South African Journal of Botany 91: 53–57.

    Article  CAS  Google Scholar 

  • Nelson, D.C., G.R. Flematti, E.L. Ghisalberti, K.W. Dixon, and S.M. Smith. 2012. Regulation of seed germination and seedling growth by chemical signals from burning vegetation. Annual Review of Plant Biology 63: 107–130.

    Article  CAS  PubMed  Google Scholar 

  • Nelson, D.C., G.R. Flematti, J.A. Riseborough, E.L. Ghisalberti, K.W. Dixon, and S.M. Smith. 2010. Karrikins enhance light responses during germination and seedling development in Arabidopsis thaliana. Proceedings of the National Academy of Sciences 107 (15): 7095–7100.

    Article  CAS  Google Scholar 

  • Nolan, T.M., N. VukaÅ¡inović, D. Liu, E. Russinova, and Y. Yin. 2020. Brassinosteroids: Multidimensional regulators of plant growth, development, and stress responses. The Plant Cell 32 (2): 295–318.

    Article  CAS  PubMed  Google Scholar 

  • Northey, J.G., S. Liang, M. Jamshed, S. Deb, E. Foo, J.B. Reid, P. McCourt, and M.A. Samuel. 2016. Farnesylation mediates brassinosteroid biosynthesis to regulate abscisic acid responses. Nature Plants 2 (8): 1–7.

    Article  CAS  Google Scholar 

  • Nowello, V., I. Grimaudo, and A.V. Robers. 1992. Effects of paclobutrazol and reduced humidity on stomatal conductance of micropropagated grapevines. Acta Horticulturae 319: 65–70.

    Google Scholar 

  • Oh, M.H., S.H. Honey, and F.E. Tax. 2020. The control of cell expansion, cell division, and vascular development by brassinosteroids: A historical perspective. International Journal of Molecular Sciences 21 (5): 1743.

    Article  CAS  PubMed Central  Google Scholar 

  • Ovono, P.O., C. Kevers, and J. Dommes. 2007. Axillary proliferation and tuberisation of Dioscorea cayenensis–D. rotundata complex. Plant Cell, Tissue and Organ Culture (PCTOC) 91 (2): 107–114.

    Article  Google Scholar 

  • Pacholczak, A., M. ZajÄ…czkowska, and K. Nowakowska. 2021. The effect of Brassinosteroids on rooting of stem cuttings in two barberry (Berberis thunbergii L.) cultivars. Agronomy 11 (4): 699–705.

    Article  CAS  Google Scholar 

  • Papenfus, H.B., D. Naidoo, M. PoÅ¡ta, J.F. Finnie, and J. Van Staden. 2016. The effects of smoke derivatives on in vitro seed germination and development of the leopard orchid Ansellia Africana. Plant Biology 18: 289–294.

    Article  CAS  PubMed  Google Scholar 

  • Patil, R.A., S.K. Lenka, J. Normanly, E.L. Walker, and S.C. Roberts. 2014. Methyl jasmonate represses growth and affects cell cycle progression in cultured Taxus cells. Plant Cell Reports 33 (9): 1479–1492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pauwels, L., K. Morreel, E. De Witte, F. Lammertyn, M. Van Montagu, W. Boerjan, D. Inzé, and A. Goossens. 2008. Mapping methyl jasmonate-mediated transcriptional reprogramming of metabolism and cell cycle progression in cultured Arabidopsis cells. Proceedings of the National Academy of Sciences 105 (4): 1380–1385.

    Article  CAS  Google Scholar 

  • Pereira-Netto, A.B., C.T.A. Cruz-Silva, S. Schaefer, J.A. Ramírez, and L.R. Galagovsky. 2006. Brassinosteroid-stimulated branch elongation in the marubakaido apple rootstock. Trees 20 (3): 286–291.

    Article  CAS  Google Scholar 

  • PodwyszyÅ„ska, M., R. Kosson, and J. Treder. 2015. Polyamines and methyl jasmonate in bulb formation of in vitro propagated tulips. Plant Cell, Tissue and Organ Culture (PCTOC) 123: 591–605.

    Article  CAS  Google Scholar 

  • Rademacher, W. 2015. Plant growth regulators: Backgrounds and uses in plant production. Journal of Plant Growth Regulation 34 (4): 845–872.

    Article  CAS  Google Scholar 

  • Rai, I.N., I.M. Sudana, I.N.G. Astawa, R. Dwiyani, and Y. Fitriani. 2019. Direct organogenesis in vitro propagation of local balinese banana with thidiazuron. International Journal Life Sciences 3 (3): 32–40.

