Skip to main content

Pathogenesis

  • Chapter
  • First Online:
Oral Lichen Planus and Lichenoid Lesions

Abstract

The pathogenesis of OLP is not completely known and is the subject of various hypotheses. Among the most widely accepted hypotheses, we find the unifying hypothesis of Sugerman and the modified hypothesis of Carrozzo. The first hypothesis is based on the theoretical interaction between CD4+ and CD8+ T lymphocytes, through a cell surface molecule called RCA (request cytotoxic activity) expressed by CD8+ T lymphocytes and an RCA receptor (RCAR) expressed by CD4+ T lymphocytes, which enable the initiation of cytotoxic activity by CD8+ T lymphocytes. In contrast, the second hypothesis involves APC cells, which may be stromal DCs or LCs, and basal keratinocytes that are “activated” by, for example, viral infection (such as HCV) and systemic contact sensitivity drugs (e.g., amalgam).

In any cases, pathology is thought to be triggered by the expression of a putative antigen on the surface of keratinocytes or by the recognition of body peptides or heat shock proteins as foreign antigens. There are many cells involved in the pathogenetic mechanism: keratinocytes, Langerhans cells, CD4+ and CD8+ T lymphocytes, macrophages, and mast cells. These produce and secrete cytokines and chemokines, which are involved in the initiation of pathology through the activation of various pathogenic pathways. The expression of these cells varies depending on the stage at which the lesions are found. In the early-stage T helper lymphocytes, CD4+ macrophages and dendritic cells are more represented than in advanced lesions, in which we find high levels of suppressor CD8+ T lymphocytes. Four main pathogenetic mechanisms have been described: cell-mediated immune response, non-specific immune response, chemokines, and autoimmune hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lavanya N, et al. Oral lichen planus: an update on pathogenesis and treatment. J Oral Maxillof Pathol. 2011;15(2):127.

    Article  Google Scholar 

  2. Zhou XJ, et al. Intra-epithelial CD8+ T cells and basement membrane disruption in oral lichen planus. J Oral Pathol Med. 2002;31(1):23–7.

    Article  PubMed  Google Scholar 

  3. Spadari F, et al. Lichen planus orale: revisione della letteratura, Doctor Os • aprile 2017 • XXVIII 04.

    Google Scholar 

  4. Sugerman P, et al. The pathogenesis of oral lichen planus. Crit Rev Oral Biol Med. 2002;13(4):350–65.

    Article  PubMed  Google Scholar 

  5. Gupta S, Jawanda MK. Oral lichen planus: an update on etiology, pathogenesis, clinical presentation, diagnosis and management. Indian J Dermatol. 2015;60(3):222.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sugerman P, Satterwhite K, Bigby M. Autocytotoxic T-cell clones in lichen planus. Br J Dermatol. 2000;142(3):449–56.

    Article  PubMed  Google Scholar 

  7. Roopashree M, et al. Pathogenesis of oral lichen planus–a review. J Oral Pathol Med. 2010;39(10):729–34.

    Article  PubMed  Google Scholar 

  8. Lukač J, et al. Serum autoantibodies to desmogleins 1 and 3 in patients with oral lichen planus. Croat Med J. 2006;47(1):53–8.

    PubMed  PubMed Central  Google Scholar 

  9. Biočina-Lukenda D, et al. Serum immunoglobulins IgG, IgA and IgM in patients with oral lichen ruber. Coll Antropol. 2008;32(1):161–3.

    PubMed  Google Scholar 

  10. Srinivasan M, Kodumudi KN, Zunt SL. Soluble CD14 and toll-like receptor-2 are potential salivary biomarkers for oral lichen planus and burning mouth syndrome. Clin Immunol. 2008;126(1):31–7.

    Article  PubMed  Google Scholar 

  11. Lodi G, et al. Current controversies in oral lichen planus: report of an international consensus meeting. Part 1. Viral infections and etiopathogenesis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2005;100(1):40–51.

