Skip to main content
Log in

Analysis of Brassinosteroids in Plants

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Brassinosteroids (BRs) are the polyhydroxylated plant hormones sharing a common resemblance with animal steroids. They are active even at very low concentrations and are implicated for their pleiotropic involvement in diverse physiological processes and defense strategies during stress in plants. These compounds are well apparent in the plant kingdom with higher amounts in juvenile tissues. A total of 62 steroidal compounds have been identified so far. Keeping their significance in mind, researchers not only have worked extensively on their isolation, but also they were synthesizing their synthetic isomers. Different analytical techniques like HPLC, GC-MS, LC-MS/MS, UPLC-MS/MS, and bioassay-based methods have been used for their isolation, detection, and characterization from composite plant materials. Therefore, this review provides comprehensive information to the readers intending to isolate and characterize BRs, using either laborious techniques or modern-day more efficient methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abe H, Marumo S (1991) Brassinosteroids in leaves of Distylium racemosum Sieb. et Zucc.: the beginning of brassinosteroid research study in Japan. In: Cutler HG, Yokota T, Adam G (eds) Brassinsoteroids: chemistry, bioactivity and applications. American Chemical Society, Washington, DC, pp 18–24

    Chapter  Google Scholar 

  • Abe H, Morishita T, Uchiyama M, Takatsuto S, Ikekawa N, Ikeda M, Sassa T, Kitsuwa T, Marumo S (1983) Occurrence of three new brassinosteroids: brassinone, 24(S)-24-ethylbrassione and 28-norbrassinolide in higher plants. Experientia 39:351–353

    Article  CAS  Google Scholar 

  • Abe H, Morishita T, Uchiyama M, Takatsuto S, Ikekawa N (1984a) A new brassinolide-related steroid in the leaves of Thea sinensis. Agric Biol Chem 48:1271–1273

    Google Scholar 

  • Abe H, Hongo C, Kyokawa Y, Asakawa S, Natsume M, Narushima M (1994) 3-Oxoteasterone and the epimerization of teasterone: Identification: in lily anthers and Distylium racemosum leaves and its biotransformation into typhasterol. Biosci Biotechnol Biochem 58:986–989

    Article  CAS  Google Scholar 

  • Abe H, Takatsuto S, Nakayama M, Yokota T (1995) 28-homotyphasterol, a new natural brassinosteroid from rice (Oryza sativa L.) bran. Biosci Biotechnol. Biochem 59:176–178

    Article  CAS  Google Scholar 

  • Abe H, Soeno K, Koseki N-N, Natsume M (2001) Conjugated and unconjugated brassinosteroids. In: Baker DR, Umetsu NK (eds) Agrochemical discovery. Insect, weed, and fungal control. American Chemical Society, Washington, DC, pp 91–101

    Google Scholar 

  • Adam G, Porzel A, Schmidt J, Schneider B, Voigt B (1996) New developments in brassinosteroid research. In: Atta-ur-Rahman (ed) Studies in natural product chemistry, vol 18. Elsevier Science B.V, Amsterdam, pp 495–549

    Google Scholar 

  • Adam G, Schmidt J, Schneider B (1999) Brassinosteroids in progress. In: Herz W, Falk H, Kirby GW, Moore RE, Tamm C (eds) The chemistry of organic natural products. Springer, New York, pp 1–46

    Google Scholar 

  • Ahammed GJ, Gao CJ, Ogweno JO, Zhou Yh, Xia XJ, Mao WH, Shi K, Yu JQ (2012) Brassinosteroids induce plant tolerance against phenanthrene by enhancing degradation and detoxification in Solanum lycopersicon L. Ecotox Environ Safe 80:28–36

    Article  CAS  Google Scholar 

  • Antonchick AP, Schneider B, Zhabinskii VN, Konstantinova OV, Khripach VA (2003) Biosynthesis of 2,3-epoxybrassinosteroids in seedlings of Secale cereale. Phytochemistry 63:771–776

    Article  CAS  PubMed  Google Scholar 

  • Antonchick A, Svatoš A, Schneider B, Konstantinova OV, Zhabinskii VZ, Khripach VA (2005) 2,3-Epoxybrassinosteroids are intermediates in the biosynthesis of castasterone in seedlings of Secale cereale. Phytochemistry 66:65–72

    Article  CAS  PubMed  Google Scholar 

  • Asakawa S, Abe H, Kyokawa Y, Nakamura S, Natsume M (1994) Teasterone 3-myristate: a new type of brassinosteroids derivative in Lilium longiflorium anthers. Biosci Biotechnol Biochem 58:219–220

