Skip to main content

Somatic Embryogenesis and Agrobacterium-Mediated Genetic Transformation in Rosa Species

  • Chapter
  • First Online:
Somatic Embryogenesis in Ornamentals and Its Applications

Abstract

Rose (Rosa spp.) is not only an important ornamental plant, but also an economical crop. It contains thousands of cultivars and has been grown throughout the world. As most rose cultivars suffer from biotic and abiotic stress, it is necessary and significant to improve the ornamental or agronomic traits. Genetic engineering provides an efficient and convenient way for overcoming these problems. Somatic embryogenesis is widely utilized for plant regeneration and genetic transformation; it is also usually utilized to perform the genetic manipulation in plant molecular breeding. Up to now, somatic embryogenesis and genetic transformation have been applied successfully in many plant species including woody and herbaceous plants. There is some information reporting transgenic roses with altered flower colors, increased disease resistance, or with modified agronomic traits. This chapter discusses somatic embryogenesis, the factors influencing somatic embryogenesis, and the protocol to realize plant regeneration via somatic embryogenesis in rose. The chapter also reviews Agrobacterium-mediated genetic transformation, the factors controlling transformation, and the overall protocol to obtain transgenic mediated by cyclic secondary somatic embryogenesis. This somatic embryogenesis and Agrobacterium-mediated genetic transformation may provide a feasible effective method to gene functional studies and gene engineering breeding in Rosa sp. in future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agarwal S, Kanwar K, Sharma DR (2004) Factors affecting secondary somatic embryogenesis and embryo maturation in Morus alba L. Sci Hortic 102:359–368

    Article  Google Scholar 

  • Ahmadi N, Mibus H, Serek M (2008) Isolation of an ethylene-induced putative nucleotide laccase in miniature roses (Rosa hybrida L.). J Plant Growth Regul 27:320–330

    Article  CAS  Google Scholar 

  • Bao Y, Liu GF, Shi XP, Xing W, Ning GG, Liu J, Bao MZ (2012) Primary and repetitive secondary somatic embryogenesis in Rosa hybrid ‘Samantha’. Plant Cell Tiss Org Cult 109:411–418

    Article  CAS  Google Scholar 

  • Bi L, Liu F, Dong A (2012) Establishment of genetic transformation system in protocorm like-body (PLB) of Rosa canina. Acta Agric Nucl Sin 26:270–274

    Google Scholar 

  • Borissova A, Hvarleva T, Bedzhov I, Kondakova V, Atanassov A, Atanassov I (2005) Agrobacterium mediated transformation of secondary somatic embryos from Rosa hybrida L. and recovery of transgenic plants. Biotechnol Biotechnol Equip 19:70–74

    Article  CAS  Google Scholar 

  • Chen R, Lv J, Liu R, Xiong X, Wang T, Chen S, Guo L, Wang H (2010) DREB1C from Medicago truncatula enhances freezing tolerance in transgenic M. truncatula and China Rose (Rosa chinensis Jacq.). J Plant Growth Regul 60:199–211

    Article  CAS  Google Scholar 

  • Chen JR, Wu L, Hu BW, Yi X, Liu R, Deng ZN, Xiong XY (2014) The influence of plant growth regulators and light quality on somatic embryogenesis in China Rose (Rosa chinensis Jacq.). J Plant Growth Regul 33:295–304

    Article  CAS  Google Scholar 

  • Dan Y (2008) Biological functions of antioxidants in plant transformation. In Vitro Cell Dev Biol Plant 44:149–161

    Article  CAS  Google Scholar 

  • Dohm A, Ludwig C, Schilling D, Debener T (2001) Transformation of roses with genes for antifungal proteins. Acta Hortic 547:27–33

    Article  CAS  Google Scholar 

  • Dohm A, Ludwig C, Schilling D, Debener T (2002) Transformation of roses with genes for antifungal protein to reduce their susceptibility to fungal diseases. Acta Hortic 572:105–111

    Article  CAS  Google Scholar 

  • Estabrooks T, Browne R, Dong ZM (2007) 2, 4, 5-Trichlorophenoxyacetic acid promotes somatic embryogenesis in the rose cultivar ‘Livin’ Easy’ (Rosa sp.). Plant Cell Rep 26:153–156

    Article  PubMed  CAS  Google Scholar 

  • Evans DA, Sharp WR, Flick CE (1981) Growth and behavior of cell cultures. In: Thorp TA (ed) Plant tissue culture – methods and application in agriculture. Academic Press, New York, pp 45–113