    Google Scholar 

  • Rajesh, M.K., E. Radha, K.K. Sajini, and K. Anitha. 2014. Polyamine-induced somatic embryogenesis and plantlet regeneration in vitro from plumular explants of dwarf cultivars of coconut (Cocos nucifera). Indian Journal of Agricultural Sciences 84 (4): 527–530.

    Google Scholar 

  • Rakesh, B., W.N. Sudheer, and P. Nagella. 2021. Role of polyamines in plant tissue culture: An overview. Plant Cell, Tissue and Organ Culture (PCTOC) 145: 487–506.

    Article  CAS  Google Scholar 

  • Ravnikar, M., B. Vilhar, and N. Gogala. 1992. Stimulatory effects of jasmonic acid on potato stem node and protoplast culture. Journal of Plant Growth Regulation 11 (1): 29–33.

    Article  CAS  Google Scholar 

  • Rohwer, C.L., and J.E. Erwin. 2008. Horticultural applications of jasmonates. The Journal of Horticultural Science and Biotechnology 83 (3): 283–304.

    Article  CAS  Google Scholar 

  • RuduÅ›, I., J. KÄ™pczyÅ„ski, and E. KÄ™pczyÅ„ska. 2001. The influence of the jasmonates and abscisic acid on callus growth and somatic embryogenesis in Medicago sativa L. tissue culture. Acta Physiologiae Plantarum 23 (1): 103–107.

    Article  Google Scholar 

  • Ruzic, D., T. Vujovic, and R. Cerovic. 2013. Effect of jasmonic acid on in vitro multiplication of low vigorous pear and cherry rootstocks. Fruit Growing Research 29: 106–112.

    Google Scholar 

  • Sakhanokho, H.F., and R.Y. Kelley. 2009. Influence of salicylic acid on in vitro propagation and salt tolerance in Hibiscus acetosella and Hibiscus moscheutos (cv ‘Luna red’). African Journal of Biotechnology 8 (8): 1474–1481.

    CAS  Google Scholar 

  • Santos, I., and R. Salema. 2000. Promotion by Jasmonic acid of bulb formation in shoot cultures of Narcissus triandrus L. Plant Growth Regulation 30 (2): 133–138.

    Article  CAS  Google Scholar 

  • Scholten, H.J. 1998. Effect of polyamines on the growth and development of some horticultural crops in micropropagation. Scientia Horticulturae 77 (1–2): 83–88.

    Article  CAS  Google Scholar 

  • Senaratna, T., K. Dixon, E. Bunn, and D. Touchell. 1999. Smoke-saturated water promotes somatic embryogenesis in geranium. Plant Growth Regulation 28: 95–99.

    Article  CAS  Google Scholar 

  • Sharma, M., and A. Laxmi. 2016. Jasmonates: Emerging players in controlling temperature stress tolerance. Frontiers in Plant Science 6: 1129.

    PubMed  PubMed Central  Google Scholar 

  • Singh, P.K., and S. Gautam. 2013. Role of salicylic acid on physiological and biochemical mechanism of salinity stress tolerance in plants. Acta Physiologiae Plantarum 35 (8): 2345–2353.

    Article  CAS  Google Scholar 

  • Sivanandhan, G., G.K. Dev, M. Jeyaraj, M. Rajesh, A. Arjunan, M. Muthuselvam, M. Manickavasagam, N. Selvaraj, and A. Ganapathi. 2013. Increased production of withanolide A, withanone, and withaferin A in hairy root cultures of Withania somnifera (L.) Dunal elicited with methyl jasmonate and salicylic acid. Plant Cell, Tissue and Organ Culture (PCTOC) 114 (1): 121–129.

    Article  CAS  Google Scholar 

  • Smith, E.F., A.V. Roberts, and J. Mottley. 1990. The preparation in vitro of chrysanthemum for transplantation to soil: 2. Improved resistance to desication conferred by paclobutrazol. Plant Cell, Tissue and Organ Culture (PCTOC) 21: 133–140.

    Article  CAS  Google Scholar 

  • Staswick, P.E. 2009. The tryptophan conjugates of jasmonic and indole-3-acetic acids are endogenous auxin inhibitors. Plant Physiology 150 (3): 1310–1321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swiatek, A., M. Lenjou, D. Van Bockstaele, D. Inzé, and H. Van Onckelen. 2002. Differential effect of jasmonic acid and abscisic acid on cell cycle progression in tobacco BY-2 cells. Plant Physiology 128 (1): 201–211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi, K., K. Fujino, Y. Kikuta, and Y. Koda. 1994. Expansion of potato cells in response to jasmonic acid. Plant Science 100 (1): 3–8.