    Article  PubMed  Google Scholar 

  12. Zhou XJ, et al. Matrix metalloproteinases and their inhibitors in oral lichen planus. J Cutan Pathol. 2001;28(2):72–82.

    Article  PubMed  Google Scholar 

  13. Zhao Z, et al. Mast cell degranulation and the role of T cell RANTES in oral lichen planus. Oral Dis. 2001;7(4):246–51.

    Article  PubMed  Google Scholar 

  14. Mutafchieva MZ, et al. Oral lichen planus–known and unknown: a review. Folia Med. 2018;60(4):528–35.

    Article  Google Scholar 

  15. Jose M, Raghu A, Rao N. Evaluation of mast cells in oral lichen planus and oral lichenoid reaction. Indian J Dent Res. 2001;12(3):175–9.

    PubMed  Google Scholar 

  16. Payeras MR, et al. Oral lichen planus: focus on etiopathogenesis. Arch Oral Biol. 2013;58(9):1057–69.

    Article  PubMed  Google Scholar 

  17. Merry R, et al. Oral health and pathology: a macrophage account. Br J Oral Maxillofac Surg. 2012;50(1):2–7.

    Article  PubMed  Google Scholar 

  18. Squier CA, Kremer MJ. Biology of oral mucosa and esophagus. JNCI Monogr. 2001;2001(29):7–15.

    Article  Google Scholar 

  19. Ficarra G. Manuale di patologia e medicina orale. Milano: McGraw-Hill; 2007.

    Google Scholar 

  20. Salem A, et al. Histamine metabolism and transport are deranged in human keratinocytes in oral lichen planus. Br J Dermatol. 2017;176(5):1213–23.

    Article  PubMed  Google Scholar 

  21. Bikle D. Nonclassic actions of vitamin D. J Clin Endocrinol Metab. 2009;94(1):26–34.

    Article  PubMed  Google Scholar 

  22. Zhao B, et al. LPS-induced vitamin D receptor decrease in oral keratinocytes is associated with oral lichen planus. Sci Rep. 2018;8(1):1–9.

    Google Scholar 

  23. Zhao B, et al. Vitamin D/VDR signaling suppresses microRNA-802-induced apoptosis of keratinocytes in oral lichen planus. FASEB J. 2019;33(1):1042–50.

    Article  PubMed  Google Scholar 

  24. Deeb KK, Trump DL, Johnson CS. Vitamin D signalling pathways in cancer: potential for anticancer therapeutics. Nat Rev Cancer. 2007;7(9):684–700.

    Article  PubMed  Google Scholar 

  25. Du J, et al. MicroRNA-26a/b have protective roles in oral lichen planus. Cell Death Dis. 2020;11(1):1–13.

    Article  Google Scholar 

  26. Ge X, et al. Vitamin D/VDR signaling inhibits LPS-induced IFNγ and IL-1β in Oral epithelia by regulating hypoxia-inducible factor-1α signaling pathway. Cell Commun Signal. 2019;17(1):1–10.

    Article  Google Scholar 

  27. Krisanaprakornkit S, et al. Expression of the peptide antibiotic human β-defensin 1 in cultured gingival epithelial cells and gingival tissue. Infect Immun. 1998;66(9):4222–8.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Dale BA, et al. Localized antimicrobial peptide expression in human gingiva. J Periodontal Res. 2001;36(5):285–94.

    Article  PubMed  Google Scholar 

  29. Pisano E, et al. Peptides of human gingival crevicular fluid determined by HPLC-ESI-MS. Eur J Oral Sci. 2005;113(6):462–8.

    Article  PubMed  Google Scholar 

  30. Yamauchi M, et al. Myeloid dendritic cells stimulated by thymic stromal lymphopoietin promote Th2 immune responses and the pathogenesis of oral lichen planus. PLoS One. 2017;12(3):e0173017.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Carrozzo M. Understanding the pathobiology of oral lichen planus. Curr Oral Health Rep. 2014;1(3):173–9.

