Skip to main content
Log in

Transgenic rose lines harboring an antimicrobial protein gene, Ace-AMP1, demonstrate enhanced resistance to powdery mildew (Sphaerotheca pannosa)

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

An antimicrobial protein gene, Ace-AMP1, was introduced into Rosa hybrida cv. Carefree Beauty via Agrobacterium-mediated transformation. A total of 500 putative transgenic plants were obtained from 100 primary embryogenic calli co-cultivated with A. tumefaciens following selection on a regeneration medium containing 100 mg/l kanamycin. Polymerase chain reaction analysis of these putative transgenic lines, using primers for both Ace-AMP1 and neomycin phosphotransferase (npt II) genes, showed that 62% of these plants were positive for both transgenes. These lines were further confirmed for stable integration of Ace-AMP1 and npt II genes by Southern blotting. Transcription of the Ace-AMP1 transgene in various transgenic rose lines was determined using Northern blotting. Transgenic rose lines inoculated with conidial spores of Sphaerotheca pannosa (Wallr.: Fr.) Lev. var. rosae showed enhanced resistance to powdery mildew using both a detached-leaf assay and an in vivo greenhouse whole-plant assay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1. a
Fig. 2a–b.
Fig. 3.
Fig. 4a–e.
Fig. 5a, b.
Fig. 6. a

Similar content being viewed by others

Abbreviations

AMP:

antimicrobial protein

npt II :

neomycin phosphotransferase

PGR:

plant growth regulator

References

  • Belanger RR, Labbe C, Jarvis WR (1994) Commercial-scale control of rose powdery mildew with a fungal antagonist. Plant Dis 78:420–424

    Google Scholar 

  • Bi YM, Cammue BPA, Goodwin PH, Krishna Raj S, Saxena PK (1999) Resistance to Botrytis cinerea in scented geranium transformed with a gene encoding the antimicrobial protein Ace-AMP1. Plant Cell Rep 18:835–840

    Article  CAS  Google Scholar 

  • Bowen KL, Young B (1995) Management of blackspot of rose in the landscape in Alabama. Plant Dis 79:250–253

    Google Scholar 

  • Broekaert WF, Terras FRG, Cammue BPA, Osborn RW (1995) Plant defensins: novel antimicrobial peptides as components of the host defense system. Plant Physiol 108:1353–1358

    CAS  PubMed  Google Scholar 

  • Broekaert WF, Cammue BPA, De Bolle MFV, Thevissen K, De Samblanx GW, Osborn RW (1997) Antimicrobial peptides from plants. Crit Rev Plant Sci 16:297–323

    CAS  Google Scholar 

  • Cammue BPA, Thevissen K, Hendriks M, Eggermont K, Goderis IJ, Proost P, Van Damme J, Osborn RW, Guerbette F, Kader JC, Borekaert WF (1995) A potent antimicrobial protein from onion seeds showing sequence homology to plant lipid transfer proteins. Plant Physiol 109:445–455

    Article  CAS  PubMed  Google Scholar 

  • Chakrabarti A, Ganapathi TR, Mukherjee PK, Bapat VA (2003) MSI, a magainin analogue, imparts enhanced disease resistance in transgenic tobacco and banana. Planta 216:587–596

    CAS  PubMed  Google Scholar 

  • Firoozabady E, Moy Y, Courtney-Gutterson N, Robinson K (1994) Regeneration of transgenic rose (Rosa hybrida) plants from embryogenic tissue. Bio/Technology 12:609–613

    Google Scholar 

  • Hsia C, Korban SS (1996) Factors affecting in vitro establishment and shoot proliferation of Rosa hybrida L and Rosa chinensis minima. In Vitro Cell Dev Biol-Plant 32:217–222

    Google Scholar 

  • Jach G, Gornhardt B, Mundy J, Logemann J, Pinsdorf E, Leah R, Schell J, Maas C (1995) Enhanced quantitative resistance against fungal disease by combinatorial expression of different barley antifungal proteins in transgenic tobacco. Plant J 8:97–109

    CAS  PubMed  Google Scholar 

  • Kertbundit S, Degreve H, Deboeck F, Van MM, Hernalsteens JP (1991) In vitro random β-glucuronidase gene fusions in Arabidopsis thaliana. Proc Natl Acad Sci USA 88:5212–5216

    CAS  Google Scholar 

  • Li X, Krasnyanski S, Korban SS (2002a) Somatic embryogenesis, secondary somatic embryogenesis, and shoot organogenesis in Rosa. J Plant Physiol 159:313–319

    CAS  Google Scholar 

  • Li X, Krasnyanski S, Korban SS (2002b) Optimization of the uidA gene transfer into somatic embryos of rose via Agrobacterium tumefaciens. Plant Physiol Biochem 40:453–459