    Article  CAS  PubMed  Google Scholar 

  • Asakawa S, Abe H, Nishikawa N, Natsume M, Koshioka M (1996) Purification and identification of new acyl-conjugated teasterone in lily pollen. Biosci Biotechnol Biochem 60:1416–1420

    Article  CAS  Google Scholar 

  • Baba J, Yokota T, Takahashi N (1983) Brassinolide-related new bioactive steroids for Dolichos lablab seed. Agric Biol Chem 47:659–661

    CAS  Google Scholar 

  • Bajguz A (2009) Isolation and characterization of brassinosteroids from algal cultures of Chlorella vulgaris Beijerinck (Trebouxiophycaea). J Plant Physiol 166:1946–1949

    Article  CAS  PubMed  Google Scholar 

  • Bajguz A (2011) Brassinosteroids – occurrence and chemical structures in plants. In: Hayat S, Ahmad A (eds) Brassinosteroids: a class of plant hormone. Springer, Dordrecht, pp 1–27

    Google Scholar 

  • Bajguz A, Hayat S (2009) Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiol Biochem 47:1–8

    Article  CAS  PubMed  Google Scholar 

  • Bajguz A, Tretyn A (2003) The chemical characteristic and distribution of brassinosteroids in plants. Phytochemistry 62:1027–1046

    Article  CAS  PubMed  Google Scholar 

  • Bajguz A, Bajguz AJ, Tryniszewska EA (2013) Recent advanced in medicinal applications of brassinosteroids, a group of plant hormones. In: Atta-ur-Rahman (ed) Studies in natural products chemistry, vol 40. Elsevier Science Publishers, Amsterdam, pp 33–49

    Google Scholar 

  • Bhardwaj R, Kaur S, Nagar PK, Arora HK (2007) Isolation and characterization of brassinosteroids from immature seeds of Camellia sinensis (O) Kuntze. Plant Growth Regul 53:1–5

    Article  CAS  Google Scholar 

  • Bishop GT, Nomuma T, Yokota T, Harrison K, Noguchi T, Fujioka S, Takatsuto S, Jones JDG, Kamiya Y (1999) The tomato DWARF enzyme catalyses C-6-oxidation in brassinosteroids biosynthesis. Proc Natl Acad Sci USA 96:1761–1766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borisevich NA, Skornyakov IV, Khripach VA, Tolstorozhev GB, Zhabinskii VN (2007) Manifestation of structure and intermolecular interactions of biologically active brassinosteroids in infrared spectra. J Appl Spectrosc 74:673–680

    Article  CAS  Google Scholar 

  • Borisevich NA, Buslov DK, Khripach VA, Zhabinskii VN (2008) Infrared spectra of S- and R-isomers of biologically active brassinosteroids. J Appl Spectrosc 75:637–643

    Article  CAS  Google Scholar 

  • Cao L, Yang J, Zheng L, Wang D, Huang Q (2014) Quantitative determination of 24-epibrassinolide by high-performance liquid chromatography with evaporative light scattering detector. Chin J Pestic Sci 16:72–77

    CAS  Google Scholar 

  • Cao L, Yang J, Li X, Wang D, Huang Q (2015) Determination of brassinolide analogs by high-performance liquid chromatography with evaporative light scattering detection. Anal Lett 48:575–585

    Article  CAS  Google Scholar 

  • Carbonell ML, Javegui O (2005) A rapid method for analysis of abscisic acid (ABA) in crude extracts of water stressed Arabidopsis thaliana plants by liquid chromatography-mass spectrometry in tandem mode. Plant Physiol Biochem 43:11–40

    Google Scholar 

  • Cui JX, Zhou YH, Ding JG, Xia XJ, Shi K, Chen SC, Asami T, Chen Z, Yu JQ (2011) Role of nitric oxide in hydrogen peroxide-dependent induction of abiotic stress tolerance by brassinosteroids in cucumber. Plant Cell Environ 34:347–358

    Article  CAS  PubMed  Google Scholar 

  • Deng T, Wua D, Duana C, Guana Y (2016) Ultrasensitive quantification of endogenous brassinosteroids in milligram fresh plant with a quaternary ammonium derivatization reagent by pipette-tip solid-phase extraction coupled with ultra-high-performance liquid chromatography tandem mass spectrometry. J Chromatogr A 1456:105–112

    Article  CAS  PubMed  Google Scholar 

  • Dinan L, Bourne PC, Meng Y, Sarker SD, Toletino R, Whiting P (2001) Assessment of natural products in the Drosophila melanogaster BII cell bioassay for ecdysteroid agonist and antagonist activities. Cell Mol Life Sci 58:321–342