    Article  Google Scholar 

  32. Dinarello CA. IL-1: discoveries, controversies and future directions. Eur J Immunol. 2010;40(3):599–606.

    Article  PubMed  Google Scholar 

  33. de Voer RM, et al. Germline mutations in the spindle assembly checkpoint genes BUB1 and BUB3 are risk factors for colorectal cancer. Gastroenterology. 2013;145(3):544–7.

    Article  PubMed  Google Scholar 

  34. Dienz O, Rincon M. The effects of IL-6 on CD4 T cell responses. Clin Immunol. 2009;130(1):27–33.

    Article  PubMed  Google Scholar 

  35. Mukaida N. Pathophysiological roles of interleukin-8/CXCL8 in pulmonary diseases. Am J Physiol Lung Cell Mol Physiol. 2003;284(4):L566–77.

    Article  PubMed  Google Scholar 

  36. Saravi ZZ, et al. VEGFR-3 expression in oral lichen planus. Asian Pac J Cancer Prev. 2017;18(2):381.

    PubMed Central  Google Scholar 

  37. Hervas-Stubbs S, et al. Direct effects of type I interferons on cells of the immune system. Clin Cancer Res. 2011;17(9):2619–27.

    Article  PubMed  Google Scholar 

  38. Monesi V, Adamo S. Istologia. Padova: Piccin; 1975.

    Google Scholar 

  39. Mantovani A, et al. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004;25(12):677–86.

    Article  PubMed  Google Scholar 

  40. Pontieri GM, et al. Patologia generale e fisiopatologia generale. Padova: Piccin; 2015.

    Google Scholar 

  41. Sugerman PB, Sabage N. Oral lichen planus: causes, diagnosis and management. Aust Dent J. 2002;47(4):290–7.

    Article  PubMed  Google Scholar 

  42. Mozaffari HR, et al. A systematic review and meta-analysis study of salivary and serum interleukin-8 levels in oral lichen planus. Postepy Dermatol Alergol. 2018;35(6):599–604.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Vered M, et al. Inflammatory cells of immunosuppressive phenotypes in oral lichen planus have a proinflammatory pattern of expression and are associated with clinical parameters. Clin Oral Investig. 2013;17(5):1365–73.

    Article  PubMed  Google Scholar 

  44. Kurago ZB. Etiology and pathogenesis of oral lichen planus: an overview. Oral Surg Oral Med Oral Pathol Oral Radiol. 2016;122(1):72–80.

    Article  PubMed  Google Scholar 

  45. Parolini S, et al. The role of chemerin in the colocalization of NK and dendritic cell subsets into inflamed tissues. Blood. 2007;109(9):3625–32.

    Article  PubMed  Google Scholar 

  46. Ramalingam S, et al. Role of mast cells in oral lichen planus and oral lichenoid reactions. Autoimmune Dis. 2018;2018:7936564.

    PubMed  PubMed Central  Google Scholar 

  47. Galli SJ, Gordon JR, Wershil BK. Cytokine production by mast cells and basophils. Curr Opin Immunol. 1991;3(6):865–73.

    Article  PubMed  Google Scholar 

  48. Salem A, et al. Histamine H4 receptor in oral lichen planus. Oral Dis. 2015;21(3):378–85.

    Article  PubMed  Google Scholar 

  49. Ribatti D, Tamma R, Crivellato E. The dual role of mast cells in tumor fate. Cancer Lett. 2018;433:252–8.

    Article  PubMed  Google Scholar 

  50. De Panfilis G, Manara GC, Allegra F. Remarks on early versus late lichen planus. Arch Dermatol Res. 1981;270(2):163–6.