    Google Scholar 

  • Firoozabady E, Moy Y, Courtney-Gutterson N, Robinson K (1994) Regeneration of transgenic rose (Rosa hybrida) plants from embryogenic tissue. Nat. Biotech 12:609–613

    Article  CAS  Google Scholar 

  • Foucher F (2009) Functional genomics in Rose, genetics and genomics of Rosaceae. Plant Genet Genomics Crop Model 6:381–392

    Google Scholar 

  • Gaj MD (2004) Factors influencing somatic embryogenesis induction and plant regeneration with particular reference to Arabidopsis thaliana (L.) Heynh. Plant Growth Regul 43:27–47

    Article  CAS  Google Scholar 

  • Georgiev MI, Ludwig-Müller J, Alipieva K, Lippert A (2011) Sonication-assisted Agrobacterium rhizogenes mediated transformation of Verbascun xanthophoeniceum Griseb. for bioactive metabolite accumulation. Plant Cell Rep 30:859–866

    Article  PubMed  CAS  Google Scholar 

  • Gudin S (2000) Rose: genetics and breeding. Plant Breed Rev 17:59–189

    Google Scholar 

  • Hattendorf A, Debner T (2006) Cloning and characterization of resistance gene analogs from roses. Abstr Int Rosaceae Genomics Conf 3:72

    Google Scholar 

  • Hirata H, Ohnishi T, Ishida H, Tomida K, Sakai M, Hara M, Watanabe N (2012) Functional characterization of aromatic amino acid aminotransferase involved in 2-phenylethanol biosynthesis in isolated rose petal protoplasts. J Plant Physiol 169:444–451

    Article  PubMed  CAS  Google Scholar 

  • Holton TA, Tanaka Y (1994) Blue roses-a pigment of our imagination? Trends Biotechnol 12:40–42

    Article  Google Scholar 

  • Hsia C, Korban SS (1996) Organogenesis and somatic embryogenesis in callus cultures of Rosa hybrida and Rosa chinensis minima. Plant Cell Tiss Org Cult 44:1–6

    Article  CAS  Google Scholar 

  • Isabel N, Boivin R, Levasseur C, Charest P, Bousquet J, Tremblay FM (1996) Occurrence of somaclonal variation among somatic embryo-derived white spruces (Picea glauca, Pinaceae). Am J Bot 83:1121–1130

    Article  Google Scholar 

  • Juturu VN, Mekala GK, Kirti PB (2015) Current status of tissue culture and genetic transformation research in cotton (Gossypium spp.). Plant Cell Tiss Org Cult 120:813–839

    Article  CAS  Google Scholar 

  • Katsumoto Y, Fukuchi-Mizutani M, Fukui Y, Brugliera F, Holton TA, Karan M, Nakamura N, Yonekura-Sakakibara K, Togami J, Pigeaire A, Tao G, Nehra NS, Lu C, Dyson BK, Tsuda S, Ashikari T, Kusumi T, Mason JG, Tanaka Y (2007) Engineering of the rose flavonoid biosynthetic pathway successfully generated blue-hued flowers accumulating delphinidin. Plant Cell Physiol 48:1589–1600

    Article  PubMed  CAS  Google Scholar 

  • Kaur N, Pati PK, Sharma M, Ahuja PS (2006) Somatic embryogenesis from immature zygotic embryos of Rosa bourboniana Dsep. In Vitro Cell Dev Biol Plant 42:124–127

    Article  CAS  Google Scholar 

  • Kim SW, Oh SC, Liu JR (2003) Control of direct and indirect somatic embryogenesis by exogenous growth regulators in immature zygotic embryo cultures of rose. Plant Cell Tiss Org Cult 74:61–66

    Article  CAS  Google Scholar 

  • Kim CK, Chung JD, Park SH, Burrell AM, Kamo KK, Byrne DH (2004) Agrobacterium tumefaciens mediated transformation of Rosa hybrida using the green fluorescent protein (GFP) gene. Plant Cell Tiss Org Cult 78:107–111

    Article  CAS  Google Scholar 

  • Kim SW, Oh MJ, Liu JR (2009a) Somatic embryogenesis and plant regeneration in zygotic embryo explant cultures of rugosa rose. Plant Biotechnol Rep 3:199–203

    Article  Google Scholar 

  • Kim SW, Oh MJ, Liu JR (2009b) Plant regeneration from the root-derived embryonic tissues of Rosa hybrida L. cv. Charming via a combined pathway of somatic embryogenesis and organogenesis. Plant Biotechnol Rep 3:341–345

    Article  Google Scholar 

  • Kintzios S, Manos C, Makri O (1999) Somatic embryogenesis from mature leaves of rose (Rosa sp.). Plant Cell Rep 18:467–472