    Article  CAS  PubMed  Google Scholar 

  • Ding J, Mao LJ, Wang ST, Yuan BF, Feng YQ (2013) Determination of endogenous brassinosteroids in plant tissues using solid-phase extraction with double layered cartridge followed by high-performance liquid chromatography-tandem mass spectrometry. Phytochem Anal 24:386–394

    Article  CAS  PubMed  Google Scholar 

  • Ding J, Hong J, Wu JH, Liu JF, Yuan BF, Feng YQ (2014) Improved methodology for assaying brassinosteroids in plant tissues using magnetic hydrophilic material for both extraction and derivatization. Plant Methods 10:1–11

    Article  CAS  Google Scholar 

  • Friebe A, Volz A, Schmidt J, Voigt B, Adam G, Schnabl H (1999) 24-epi-secasterone and 24-epi-castasterone from Lychnis viscaria seeds. Phytochemistry 52:1607–1610

    Article  CAS  Google Scholar 

  • Fujioka S, Inoue T, Takatsuto S, Yanagisawa T, Yokota T, Sakurai A (1995) Identification of a new brassinosteroid, cathasterone, in cultured cells of Catharanthus roseus as a biosynthetic precursor of teasterone. Biosci Biotechnol Biochem 59:1543–1547

    Article  CAS  Google Scholar 

  • Fujioka S, Noguchi T, Sekimoto M, Takatsuto S, Yoshida S (2000a) 28-Norcastasterone is biosynthesized from castasterone. Phytochemistry 55:97–101

    Article  CAS  PubMed  Google Scholar 

  • Fujioka S, Noguchi T, Watanabe T, Takatsuto S, Yoshida S (2000b) Biosynthesis of brassinosteroids in cultured cells of Catharanthus roseus. Phytochemistry 53:549–553

    Article  CAS  PubMed  Google Scholar 

  • Fujioka S, Takatsuo S, Yoshida S (2002) An early C-22 oxidation branch in the brassinosteroid biosynthetic pathway. Plant Physiol 130:930–939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gamoh K (1994) Liquid chromatographic assay of brassinosteroids in plants. J Chromatogr A 658:17–25

    Article  CAS  Google Scholar 

  • Gamoh K, Takatsuto S (1989) A boronic acid derivative as a highly sensitive fluorescence derivatization reagent for brassinosteroids in liquid chromatography. Anal Chim Acta 222:201–204

    Article  CAS  Google Scholar 

  • Gamoh K, Kitsuwa T, Takatsuto S, Fujimoto Y, Ikekawa N (1988) Determination of trace brassinosteroids by HPLC. Anal Sci 4:533–535

    Article  CAS  Google Scholar 

  • Gamoh K, Omote K, Okamoto N, Takatsuto S (1989) High-performance liquid chromatography of brassinosteroids in plants with derivatization using 9-phenanthreneboronic acids. J Chromatogr 469:424–428

    Article  CAS  Google Scholar 

  • Gamoh K, Okamoto N, Takatsuto S, Tejima I (1990a) Determination of natural brassinosteroids as dansyl-amino phenylboronates by liquid chromatography with fluorimetric detection. Anal Chim Acta 228:101–105

    Article  CAS  Google Scholar 

  • Gamoh K, Sawamoto H, Takatsuto S, Watabe Y, Arimoto H (1990b) Ferroceneboronic acid as a derivatization reagent for the determination of brassinosteroids by high-performance liquid chromatography with electrochemical detection. J Chromatogr 515:227–231

    Article  CAS  Google Scholar 

  • Gamoh K, Takatsuto S, Ikekawa N (1992) Effect of separation of C-24 epimeric brassinosteroids by liquid chromatography. Anal Chim Acta 256:319–322

    Article  CAS  Google Scholar 

  • Gamoh K, Abe H, Shimada K, Takatsuto S (1996) Liquid chromatography/mass spectrometry with atmospheric pressure chemical ionization of free brassinosteroids. Rapid Commun Mass Spectrom 10:903–906

    Article  CAS  Google Scholar 

  • Gonzalez SM, Bustos DA, Zudenigo ME, Ruveda EA (1986) Configurational assignment of epimeric 22,23-epoxides of steroids by carbon-13 NMR spectroscopy. Tetrahedron 42:755–758

    Article  Google Scholar 

  • Griffiths PG, Sasse JM, Yokota T, Cameron DW (1995) 6-Deoxotyphasterol and 3-dehydro-6-deoxoteasterone, possible precursors to brassinosteroids in the pollen of Cupressus arizonica. Biosci Biotechnol Biochem 59:956–959