    Article  PubMed  Google Scholar 

  51. Scully C, El-Kom M. Lichen planus: review and update on pathogenesis. J Oral Pathol Med. 1985;14(6):431–58.

    Article  Google Scholar 

  52. Hume W, Potten C. Proliferative units in stratified squamous epithelium. Clin Exp Dermatol. 1983;8(1):95–106.

    Article  PubMed  Google Scholar 

  53. Lichtman AH, Abbas AK, Pillai S. Immunologia cellulare e molecolare. Italia: Elsevier; 2015.

    Google Scholar 

  54. Santoro A, et al. Recruitment of dendritic cells in oral lichen planus. J Pathol. 2005;205(4):426–34.

    Article  PubMed  Google Scholar 

  55. Dorrego MV, et al. Oral lichen planus: immunohistology of mucosal lesions. J Oral Pathol Med. 2002;31(7):410–4.

    Article  Google Scholar 

  56. Barrett A, Cruchley A, Williams D. Oral mucosal Langerhans’ cells. Crit Rev Oral Biol Med. 1996;7(1):36–58.

    Article  PubMed  Google Scholar 

  57. Cruvinel WDM, et al. Immune system: part I. Fundamentals of innate immunity with emphasis on molecular and cellular mechanisms of inflammatory response. Rev Bras Reumatol. 2010;50:434–47.

    Article  PubMed  Google Scholar 

  58. Porter S, et al. Immunologic aspects of dermal and oral lichen planus: a review. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1997;83(3):358–66.

    Article  PubMed  Google Scholar 

  59. Mozaffari HR, et al. Serum and salivary IgA, IgG, and IgM levels in oral lichen planus: a systematic review and meta-analysis of case-control studies. Medicina. 2018;54(6):99.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Engel P, et al. CD nomenclature 2015: human leukocyte differentiation antigen workshops as a driving force in immunology. J Immunol. 2015;195(10):4555–63.

    Article  PubMed  Google Scholar 

  61. Sugerman PB, et al. Oral lichen planus. Clin Dermatol. 2000;18(5):533–9.

    Article  PubMed  Google Scholar 

  62. Khan A, et al. Th1 cytokines in oral lichen planus. J Oral Pathol Med. 2003;32(2):77–83.

    Article  PubMed  Google Scholar 

  63. Santoro A, et al. NF-κB expression in oral and cutaneous lichen planus. J Pathol. 2003;201(3):466–72.

    Article  PubMed  Google Scholar 

  64. Lage D, et al. Perforin and granzyme B expression in oral and cutaneous lichen planus–a comparative study. J Cutan Pathol. 2011;38(12):973–8.

    Article  PubMed  Google Scholar 

  65. Lu R, et al. Expression of T-bet and GATA-3 in peripheral blood mononuclear cells of patients with oral lichen planus. Arch Oral Biol. 2011;56(5):499–505.

    Article  PubMed  Google Scholar 

  66. Walton L, et al. Intra-epithelial subpopulations of T lymphocytes and Langerhans cells in oral lichen planus. J Oral Pathol Med. 1998;27(3):116–23.

    Article  PubMed  Google Scholar 

  67. Simark-Mattsson C, et al. Distribution of interleukin-2,-4,-10, tumour necrosis factor-α and transforming growth factor-β mRNAs in oral lichen planus. Arch Oral Biol. 1999;44(6):499–507.

    Article  PubMed  Google Scholar 

  68. Karagouni E, Dotsika E, Sklavounou A. Alteration in peripheral blood mononuclear cell function and serum cytokines in oral lichen planus. J Oral Pathol Med. 1994;23(1):28–35.

    Article  PubMed  Google Scholar 

  69. Sontheimer RD. Lichenoid tissue reaction/interface dermatitis: clinical and histological perspectives. J Investig Dermatol. 2009;129(5):1088–99.

    Article  PubMed  Google Scholar 

  70. Piccinni MP, et al. Potential pathogenetic role of Th17, Th0, and Th2 cells in erosive and reticular oral lichen planus. Oral Dis. 2014;20(2):212–8.

    Article  PubMed  Google Scholar 

  71. Alizadeh D, Katsanis E, Larmonier N. The multifaceted role of Th17 lymphocytes and their associated cytokines in cancer. Clin Dev Immunol. 2013;2013:957878.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Ivanov II, et al. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell. 2006;126(6):1121–33.

