Skip to main content
Log in

2,4,5-Trichlorophenoxyacetic acid promotes somatic embryogenesis in the rose cultivar ‘Livin’ Easy’ (Rosa sp.)

  • Cell Biology and Morphogenesis
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Somatic embryogenesis (SE) offers vast potential for the clonal propagation of high-value roses. However, some recalcitrant cultivars unresponsive to commonly employed SE-inducing agents and low induction rates currently hinder the commercialization of SE technology in rose. Rose SE technology requires improvement before it can be implemented as a production system on a commercial scale. In the present work, we assessed 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), a synthetic auxin not previously tested in rose, for its effectiveness to induce SE in the rose cultivar ‘Livin’ Easy’ (Rosa sp.). We ran a parallel comparison to the commonly used 2,4-dichlorophenoxyacetic acid (2,4-D). We tested each auxin with two different basal media: Murashige and Skoog (MS) basal medium and woody plant medium (WPM). MS medium resulted in somatic embryo production, whereas WPM did not. 2,4,5-T induced SE over a greater concentration range than 2,4-D's and resulted in significantly greater embryo yields. 2,4,5-T at a concentration of 10 or 25 μM was better for embrygenic tissue initiation than 2,4,5-T at 5 μM. Further embryo development occurred when the tissue was transferred to plant growth regulator (PGR) free medium or media with 40% the original auxin concentration. However, the PGR-free medium resulted in a high percentage of abnormal embryos (32.31%) compared to the media containing auxins. Upon transfer to germination medium, somatic embryos successfully converted into plantlets at rates ranging from 33.3 to 95.2%, depending on treatment. Survival rates 3 months ex vitro averaged 14.0 and 55.6% for 2,4-D- and 2,4,5-T-derived plantlets, respectively. Recurrent SE was observed in 60.2% of the plantlets growing on germination medium. This study is the first report of SE in the commercially valuable rose cultivar ‘Livin’ Easy’ (Rosa sp.) and a suitable methodology was developed for SE of this rose cultivar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

2,4,5-T:

2,4,5-Trichlorophenoxyacetic acid

2,4-D:

2,4-Dichlorophenoxyacetic acid

MS medium:

Murashige and Skoog basal medium

WPM medium:

Woody plant medium

PGR:

Plant growth regulator

ET:

Embryogenic tissue

ABA:

Abscisic acid

SAM:

Shoot apical meristem

SE:

Somatic embryogenesis

References

  • Al-Mazrooei S, Bhatti MH, Henshaw GG, Taylor NJ, Blakeslay D (1997) Optimisation of somatic embryogenesis in fourteen cultivars of sweet potato [Ipomoea batatas (L.) Lam.]. Plant Cell Rep 16:710–714

    Article  CAS  Google Scholar 

  • Bangerth F, Li C-J, Gruber J (2000) Mutual interaction of auxins and cytokinins in regulatimg correlative dominance. Plant Growth Regul 32:205–217

    Article  CAS  Google Scholar 

  • Bowman JL, Eshed Y (2000) Formation and maintenance of the shoot apical meristem. Trends Plant Sci 5(3):110–115

    Article  PubMed  CAS  Google Scholar 

  • Coca MA, Almoguera C, Jordano J. (1994) Expression of sunflower low-molecular-weight-heat-shock proteins during embryogenesis and persistence after germination: localization and possible functional implications. Plant Mol Biol 25:479–492

    Article  PubMed  CAS  Google Scholar 

  • de Wit, JC, Esendam HF, Honhanen JJ, Tuominen U (1990) Somatic embryogenesis and regeneration of flowering plants in rose. Plant Cell Rep 9:456–458

    CAS  Google Scholar 

  • Dodeman VL, Ducreux G, Kreis M (1997) Zygotic embryogenesis versus somatic embryogenesis. J Exp Bot 48:1493–1509

    CAS  Google Scholar 

  • Eriksson T (1965) Studies on the growth requirements and growth measurements of cell cultures of Haplopapus gracilis. Physiol Plant 18:976–993

    Article  CAS  Google Scholar 

  • Fehér A, Pasternak T, Miskolczi P, Ayaydin F, Dudits D (2001) Induction of the embryogenic pathway in somatic plant cells. Acta Horticultur 560:293–298

    Google Scholar 

  • Fehér A, Pasternak TP, Dudits D (2003). Transition of somatic plant cells to an embryogenic state. Plant Cell Tissue Organ Cult 74(3):201–228

    Article  Google Scholar 

  • Hameed S, Ahmad Z, Khan FZ, Akram M (1993) Callus cultures of Rosa hybrida cvs. Diamond Jubly and Lans France. Pak J Bot 25(2):193–198

    Google Scholar 

  • Hsia C, Korban SS (1996) Organogenesis and somatic embryogenesis in callus cultures of Rosa hybrida and Rosa chiensis minima. Plant Cell Tissue Organ Cult 44:1–6