    Article  CAS  Google Scholar 

  • Grove MD, Spencer GF, Rohwedder WK, Mandava N, Worley JF, Warthen JD, Steffens GL, Flipper-Anderson JL, Cook JC (1979) Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen. Nature 281:216–217

    Article  CAS  Google Scholar 

  • Horgen PA, Nakagawa CH, Irvin RT (1984) Production of monoclonal-antibodies to a steroid plant-growth regulator. Can J Biochem Cell B 62:715–721

    Article  CAS  Google Scholar 

  • Huo F, Wang X, Han Y, Bai Y, Zhang W, Yuan H, Liu H (2012) A new derivatization approach for the rapid and sensitive analysis of brassinosteroids by using ultra high performance liquid chromatography-electrospray ionization triple quadrupole mass spectrometry. Talanta 99:420–425

    Article  CAS  PubMed  Google Scholar 

  • Ikekawa N, Takatsuto S (1984) Microanalysis of brassinosteroids in plants by gas chromatography/mass spectroscopy. Mass Spectrosc Jpn 32:55–70

    Article  CAS  Google Scholar 

  • Ikekawa N, Takatsuto S, Marumo S, Abe H, Morishita T, Uchiyama M, Ikeda M, Sasa T, Kisuwa T (1983) Identification of brassinolide and its 6-oxo analog in the plant kingdom by selected ion monitoring. Proc Jpn Acad Ser B, Phys Biol Sci 59:9–12

    Article  CAS  Google Scholar 

  • Ikekawa N, Takatsuto S, Kitsuwa T, Saito H, Morishita T, Abe H (1984) Analysis of natural brassinosteroids by gas chromatography and gas chromatography-mass spectroscopy. J Chromatogr 290:289–302

    Article  CAS  Google Scholar 

  • Ikekawa N, Nishiyama F, Fujimoto Y (1988) Identification of 24-epibrassinolide in bee pollen of the broad bean Vicia faba L. Chem Pharm Bull 36:405–407

    Article  CAS  Google Scholar 

  • Joo SH, Kim TW, Son SH, Lee WS, Yokota T, Kim SK (2012) Biosynthesis of a cholesterol-derived brassinosteroid, 28-norcastasterone, in Arabidopsis thaliana. J Exp Bot 63:1823–1833

    Article  CAS  PubMed  Google Scholar 

  • Kanwar MK, Bhardwaj R (2015) Arsenic induced modulation of antioxidative defense system and brassinosteroids in Brassica juncea L. Ecotox Environ Safe 115:119–125

    Article  CAS  Google Scholar 

  • Kanwar MK, Bhardwaj R, Arora P, Chowdhary SP, Sharma P, Kumar S (2012) Plant steroid hormones produced under Ni stress are involved in the regulation of metal uptake and oxidative stress in Brassica juncea L. Chemosphere 86:41–49

    Article  CAS  PubMed  Google Scholar 

  • Kanwar MK, Bhardwaj R, Chowdhary SP, Arora P, Sharma P, Kumar S (2013) Isolation and characterization of 24-epibrassinolide from Brassica juncea L. and its effects on growth, Ni ion uptake, antioxidant defense of Brassica plants and in vitro cytotoxicity. Acta Physiol Plant 35:1351–1362

    Article  CAS  Google Scholar 

  • Khripach VA, Zhabinskii VN, de Groot AE (1999) Brassinosteroids: a new class of plant hormones. Academic Press, San Diego

    Google Scholar 

  • Khripach VA, Zhabinskii VN, Litvinovskaya RP (2011) Immunoassays of brassinosteroids. In: Hayat S, Ahmad A (eds) Brassinosteroids: a class of plant hormone. Springer Science + Bussiness Media BV, Dordrecht, pp 375–392

  • Kim SK (1991) Natural occurrences of brassinosteroids. In: Cutler HG, Yokota T, Adam G (eds) Brassinosteroids: chemistry, bioactivity and applications. American Chemical Society, Washington, DC, pp 26–35

    Chapter  Google Scholar 

  • Kim SK, Yokota T, Takahashi N (1987) 25-methyldolichosterone, a new brassinosetroid with a tertiary butyl group from immature seed of Phaseolus vulgaris. Agric Biol Chem 51:2303–2305

    CAS  Google Scholar 

  • Kim MK, Jang MK, Youn JH, Son SH, Lee WS, Yokota T, Kim SK (2015) Occurrence of phosphorylated castasterone in Arabidopsis thaliana and Lycopersicum esculentum. Physiol Plant 153:58–67

    Article  CAS  PubMed  Google Scholar 

  • Kolbe A, Marquardt V, Adam G (1992) Synthesis of tritium labeled 24-epibrassinolide. J Labelled Comp Radiopharm 31:801–805