    Article  CAS  Google Scholar 

  • Marchant R, Davey MR, Lucas JA, Lamb CJ, Dixon RA, Power JB (1998a) Expression of a chitinase in rose (Rosa hybrida L) reduces development of black spot disease (Diplocarpon rosae Wolf). Mol Breed 4:187–194

    Article  CAS  Google Scholar 

  • Marchant R, Power JB, Lucas JA, Davey MR (1998b) Biolistic transformation of rose (Rosa hybrida L.). Ann Bot 81:109–114

    Article  Google Scholar 

  • Mathews H, Wagoner W, Cohen C, Kellogg J, Bestwick R (1995) Efficient genetic transformation of red raspberry, Rubus ideaus L. Plant Cell Rep 14:471–476

    CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised method for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:472–497

    Google Scholar 

  • Penninckx IAM, Eggetmont K, Terras FRG, Thomma BPHJ, De Samblanx GW, Buchala A, Metraux JP, Manners JM, Broekaert WF (1996) Pathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid-independent pathway. Plant Cell 8:2309–2323

    CAS  PubMed  Google Scholar 

  • Phillips R, Rix M (1988) The Random House book of roses. Toppan Printing Co., New York, pp 13

  • Prols F, Meyer P (1992) The methylation patterns of chromosomal integration regions influence gene activity of transferred DNA in Petunia hybrida. Plant J 2:465–475

    PubMed  Google Scholar 

  • Raemakers, CJJM, Jacobsen E, Visser RGF (1995) Secondary somatic embryogenesis and applications in plant breeding. Euphytica 81:93–107

    Google Scholar 

  • Ryals J, Uknes S, Ward E (1994) Systemic acquired resistance. Plant Physiol 104:1109–1112

    CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn, vol 2. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Stam M, Mol JNM, Kooter JM (1997) The silence of genes in transgenic plants. Ann Bot 79:3–12

    CAS  Google Scholar 

  • Tabaeizadeh Z, Agharbaoui Z, Harrak H, Poysa V (1999) Transgenic tomato plants expressing a Lycopersicon chilense chitinase gene demonstrate improved resistance to Verticillium dahliae race 2. Plant Cell Rep 19:197–202

    Article  CAS  Google Scholar 

  • Tassin S, Broekaert WF, Marion D, Acland DP, Ptak M, Vovelle F, Sodano P (1998) Solution structure of Ace-AMP1, a potent antimicrobial protein extracted from onion seeds. Structural analogies with plant nonspecific lipid transfer protein. Biochemistry 37:3623–3637

    Article  CAS  PubMed  Google Scholar 

  • Terras FRG, Schoofs HME, De Bolle MFC, Van Leuven F, Rees SB, Vanderleyden J, Cammue BPA, Broekaert WF (1992) Analysis of two novel classes of plant antifungal proteins from radish (Raphanus sativus L.) seeds. J Biol Chem 207:15301–15309

    Google Scholar 

  • Terras FRG, Eggermont K, Kovaleva V, Raikhel NV, Osborn RW, Kester A, Rees SB, Vanderleyden J, Cammue BPA, Broekaert WF (1995) Small cysteine-rich antifungal proteins from radish: their role in host defence. Plant Cell 7:573–588

    CAS  PubMed  Google Scholar 

  • Thomma BPHJ, Cammue BPA, Thevisen K (2002) Plant defensins. Planta 216:193–202

    Article  CAS  PubMed  Google Scholar 

  • van der Salm TPM, vander der Toorn CJG, Bouwer R, Dons JJM (1997) Production of Rol gene transformed plants of Rosa hybrida L. and characterization of their rooting ability. Mol Breed 3:39–47

    Article  Google Scholar 

  • van der Salm TPM, Bouwer R, van Dijk AJ, Keizer LCP, Hanish Ten Cate CH, Van Der Plas LHW, Dons JJM (1998) Stimulation of scion bud release by rol gene transformed rootstocks of Rosa hybrida L. J Exp Bot 49:847–852

    Article  Google Scholar 

  • Van Der Westhuizen AJ, Qian XM, Botha AM (1998) Beta-1,3-glucanases in wheat and resistance to the Russian wheat aphid. Physiol Plant 103:125–131

    Article  Google Scholar 

  • Volpin H, Elad Y (1991) Influence of calcium nutrition on susceptibility of rose flowers to Botrytis blight. Phytopathology 81:1390–1394

    CAS  Google Scholar 

  • Xu ML, Li XQ, Korban SS (2000) AFLP-based detection of DNA methylation. Plant Mol Biol Rep 18:361–368

    CAS  Google Scholar 

Download references

Acknowledgement

This project was supported by a grant received from the Gloeckner Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Schuyler S. Korban.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Gasic, K., Cammue, B. et al. Transgenic rose lines harboring an antimicrobial protein gene, Ace-AMP1, demonstrate enhanced resistance to powdery mildew (Sphaerotheca pannosa). Planta 218, 226–232 (2003). https://doi.org/10.1007/s00425-003-1093-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-003-1093-5

Keywords

Navigation