    Article  CAS  Google Scholar 

  • Jeya Mary R, Jayabalan N (1997) Influence of growth regulators on somatic embryogenesis in sesame. Plant Cell Tissue Organ Cult 49:67–70

    Article  Google Scholar 

  • Kim SW, Seung CO, Dong SI, Liu JR (2003a) Plant regeneration of rose (Rosa hybrida) from embryogenic cell-derived protoplasts. Plant Cell Tissue Organ Cult 73:15–19

    Article  CAS  Google Scholar 

  • Kim CH, Chung J-D, Jee S-O, Oh J-Y (2003b) Somatic embryogenesis from in vitro grown leaf explants of Rosa hybrida L. J Plant Biotechnol 5(3):169–172

    Google Scholar 

  • Kintzios S, Manos C, Makri O (1999) Somatic embryogenesis from mature leaves of rose (Rosa sp.). Plant Cell Rep 18:467–472

    Article  CAS  Google Scholar 

  • Kitamiya E, Suzuki S, Sano T, Nagata T (2000) Isolation of two genes that were induced upon the initiation of somatic embryogenesis on carrot hypocotyls by high concentrations of 2,4-D. Plant Cell Rep 19:551–557

    Article  CAS  Google Scholar 

  • Konar RN, Thomas E, Street HE (1972) Origin and structure of embryoids arising from eopidermal cells of the stem of Ranunculus sceleratus L. J Cell Sci 11:77–93

    PubMed  CAS  Google Scholar 

  • Kong L, Yeung EC (1992) Development of white spruce embryos II Continual shoot meristem development during germination. In vitro Cell Dev Biol 28:125–131

    Article  Google Scholar 

  • Kumria R, Sunnichan VG, Das DK, Gupta SK, Reddy VS, Bhatnagar RK, Leelavathi S (2003) High-frequency somatic embryo production and maturation into normal plants in cotton (Gossypium hirsutum) through metabolic stress. Plant Cell Rep 21(7):635–639

    PubMed  CAS  Google Scholar 

  • Kunitake H, Imamizo H, Mii M (1993) Somatic embryogenesis and plant regeneration from immature seed-derived calli of rugosa rose (Rosa rugosa Thunb.). Plant Sci 90:187–194

    Article  CAS  Google Scholar 

  • Lee EK, Cho DY, Soh WY (2001) Enhanced production and germination of somatic embryos by temporary starvation in tissue cultures of Daucus carota. Plant Cell Rep 20(5):408–415

    Article  CAS  Google Scholar 

  • Li X, Krasnyanski SF, Korban SS (2002) Somatic embryogenesis, secondary somatic embryogenesis, and shoot organogenesis in Rosa. J Plant Physiol 159:313–319

    Article  CAS  Google Scholar 

  • Lloyd G, McCown B (1980) Commercially-feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture. Comb Proc Int Plant Propagators Soc 30:421–427

    Google Scholar 

  • Marchant R, Davey MR, Lucas JA, Power BJ (1996) Somatic embryogenesis and plant regeneration in Floribunda rose (Rosa hybrida L.) cvs. Trumpeter and Glad Tidings. Plant Sci 120:95–105

    Article  Google Scholar 

  • Matthews D, Mottley J, Horan I, Roberts AV (1991) A protoplast to plant system in roses. Plant Cell Tissue Organ Cult 24:173–180

    Article  Google Scholar 

  • Matthews D, Mottley J, Yokoya K, Roberts AV (1994) Regeneration of plants from protoplasts of Rosa species (Roses). In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 29. Springer-Verlag, Berlin, Heidelberg, pp 146–159

    Google Scholar 

  • Merkle SA, Parrott WA, Williams EG (1990) Applications of somatic embryogenesis and embryo cloning. In: Bhojwani SS (ed) Plant tissue culture: applications and limitations. Elsevier Science Publishing Inc., Amsterdam, pp 67–101

    Google Scholar 

  • Murali S, Sreedhar D, Lokeswari TS (1996) Regeneration through somatic embryogenesis from petal-derived calli of Rosa hybrida L. cv. Arizona (hybrid tea). Euphytica 91:271–275

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol Plantarum 15:473–497

    Article  CAS  Google Scholar 

  • Noriega C, Söndahl MR (1991) Somatic embryogenesis in Hybrid Tea roses. Bio/Technol 9:991–993

    Google Scholar 

  • Owen HR, Miller AR (1992) An examination and correction of plant tissue culture basal medium formulations. Plant Cell Tissue Organ Cult 28:147–150

    Article  CAS  Google Scholar 

  • Peres LEP, Kerbauy GB (1999) High cytokinin accumulation following root tip excision changes the endogenous auxin-to-cytokinin ratio during root-to-shoot conversion in Catasetum fimbriatum Lindl. (Orchidaceae). Plant Cell Rep 18:1002–1006