    Article  PubMed  Google Scholar 

  73. Guglani L, Khader SA. Th17 cytokines in mucosal immunity and inflammation. Curr Opin HIV AIDS. 2010;5(2):120.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Tang C, et al. Interleukin-23: as a drug target for autoimmune inflammatory diseases. Immunology. 2012;135(2):112–24.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Korn T, et al. IL-17 and Th17 Cells. Annu Rev Immunol. 2009;27:485–517.

    Article  PubMed  Google Scholar 

  76. Muranski P, Restifo NP. Essentials of Th17 cell commitment and plasticity. Blood. 2013;121(13):2402–14.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Wilke CM, et al. Deciphering the role of Th17 cells in human disease. Trends Immunol. 2011;32(12):603–11.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Tabarkiewicz J, et al. The role of IL-17 and Th17 lymphocytes in autoimmune diseases. Arch Immunol Ther Exp. 2015;63(6):435–49.

    Article  Google Scholar 

  79. Cheung PF, Wong CK, Lam CW. Molecular mechanisms of cytokine and chemokine release from eosinophils activated by IL-17A, IL-17F, and IL-23: implication for Th17 lymphocytes-mediated allergic inflammation. J Immunol. 2008;180(8):5625–35.

    Article  PubMed  Google Scholar 

  80. Wang K, et al. Analysis of oral microbial community and Th17-associated cytokines in saliva of patients with oral lichen planus. Microbiol Immunol. 2015;59(3):105–13.

    Article  PubMed  Google Scholar 

  81. Xie S, et al. Implications of Th1 and Th17 cells in pathogenesis of oral lichen planus. J Huazhong Univ Sci Technol Med Sci. 2012;32(3):451–7.

    Article  Google Scholar 

  82. Monteiro BV, et al. Immunoexpression of Th17-related cytokines in oral lichen planus. Appl Immunohistochem Mol Morphol. 2015;23(6):409–15.

    Article  PubMed  Google Scholar 

  83. JUNGELL P, et al. Immunoelectron microscopic study of distribution of T cell subsets in oral lichen planus. Eur J Oral Sci. 1989;97(4):361–7.

    Article  Google Scholar 

  84. Walsh L, et al. Immunopathogenesis of oral lichen planus. J Oral Pathol Med. 1990;19(9):389–96.

    Article  PubMed  Google Scholar 

  85. Andrea Cavani CA, Girolomoni G. Interferon-γ-stimulated human keratinocytes express the genes necessary for the production of peptide-loaded MHC class II molecules. J Investig Dermatol. 1998;110(2):138–42.

    Article  Google Scholar 

  86. Karatsaidis A, et al. Inhibition of the transforming growth factor-β/Smad signaling pathway in the epithelium of oral lichen. J Investig Dermatol. 2003;121(6):1–8.

    Article  Google Scholar 

  87. Khan N, et al. Immunopathology of skin lesions. Indian J Dermatol Venereol Leprol. 2001;67(5):234–7.

    PubMed  Google Scholar 

  88. Ichimura M, et al. Expression profile of chemokines and chemokine receptors in epithelial cell layers of oral lichen planus. J Oral Pathol Med. 2006;35(3):167–74.

    Article  PubMed  Google Scholar 

  89. Bascones-Ilundain C, et al. Significance of liquefaction degeneration in oral lichen planus: a study of its relationship with apoptosis and cell cycle arrest markers. Clin Exp Dermatol. 2007;32(5):556–63.

    Article  PubMed  Google Scholar 

  90. Pilli M, et al. Oral lichen planus pathogenesis: a role for the HCV-specific cellular immune response. Hepatology. 2002;36(6):1446–52.

    Article  PubMed  Google Scholar 

  91. Björkström NK, et al. Expression patterns of NKG2A, KIR, and CD57 define a process of CD56dim NK-cell differentiation uncoupled from NK-cell education. Blood. 2010;116(19):3853–64.