    Article  CAS  Google Scholar 

  • Li X, Krasnyanski S, Korban SS (2002a) Somatic embryogenesis, secondary somatic embryogenesis, and shoot organogenesis in Rosa. Plant Physiol 159:313–319

    Article  CAS  Google Scholar 

  • Li X, Krasnyanski S, Korban SS (2002b) Optimization of the uidA gene transfer into somatic embryos of rose via Agrobacterium tumefaciens. Plant Physiol Biochem 40:453–459

    Article  CAS  Google Scholar 

  • Li XQ, Gasic K, Cammue B, Broekaert W, Korban SS (2003) Transgenic rose lines harboring an antimicrobial protein gene, Ace-AMP1, demonstrate enhanced resistance to powdery mildew (Sphaerotheca pannosa). Planta 218:226–232

    Article  PubMed  CAS  Google Scholar 

  • Li Q, Zhang S, Wang J (2014) Transcriptome analysis of callus from Picea balfouriana. BMC Genomics 15:553

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu SJ, Wei ZM, Huang JQ (2008) The effect of co-cultivation and selection parameters on Agrobacterium mediated transformation of Chinese soybean varieties. Plant Cell Rep 27:489–498

    Article  PubMed  CAS  Google Scholar 

  • Marchant R, Davey MR, Lucas JA, Power JB (1996) Somatic embryogenesis and plant regeneration in Floribunda rose (Rosa hybrida L.) cvs. Trumpeter and Glad Tidings. Plant Sci 120:95–105

    Article  Google Scholar 

  • Marchant R, Davey MR, Lucas JA, Lamb CJ, Dixon RA, Power JB (1998a) Expression of a chitinase transgene in rose (Rosa hybrida L.) reduces development of blackspot disease (Diplocarpon rosae Wolf). Mol Breed 4:187–194

    Article  CAS  Google Scholar 

  • Marchant R, Power JB, Lucas JA, Davey MR (1998b) Biolistic transformation of rose (Rosa hybrida L.). Ann Bot 81:109–114

    Article  Google Scholar 

  • Maximova SN, Alemanno L, Young A, Ferriere N, Traore A, Guiltinan MJ (2002) Efficiency, genotypic variability, and cellular origin of primary and secondary somatic embryogenesis of Theobroma cacao L. In Vitro Cell Dev Biol Plant 38:252–259

    Article  Google Scholar 

  • Murali S, Sreedhar D, Lokeswari TS (1996) Regeneration through somatic embryogenesis from petal-derived calli of Rosa hybrida L. Arizona (hybrid tea). Euphytica 91:271–275

    Article  Google Scholar 

  • Ning GG, Xiao X, Lv HY, Li X, Zuo Y, Bao MZ (2012) Shortening tobacco life cycle accelerates functional gene identification in genomic research. Plant Biol 14:934–943

    Article  PubMed  CAS  Google Scholar 

  • Norma LT, Chen X (1989) Genotype specificity of the somatic embryogenesis response in cotton. Plant Cell Rep 8:133–136

    Article  Google Scholar 

  • Ogata J, Kanno Y, Itoh Y, Tsugawa H, Suzuki M (2005) Anthocyanin biosynthesis in roses. Nature 435:757–758

    Article  PubMed  CAS  Google Scholar 

  • Paul S, Dam A, Bhattacharyya A, Bandyopadhyay TK (2011) An efficient regeneration system via direct and indirect somatic embryogenesis for the medicinal tree Murraya Koenigii. Plant Cell Tiss Org Cult 105:271–283

    Article  Google Scholar 

  • Pinto G, Silva S, Park YS, Neves L, Arauujo C, Santos C (2008) Factors influencing somatic embryogenesis induction in Eucalyptus globulus Labill.: basal medium and anti-browning agents. Plant Cell Tiss Org Cult 95:79–88

    Article  CAS  Google Scholar 

  • Pollin LD, Liang H, Rothrock RE, Nishii M, Diehl DL, Newhouse AE, Nairn CJ, Powell WA, Maynard CA (2006) Agrobacterium-mediated transformation of American chestnut (Castanea dentata (Marsh.) Borkh.) somatic embryos. Plant Cell Tiss Org Cult 84:69–78

    Article  CAS  Google Scholar 

  • Prakash MG, Gurumurthi K (2010) Effects of type of explant and age, plant growth regulators and medium strength on somatic embryogenesis and plant regeneration in Eucalyptus camaldulensis. Plant Cell Tiss Org Cult 100:13–20