    Article  CAS  Google Scholar 

  • Konstantinova OV, Antonchick AP, Oldham NJ, Zhabinskii VN, Khripach VA, Schneider B (2001) Analysis of underivatized brassinosteroids by HPLC/APCI-MS. Occurrence of 3-epibrassinolide in Arabidopsis thaliana. Collect Czech. Chem Commun 66:1729–1734

    CAS  Google Scholar 

  • Litivinovskaya RP, Lyakhov AS, Govorova AA, Drach SV, Khripach VA (1997) X-ray structure of (20R,22 S,5’S)-22-(3′-methylisoxazolin-5′yl)-6,6-ethylenedioxy-3α,5-cyclo-23-nor-5α-cholestan-22-ol. Bioorg Khim 23:147–151

    Google Scholar 

  • Liyan Ma, Zhang H, Wentao Xu, Xiaoyun He, Lili Y, Yunbo L, Huang K (2013) Simultaneous determination of 15 plant growth regulators in bean sprout and tomato with liquid chromatography–triple quadrupole tandem mass spectrometry. Food Anal. Methods 6:941–951

    Google Scholar 

  • Lv T, Zhao XEn, Zhu S, Ji Z, Chen G, Sun Z, Song C, You J, Sou Y (2014) Development of an efficient HPLC fluorescence detection method for brassinolide by ultrasonic-assisted dispersive liquid-liquid micro-extraction coupled with derivatization. Chromatographia 77:1653–1660

    Article  CAS  Google Scholar 

  • Malíková J, Swaczynová J, Kolář Z, Strnad M (2008) Anticancer and antiproliferative activity of natural brassinosteroids. Phytochemistry 69:418–426

    Article  PubMed  CAS  Google Scholar 

  • Marumo S, Hattori H, Nanoyama Y, Munakata K (1968) The presence of novel plant growth regulators in leaves of Distylium racemosum Sieb. et. Zucc. Agric Biol Chem 32:528–529

    Article  CAS  Google Scholar 

  • Michelini FM, Ramirez JA, Berra A, Galagovsky LR, Alché LE (2004) In vitro and in vivo antiherpetic activity of three new synthetic brassinosteroids analogues. Steroids 69:713–720

    Article  CAS  PubMed  Google Scholar 

  • Michelini FM, Berra A, Alche LE (2008) The in vitro immunomodulatory activity of a synthetic brassinosteroid analogue would account for the improvement of herpetic stromal keratitis in mice. J Steroid Biochem Mol Biol 108:164–170

    Article  CAS  PubMed  Google Scholar 

  • Michelini FM, Zorrilla P, Robello C, Alche AE (2013) Immunomodulatory activity of an anti-HSV-1 synthetic stigmastane analog. Bioorg Med Chem 21:560–568

    Article  CAS  PubMed  Google Scholar 

  • Mitchell JD, Mandava NB, Worley JF, Plimmer JR, Smith MV (1970) Brassins: a new family of plant hormones from rape pollen. Nature 225:1065–1066

    Article  CAS  PubMed  Google Scholar 

  • Mori K, Sakakibara M, Ichikawa Y, Ueda H, Okada K, Umemora T, Yabuta G, Kuwahara S, Kondo M, Minobe M, Sogabe A (1982) Synthesis of (22 S,23 S)-homobrassinolide and brassinolide from stigmasterol. Tetrahedron 38:2099–2109

    Article  CAS  Google Scholar 

  • Mori K, Sakakibara M, Okada K (1984) Synthesis of naturally occurring brassinosteroids employing cleavage of 23,24-epoxides as key reactions. Synthesis of brassinolide, castasterone, dolicholide, dolichosterone, homodolicholide, homodolichosterone, 6-deoxocastasterone and 6-deoxodolichosterone. Tetrahedron 40:1767–1781

    Article  CAS  Google Scholar 

  • Motegi C, Takatsuto S, Gamoh K (1994) Identification of brassinolide and castasterone in the pollen of orange (Citrus sinensis) by high performance liquid chromatography. J Chromatogr 658:27–30

    Article  CAS  Google Scholar 

  • Pachthong C, Supyen D, Buddhasukh D, Jatisatienr A (2007) Isolation and characterization of brassinolide and castasterone from mature seeds of smooth loofah (Luffa cylindrical (L.) M.J. Roem). ACGC Chem Res Comm 21:4–8

    CAS  Google Scholar 

  • Pan X, Wang X (2009) Profiling of plant hormones by mass spectrometry. J Chromatogr B 877:2806–2813

    Article  CAS  Google Scholar 

  • Plattner RD, Taylor SL, Grove MD (1986) Detection of brassinolide and castasterone is Alnus glutinosa (European alder) pollen by gas chromatography/mass spectrometry. J Nat Prod 49:540–545