    Article  CAS  Google Scholar 

  • Tang, W. and Newton, R.J., 2005. Polyamines reduce salt-induced oxidative damage by increasing the activities of antioxidant enzymes and decreasing lipid peroxidation in Virginia pine. Plant Growth Regulation, 46(1), pp.31-43.

    Google Scholar 

  • Toro, F.J., L. Martin-Closas, and A.M. Pelacho. 2003. Jasmonates promote cabbage (Brassica oleracea L. var Capitata L.) root and shoot developments. In Roots: The dynamic interface between plants and the earth, 77–83. Dordrecht: Springer.

    Chapter  Google Scholar 

  • Tung, P., T.S. Hooker, P.A. Tampe, D.M. Reid, and T.A. Thorpe. 1996. Jasmonic acid: Effects on growth and development of isolated tomato roots cultured in vitro. International Journal of Plant Sciences 157 (6): 713–721.

    Article  CAS  Google Scholar 

  • Ueda, M., T. Kaji, and W. Kozaki. 2020. Recent advances in plant chemical biology of jasmonates. International Journal of Molecular Sciences 21 (3): 1124.

    Article  CAS  PubMed Central  Google Scholar 

  • Ueda, J., and J. Kato. 1982. Inhibition of cytokinin-induced plant growth by jasmonic acid and its methyl ester. Physiologia Plantarum 54 (3): 249–252.

    Article  CAS  Google Scholar 

  • Van Staden, J., A.K. Jäger, M.E. Light, and B.V. Burger. 2004. Isolation of the major germination cue from plant-derived smoke. South African Journal of Botany 70: 654–659.

    Article  Google Scholar 

  • Verma, A., C.P. Malik, and V.K. Gupta. 2012. In vitro effects of brassinosteroids on the growth and antioxidant enzyme activities in groundnut. International Scholarly Research Notices 2012: 356485.

    Google Scholar 

  • Wasternack, C. 2015. How jasmonates earned their laurels: Past and present. Journal of Plant Growth Regulation 34: 761–794.

    Article  CAS  Google Scholar 

  • Wasternack, C., and B. Hause. 2013. Jasmonates: Biosynthesis, perception, signal transduction and action in plant stress response, growth and development. Annals of Botany 111 (6): 1021–1058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wasternack, C., and S. Song. 2017. Jasmonates: Biosynthesis, metabolism, and signaling by proteins activating and repressing transcription. Journal of Experimental Botany 68 (6): 1303–1321.

    CAS  PubMed  Google Scholar 

  • Waters, M.T., P.B. Brewer, J.D. Bussell, S.M. Smith, and C.A. Beveridge. 2012. The Arabidopsis ortholog of rice DWARF27 acts upstream of MAX1 in the control of plant development by strigolactones. Plant Physiology 159 (3): 1073–1085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waters, M.T., G.R. Flematti, and S.M. Smith. 2017. Assaying germination and seedling responses of Arabidopsis to karrikins. In Plant hormones, 29–36. New York, NY: Humana Press.

    Chapter  Google Scholar 

  • Wildermuth, M.C., J. Dewdney, G. Wu, and F.M. Ausubel. 2001. Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature 414 (6863): 562–565.

    Article  CAS  PubMed  Google Scholar 

  • Yang, J., G. Duan, C. Li, L. Liu, G. Han, Y. Zhang, and C. Wang. 2019. The crosstalks between jasmonic acid and other plant hormone signaling highlight the involvement of jasmonic acid as a core component in plant response to biotic and abiotic stresses. Frontiers in Plant Science 10: 1349.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, Z.J., W.J. Zhou, H.Z. Li, G.Q. Zhang, K. Subrahmaniyan, and J.Q. Yu. 2006. Effect of jasmonic acid on in vitro explant growth and microtuberization in potato. Biologia Plantarum 50 (3): 453–456.

    Article  CAS  Google Scholar 

  • Ziv, M. 1992. Morphogenic control of plants micropropagated in bioreactor cultures and its possible impact on acclimatization. Acta Horticulturae 319: 119–124.

    Article  Google Scholar 

  • Zwanenburg, B., T. Pospíšil, and S. Ćavar Zeljković. 2016. Strigolactones: New plant hormones in action. Planta 243: 1311–1326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chugh, P., Kumar, A. (2022). Novel Plant Growth Regulators in In Vitro Establishment of Horticulture and Plantation Crops. In: Gupta, S., Chaturvedi, P. (eds) Commercial Scale Tissue Culture for Horticulture and Plantation Crops . Springer, Singapore. https://doi.org/10.1007/978-981-19-0055-6_4

Download citation

Publish with us

Policies and ethics