    Article  CAS  Google Scholar 

  • Roberts AV, Yoloya K, Walker S, Mottley J (1995) Somatic embryogenesis in Rosa spp. In: Jain S, Gupta P, Newton R (eds) Somatic embryogenesis in woody plants, vol 2. Kluwer, Dordrecht, pp 277–289

    Chapter  Google Scholar 

  • Rout GR, Debata BK, Das P (1991) Somatic embryogenesis in callus culture of Rosa hybrida L. cv. Landora. Plant Cell Tiss Org Cult 27:65–69

    Article  CAS  Google Scholar 

  • Sarasan V, Roberts AV, Rout GR (2001) Methyl laurate and 6-benzyladenine promote the germination of somatic embryos of a hybrid rose. Plant Cell Rep 20:183–186

    Article  CAS  Google Scholar 

  • Schum A, Hofmann K (2001) Use of isolated protoplasts in rose breeding. Acta Hortic 547:35–44

    Article  CAS  Google Scholar 

  • Sliva JAT, Zeng S, Galdiano RF, Dobranszki J, Cardoso JC, Vendrame WA (2014) In vitro conservation of Dendrobium germplasm. Plant Cell Rep 33:1413–1423

    Article  CAS  Google Scholar 

  • Tian CW, Chen Y, Zhao XL, Zhao LJ (2008) Plant regeneration through protocorm-like bodies induced from rhizoids using leaf explants of Rosa spp. Plant Cell Rep 27:823–831

    Article  PubMed  CAS  Google Scholar 

  • Verde I, Abbott AG, Scalabrin S, Jung S, Shu S, Marroni F (2013) The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat Genet Nat Genet 45:1–10

    Google Scholar 

  • Vergne P, Maene M, Gabant G, Chauvet A, Debener T, Bendahmane M (2010) Somatic embryogenesis and transformation of the diploid Rosa chinensis cv. Old Blush. Plant Cell Tiss Org Cult 100:73–81

    Article  Google Scholar 

  • Wit JC, Esendam HF, Honkanen JJ, Tuominen U (1990) Somatic embryogenesis and regeneration of flowering plants in rose. Plant Cell Rep 9:456–458

    Article  PubMed  Google Scholar 

  • Wu J, Liu C, Seng S, Khan MA, Sui J, Gong B, Liu C, Wu C, Zhong X, He J, Yi M (2015) Somatic embryogenesis and Agrobacterium mediated transformation of Gladiolus hybridus cv. ‘Advance Red’. Plant Cell Tiss Org Cult 120:717–728

    Article  CAS  Google Scholar 

  • Xing W, Bao Y, Luo P, Bao MZ, Ning GG (2014a) An efficient system to produce transgenic plants via cyclic leave-originated secondary somatic embryogenesis in Rosa rugosa. Acta Physiol Plant 36:2013–2023

    Article  CAS  Google Scholar 

  • Xing W, Wang Z, Wang XQ, Bao MZ, Ning GG (2014b) Over-expression of an FT homolog from Prunus mume reduces juvenile phase and induces early flowering in rugosa rose. Sci Hortic 172:68–72

    Article  CAS  Google Scholar 

  • Yamada T, Takagi K, Ishimoto M (2012) Recent advances in soybean transformation and their application to molecular breeding and genomic analysis. Breed Sci 61:480–494

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang X, Zhang X (2010) Regulation of somatic embryogenesis in higher plants. Crit Rev Plant Sci 29:36–57

    Article  CAS  Google Scholar 

  • Zakizadeh H, Lutken H, Sriskandarajah S, Serek M, Muller R (2013) Transformation of miniature potted rose (Rosa hybrida cv. Linda) with P SAG12 -ipt gene delays leaf senescence and enhances resistance to exogenous ethylene. Plant Cell Rep 32:195–205

    Article  PubMed  CAS  Google Scholar 

  • Zhang Q, Chen W, Sun L, Zhao F, Huang B, Yang W, Tao Y, Wang J, Yuan Z, Fan G, Xing Z, Han C, Pan H, Zhong X, Shi W, Liang X, Du D, Sun F, Xu Z, Hao R, Lv Y, Zheng Z, Sun M, Luo L, Cai M, Gao Y, Wang J, Yin Y, Xu X, Cheng T, Wang J (2012) The genome of Prunus mune. Nat Commun 3:1318

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guogui Ning .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Shen, Y., Xing, W., Ding, M., Bao, M., Ning, G. (2016). Somatic Embryogenesis and Agrobacterium-Mediated Genetic Transformation in Rosa Species. In: Mujib, A. (eds) Somatic Embryogenesis in Ornamentals and Its Applications. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2683-3_11

Download citation

Publish with us

Policies and ethics