    Article  CAS  Google Scholar 

  • Porzel A, Marquardt V, Adam G, Massiot G, Zeigan D (1992) 1H and 13C NMR analysis of brassinosteroids. Magn Reson Chem 30:651–657

    Article  CAS  Google Scholar 

  • Pradko A, Litvinovskaya RP, Sauchuk AL, Drach SV, Baranovsky AV, Zhabinskii VN, Mirantsova TV, Khripach VA (2015) A new ELISA for quantification of brassinosteroids in plants. Steroids 97:78–86

    Article  CAS  PubMed  Google Scholar 

  • Rajewska I, Talarek M, Bajguz A (2016) Brassinosteroids and response of plants to heavy metals action. Front Plant Sci 7:629

    Article  PubMed  PubMed Central  Google Scholar 

  • Rarova L, Zahler S, Liebl J, Krystof V, Sedlak D, Bartunek P, Strnad M (2012) Brassinosteroids inhibit in vitro angiogenesis in human endothelial cells. Steroids 77:1502–1509

    Article  CAS  PubMed  Google Scholar 

  • Schlagnhaufer CD, Arteca RN, Phillips AT (1991) Induction of anti-brassinosteroid antibodies. J Plant Physiol 138:404–410

    Article  CAS  Google Scholar 

  • Schmidt J, Yokota T, Spengler B, Adam G (1993) 28-Homoteasterone, a naturally occurring brassiosteroid from seeds of Raphanus sativus. Phytochemistry 34:391–392

    Article  CAS  Google Scholar 

  • Schmidt J, Spengler B, Tokota T, Nakayama M, Takatsuto S, Voigt B, Adam G (1995b) Secasterone, the first naturally occurring 2,3-epoxybrassinosteroid from Secale cereale. Phytochemistry 38:1095–1097

    Article  CAS  Google Scholar 

  • Schmidt J, Voigt B, Adam G (1995c) 2-Deoxybrassinolide – a naturally occurring brassinosteroid from Apium graveolens. Phytochemistry 40:1041–1043

    Article  CAS  Google Scholar 

  • Schmidt J, Altmann T, Adam G (1997) Brassinosteroids from seeds of Arabidopsis thaliana. Phytochemistry 45:1325–1327

    Article  CAS  PubMed  Google Scholar 

  • Schneider JA, Yoshihara K, Nakanishi K, Kato N (1983) Typhasterol (2-deoxycastasterone): a new plant growth regulator from cattail pollen. Tetrahedron Lett 24:3859–3860

    Article  CAS  Google Scholar 

  • Seo S, Nagasaki T, Katsuyama Y, Matsubara F, Sakata T, Yoshioka M, Makisumi Y (1989) Synthesis of (22R,23R)- and (22 S,23 S)-[4-14C]-24-epibrassinolide. J Labelled Comp Radiopharm 27:1383–1393

    Article  CAS  Google Scholar 

  • Shim JH, Kim IS, Lee KB, Suh YT, Morgan ED (1998) Determination of brassinolide in rice (Oryza sativa L.) by HPLC equipped with a fluorescence detector. Agric Chem Biotechnol 39:84–88

    Google Scholar 

  • Soeno K, Kyokawa Y, Natsume M, Abe H (2000) Teasterone-3-O-D-glucopyranoside, a new conjugated brassinosteroid metabolite from lily cell suspension cultures and its identification in lily anthers. Biosci Biotechnol Biochem 64:702–709

    Article  CAS  PubMed  Google Scholar 

  • Sondhi N, Bhardwaj R, Kaur S, Kumar N, Singh B (2008) Isolation of 24-epibrassinolide from leaves of Aegle marmelos and evaluation of its antigenotoxicity employing Allium cepa chromosomal aberration assay. Plant Growth Regul 54:217–224

    Article  CAS  Google Scholar 

  • Sondhi N, Bhardwaj R, Kaur S, Chandel M, Kumar N, Singh B (2010) Inhibition of H2O2 induced DNA damage in single cell gel electrophoresis assay (Comet assay) by castasterone isolated from leaves of Centella asiatica. Health (London) 2:595–602

    Google Scholar 

  • Spengler B, Schmidt J, Voigt B, Adam G (1995) 6-Deoxo-28-norcastasterone and 6-deoxo-24-epicastasterone - two new brasinosteroids from Ornithopus sativus. Phytochemistry 40:907–910

    Article  CAS  Google Scholar 

  • Stirk WA, Bálint P, Tarkowská D, Novák O, Strnad M, Ördög V, van Staden J (2013) Hormone profiles in microalgae: gibberellins and brassinosteroids. Plant Physiol Biochem 70:348–353