    Article  PubMed  Google Scholar 

  92. Moretta L. Dissecting CD56dim human NK cells. Blood. 2010;116(19):3689–91.

    Article  PubMed  Google Scholar 

  93. Carrozzo M, et al. HLA-C/KIR genotypes in oral lichen planus patients infected or non-infected with hepatitis C virus. Oral Dis. 2011;17(3):309–13.

    Article  PubMed  Google Scholar 

  94. Kamal R, et al. Mast cells and oral pathologies: a review. J Nat Sci Biol Med. 2015;6(1):35.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Sharma R, et al. Role of mast cells in pathogenesis of oral lichen planus. J Oral Maxillof Pathol. 2011;15(3):267.

    Article  Google Scholar 

  96. Jontell M, Hansson HA, Nygren H. Mast cells in oral lichen planus. J Oral Pathol Med. 1986;15(5):273–5.

    Article  Google Scholar 

  97. Zhao Z, et al. Immunohistochemical localization of mast cells and mast cell-nerve interactions in oral lichen planus. Oral Dis. 1997;3(2):71–6.

    Article  PubMed  Google Scholar 

  98. Wray D, et al. The role of allergy in oral mucosal diseases. QJM. 2000;93(8):507–11.

    Article  PubMed  Google Scholar 

  99. Zhao Z, et al. Mast cell/T cell interactions in oral lichen planus. J Oral Pathol Med. 2002;31(4):189–95.

    Article  PubMed  Google Scholar 

  100. Masotti L. Endothelial pathophysiology, glycosaminoglycans and glycocalyx. Clin Manag Issues. 2010;4(4S):5–16.

    Article  Google Scholar 

  101. Bermejo-Fenoll A, López-Jornet P. Familial oral lichen planus: presentation of six families. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006;102(2):e12–5.

    Article  PubMed  Google Scholar 

  102. Crincoli V, et al. Oral lichen planus: update on etiopathogenesis, diagnosis and treatment. Immunopharmacol Immunotoxicol. 2011;33(1):11–20.

    Article  PubMed  Google Scholar 

  103. Sanchez-Muñoz F, Dominguez-Lopez A, Yamamoto-Furusho JK. Role of cytokines in inflammatory bowel disease. World J Gastroenterol: WJG. 2008;14(27):4280.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Preshaw PM, Taylor JJ. How has research into cytokine interactions and their role in driving immune responses impacted our understanding of periodontitis? J Clin Periodontol. 2011;38:60–84.

    Article  PubMed  Google Scholar 

  105. O’Shea JJ, Murray PJ. Cytokine signaling modules in inflammatory responses. Immunity. 2008;28(4):477–87.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Roescher N, Tak PP, Illei GG. Cytokines in Sjögren’s syndrome. Oral Dis. 2009;15(8):519–26.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Moudgil KD, Choubey D. Cytokines in autoimmunity: role in induction, regulation, and treatment. J Interf Cytokine Res. 2011;31(10):695–703.

    Article  Google Scholar 

  108. Lu R, et al. Inflammation-related cytokines in oral lichen planus: an overview. J Oral Pathol Med. 2015;44(1):1–14.

    Article  PubMed  Google Scholar 

  109. Rhodus NL, et al. A comparison of the pro-inflammatory, NF-κB-dependent cytokines: TNF-alpha, IL-1-alpha, IL-6, and IL-8 in different oral fluids from oral lichen planus patients. Clin Immunol. 2005;114(3):278–83.

    Article  PubMed  Google Scholar 

  110. Rhodus NL, Cheng B, Ondrey F. Th1/Th2 cytokine ratio in tissue transudates from patients with oral lichen planus. Mediat Inflamm. 2007;2007:19854.

    Article  Google Scholar 

  111. Rhodus NL, et al. The feasibility of monitoring NF-κB associated cytokines: TNF-α, IL-1α, IL-6, and IL-8 in whole saliva for the malignant transformation of oral lichen planus. Mol Carcinog. 2005;44(2):77–82.