    Article  CAS  Google Scholar 

  • Reinert J (1958) Morphogenese und ihre Kontrolle an Gewebekulturen aus Karotten. Naturwissenschaften 45:344–345

    Article  CAS  Google Scholar 

  • Roberts AV, Horan I, Matthews D, Mottley J (1990) Protoplast technology and somatic embryogenesis in Rosa. In: de Jong J (ed) Integration of the in vitro techniques in ornamental plant breeding. CPO Centre for Plant Breeding Research, Wageningen, pp 100–115

    Google Scholar 

  • Roberts AV, Yokoya K, Walker S, Mottley J (1995) Somatic embryogenesis in Rosa spp. In: Jain SM (ed) Somatic embryogenesis in woody plants. Kluwer Academic Publishers, Dordrecht, pp 277–289

    Google Scholar 

  • Rout GR, Debata BK, Das P (1991) Somatic embryogenesis in callus cultures of Rosa hybrida L. cv. Landora. Plant Cell Tissue Organ Cult 27:65–69

    Article  CAS  Google Scholar 

  • Rout GR, Samantantaray S, Mottley J, Das P (1999) Biotechnology of the rose: a review of recent progress. Sci Horticultur 81:201–228

    Article  CAS  Google Scholar 

  • Sagare AP, Suhasini K, Krishnamurthy KV (1993) Plant regeneration via somatic embryogenesis in chickpea (Cicer arietinum L.). Plant Cell Rep 12:652–655

    Article  Google Scholar 

  • Sarasan V, Roberts AV, Rout GR (2001) Methyl laurate and 6-benzyladenine promote the germination of somatic embryos of a hybrid rose. Plant Cell Rep 20:183–186

    Article  CAS  Google Scholar 

  • Segura-Aguilar J, Hakman I, Rydstrom J (1995) Studies on the mode of action of the herbicidal effect of 2,4,5-trichlorophenoxyacetic acid on germinating Norway spruce. Environ Exp Bot 35(3):309–320

    Article  CAS  Google Scholar 

  • Skoog F, Miller CO (1965) Chemival regulation of growth and organ formation in plant tissues cultured in vitro. In: Bell E (ed) Molecular and cellular aspects of development. Harper and Row, New York, pp 481–494

    Google Scholar 

  • Steward FC, Mapes MO, Mears K (1958) Growth and organized development of cultured cells: II. Organization of cultures grown from freely suspended cells. Am J Bot 45:705–708

    Article  Google Scholar 

  • Taiz L, Zeiger E (1998) Plant physiology, 2nd edn. Sinauer Associates Inc., Sutherland, Massachusetts, p 472

    Google Scholar 

  • Van Der Salm TPM, Van Der Toorn CJG, Hänisch ten Cate CH, Dons HJM (1996) Somatic embryogenesis and shoot regeneration from excised adventitious roots of the rootstock Rosa hybrida L. ‘Moneyway’. Plant Cell Rep 15:522–526

    Article  CAS  Google Scholar 

  • Visessuwan R, Kawai T, Mii M (1997) Plant regeneration systems from leaf segment culture through embryogenic callus formation of Rosa hybrida and Rosa canina. Breeding Sci 47:217–222

    CAS  Google Scholar 

  • Venkov P, Topashka-Ancheva M, Georgieva M, Alexieva V, Karanov E (2000) Genotoxic effect of substituted phenoxyacetic acids. Arch Toxicol 74(9):560–566

    Article  PubMed  CAS  Google Scholar 

  • von Arnold S, Sabala I, Bozhkov P, Dyachok J, Filonova L (2002) Developmental pathways of somatic embryogenesis. Plant Cell Tissue Organ Cult 69:233–249

    Article  CAS  Google Scholar 

  • von Arnold S, Bozhkov P, Clapham D, Dyachok J, Filonova L, Högberg, K-A, Ingouff M, Wiweger M (2005) Propagation of Norway spruce via somatic embryogenesis. Plant Cell Tissue Organ Cult 81(3):323–329

    Article  Google Scholar 

  • Witte CP, Tiller SA, Taylor MA, Davies HV (2002) Addition of nickel to Murashige and Skoog medium in plant tissue culture activates urease and may reduce metabolic stress. Plant Cell Tissue Organ Cult 68:103–104

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank NSERC for the Postgraduate Industry Scholarship provided to T.E., Weeks Roses for supplying the rose material and PlantSelect Biotechnology Systems Ltd for both financial support and use of their facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongmin Dong.

Additional information

Communicated by J. Zou

Rights and permissions

Reprints and permissions

About this article

Cite this article

Estabrooks, T., Browne, R. & Dong, Z. 2,4,5-Trichlorophenoxyacetic acid promotes somatic embryogenesis in the rose cultivar ‘Livin’ Easy’ (Rosa sp.). Plant Cell Rep 26, 153–160 (2007). https://doi.org/10.1007/s00299-006-0231-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-006-0231-5

Keywords

Navigation