    Article  CAS  PubMed  Google Scholar 

  • Stirk WA, Bálint P, Tarkowská D, Novák O, Maróti G, Ljung K, Turečková V, Strnad M, Ördög V, van Staden J (2014) Effect of light on growth and endogenous hormones in Chlorella minutissima (Trebouxiophyceae). Plant Physiol Biochem 79:66–76

    Article  CAS  PubMed  Google Scholar 

  • Svatoš A, Antonchick A, Schneider B (2004) Determination of brassinosteroids in the sub-femtomolar range using dansyl-3-aminophenylboronate derivatization and electrospray mass spectrometry. Rapid Commun Mass Spectrom 18:816–821

    Article  PubMed  CAS  Google Scholar 

  • Swaczynová J, Šíša M, Hniličková J, Kohout L, Strnad M (2006) Synthesis, biological, immumological and anticancer properties of a new brassinosteroid ligand. Pol J Chem 80:629–635

    Google Scholar 

  • Swaczynová J, Novák O, Hauserová E, Fuksová K, Šíša M, Kohout L, Strnad M (2007) New techniques for the estimation of naturally occurring brassinosteroids. J Plant Growth Regul 26:1–14

    Article  CAS  Google Scholar 

  • Takatsuto S (1994) Brassinosteroids: distribution in plants, bioassays, and micro-analysis by gas chromatography-mass spectrometry. J Chromatogr A 658:3–15

    Article  CAS  Google Scholar 

  • Takatsuto S, Ying B, Morisaki M, Ikekawa N (1982) Microanalysis of brassinolide and its analogues by gas chromatography and gas chromatography-mass spectrometry. J Chromatogr 239:233–241

    Article  CAS  Google Scholar 

  • Takatsuto S, Omote K, Gamoh K, Ishibashi M (1990) Identification of brassinolide and castasterone in buckwheat (Fagopyrum esculentum) pollen. Agric Biol Chem 54:757–762

    CAS  Google Scholar 

  • Tarkowská D, Novák O, Oklestkova J, Strnad M (2016) The determination of 22 natural brassinosteroids in a minute sample of plant tissue by UHPLC-ESI-MS/MS. Anal Bioanal Chem 408:6799–6812

    Article  PubMed  CAS  Google Scholar 

  • Taylor PE, Spuck K, Smith PM, Sasse JM, Yokota T, Griffiths PG, Cameron DW (1993) Detection of brassinosteroids in pollen of Lolium perenne L. by immunocytochemistry. Planta 189:91–100

    CAS  Google Scholar 

  • Thompson MJ, Mandava NB, Flippen-Anderson JL, Worley JF, Dutky SR, Robbins WE, Lusby WR (1979) Synthesis of brassinosteroids: new plant growth-promoting regulators. J Org Chem 44:5002–5004

    Article  CAS  Google Scholar 

  • Wachsman MB, Castilla V (2012) Antiviral properties of brassinosteroids. In: Pereira-Netto AB (ed) Brassinosteroids: practical applications in agriculture and human health. Bentham Science Publishers, Sharjah, pp 57–71

  • Wachsman MB, Ramirez JA, Galagovsky LR, Coto CE (2002) Antiviral activity of brassinosteroid derivatives against measles virus in cell cultures. Antivir Chem Chemother 13:61–66

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Duan C, Wu D, Guan Y (2014) Quantification of endogenous brassinosteroids in sub-gram plant issues by in-line matrix solid-phase dispersion-tandem solid phase extraction coupled with high performance liquid chromatography–tandem mass spectrometry. J Chromatogr A 1359:44–51

    Article  CAS  PubMed  Google Scholar 

  • Wu Q, Wu D, Shen Z, Duan C, Guan Y (2013) Quantification of endogenous brassinosteroids in plant by on-line two-dimensional microscale solid phase extraction-on column derivatization coupled with high performance liquid chromatography–tandem mass spectrometry. J Chromatogr A 1297:56–63

    Article  CAS  PubMed  Google Scholar 

  • Xin P, Yan J, Fan J, Chu J, Yan C (2013a) A dual role of boronate affinity in high-sensitivity detection of vicinal diol brassinosteroids from sub-gram plant tissues via UPLC-MS/MS. Analyst 138:1342–1345

    Article  CAS  PubMed  Google Scholar 

  • Xin P, Yan J, Fan J, Chu J, Yan C (2013b) An improved simplified high-sensitivity quantification method for determining brassinosteroids in different tissues of rice and Arabidopsis. Plant Physiol 162:2056–2066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xin P, Yan J, Li B, Fang S, Fan J, Tian H, Shi Y, Tian W, Yan C, Chu J (2016) A comprehensive and effective mass spectrometry-based screening strategy for discovery and identification of new brassinosteroids from rice tissues. Front Plant Sci 7:1786. doi:10.3389/fpls.2016.01786

    Article  PubMed  PubMed Central  Google Scholar 

  • Yokota T, Arima M, Takahashi N (1982a) Castasterone, a new phytosterol with plant-hormone potency from chestnut insect gall. Tetrahedron Lett 23:1275–1278

    Article  CAS  Google Scholar 

  • Yokota T, Baba J, Takahashi N (1982b) A new steroidal lactone with plant growth-regulatory activity from Dolichos lablab seed. Tetrahedron Lett 23:4965–4966

    Article  CAS  Google Scholar 

  • Yokota T, Baba J, Takahashi N (1983a) Brassinolide related biocative sterols in Dolichos lablab: brassinolide, castasterone and a new analog, homodolicholide. Agric Biol Chem 47:1409–1411

    CAS  Google Scholar 

  • Yokota T, Morita M, Takahashi N (1983b) 6-Deoxocastasterone and 6-deoxodolichsterone-putative precursors for brassinolide-related steroids from Phaseolus vulgaris. Agric Biol Chem 47:2149–2151

    CAS  Google Scholar 

  • Yokota T, Kim SK, Fukui Y, Takahashi N, Takeuchi Y, Takematsu T (1987a) Brassinosteroids and sterols from a green alga, Hydrodictyon reticulatum: configuration at C-24. Phytochemistry 26:503–506

    Article  CAS  Google Scholar 

  • Yokota T, Koba S, Kim SK, Takatsuto S, Ikekawa N, Sakakibara M, Okada K, Mori K, Takahashi N (1987b) Diverse structural variations of the brassinosteroids in Phaseolus vulgaris. Agric Biol Chem 51:1625–1631

    Article  CAS  Google Scholar 

  • Yokota T, Watanabe S, Ogino Y, Yamaguchi I, Takahashi N (1990) Radioimmunoassay for brassinosteroids and its use for comparative-analysis of brassinosteroids in stems and seeds of Phaseolus vulgaris. J Plant Growth Regul 9:151–159

    Article  CAS  Google Scholar 

  • Yokota T, Nomura T, Nakayama M (1997) Identification of brassinosteroids that appear to be derived from campesterol and cholesterol in tomato shoots. Plant Cell Physiol 38:1291–1294

    Article  CAS  Google Scholar 

  • Yokota T, Higuchi K, Takahashi N, Kamuro Y, Watanabe T, Takatsuto S (1998) Identification of brassinosteroids with epimerization substituent and /or the 23-oxo group in pollen and anthers of Japanese cedar. Biosci Biotechnol Biochem 62:526–531

    Article  CAS  PubMed  Google Scholar 

  • Yokota T, Sato T, Takeuchi Y, Nomura T, Uno K, Watanabe T, Takatsuto S (2001) Roots and shoots of tomato produce 6-deoxo-28-norcathasterone, 6-deoxo-28-nortyphasterol and 6-deoxo-28-norcastasterone, possible precursors of 28-norcastasterone. Phytochemistry 58:233–238

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Mukesh Kumar Kanwar and Renu Bhardwaj are grateful to Department of Biotechnology (BT/PR9286/NDB/52/81/2007) and Council Scientific and Industrial Research (CSIR-SRF, fellowship), Government of India for providing financial assistance. This work was also supported by the National Science Centre (Poland) for allocating funds to Andrzej Bajguz (DEC-2012/05/B/NZ8/00958) and by National Key Research and Development Program of China for allocating funds to Jie Zhou (2016YFD0201001). We would also like to extend thanks all co-workers whose names are mentioned in the references for their tremendous contributions to the development of different techniques for the isolation and characterization of brassinosteroids from plants.

Author information

Authors and Affiliations

Authors

Contributions

MKK, RB, and AB conceived the idea for review. MKK and AB wrote the manuscript and have contributed equally to this work. JZ, and RB provided the crucial comments and improved the manuscript. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Jie Zhou or Renu Bhardwaj.

Ethics declarations

Conflict of interest

None of the authors of this paper have a financial or personal relationship to other people or organizations that could inappropriately influence or bias the content of the paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanwar, M.K., Bajguz, A., Zhou, J. et al. Analysis of Brassinosteroids in Plants. J Plant Growth Regul 36, 1002–1030 (2017). https://doi.org/10.1007/s00344-017-9732-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-017-9732-4

Keywords

Navigation