    Article  PubMed  Google Scholar 

  112. Xavier GM, et al. Investigation of functional gene polymorphisms interleukin-1beta, interleukin-6, interleukin-10 and tumor necrosis factor in individuals with oral lichen planus. J Oral Pathol Med. 2007;36(8):476–81.

    Article  PubMed  Google Scholar 

  113. Carrozzo M, et al. Tumor necrosis factor-alpha and interferon-gamma polymorphisms contribute to susceptibility to oral lichen planus. J Invest Dermatol. 2004;122(1):87–94.

    Article  PubMed  Google Scholar 

  114. Takeuchi Y, et al. Immunohistochemical analysis of cells in mucosal lesions of oral lichen planus. J Oral Pathol Med. 1988;17(8):367–73.

    Article  Google Scholar 

  115. Liao W, Lin J-X, Leonard WJ. IL-2 family cytokines: new insights into the complex roles of IL-2 as a broad regulator of T helper cell differentiation. Curr Opin Immunol. 2011;23(5):598–604.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Malek TR, Castro I. Interleukin-2 receptor signaling: at the interface between tolerance and immunity. Immunity. 2010;33(2):153–65.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Hu J-Y, et al. Increasing CCL5/CCR5 on CD4+ T cells in peripheral blood of oral lichen planus. Cytokine. 2013;62(1):141–5.

    Article  PubMed  Google Scholar 

  118. Kalogerakou F, et al. Detection of T cells secreting type 1 and type 2 cytokines in the peripheral blood of patients with oral lichen planus. Hippokratia. 2008;12(4):230–5.

    PubMed  PubMed Central  Google Scholar 

  119. Pekiner FN, et al. Cytokine profiles in serum of patients with oral lichen planus. Cytokine. 2012;60(3):701–6.

    Article  PubMed  Google Scholar 

  120. Amin K. The role of mast cells in allergic inflammation. Respir Med. 2012;106(1):9–14.

    Article  PubMed  Google Scholar 

  121. Tao XA, et al. Simultaneous detection of IFN-gamma and IL-4 in lesional tissues and whole unstimulated saliva from patients with oral lichen planus. J Oral Pathol Med. 2008;37(2):83–7.

    Article  PubMed  Google Scholar 

  122. Bai J, et al. Association of polymorphisms in the human IFN-gamma and IL-4 gene with oral lichen planus: a study in an ethnic Chinese cohort. J Interf Cytokine Res. 2008;28(6):351–8.

    Article  Google Scholar 

  123. Yamamoto T, et al. Cellular immunosuppression in oral lichen planus. J Oral Pathol Med. 1990;19(10):464–70.

    Article  PubMed  Google Scholar 

  124. Zhu J, Paul WE. Heterogeneity and plasticity of T helper cells. Cell Res. 2010;20(1):4–12.

    Article  PubMed  Google Scholar 

  125. Takatsu K. Interleukin-5 and IL-5 receptor in health and diseases. Proc Jpn Acad Ser B Phys Biol Sci. 2011;87(8):463–85.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Gotoh A, et al. Skew in T cell receptor usage with polyclonal expansion in lesions of oral lichen planus without hepatitis C virus infection. Clin Exp Immunol. 2008;154(2):192–201.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Yamamoto T, Osaki T. Characteristic cytokines generated by keratinocytes and mononuclear infiltrates in oral lichen planus. J Investig Dermatol. 1995;104(5):784–8.

    Article  PubMed  Google Scholar 

  128. Rhodus N, et al. Proinflammatory cytokine levels in saliva before and after treatment of (erosive) oral lichen planus with dexamethasone. Oral Dis. 2006;12(2):112–6.

    Article  PubMed  Google Scholar 

  129. Kamimura D, Ishihara K, Hirano T. IL-6 signal transduction and its physiological roles: the signal orchestration model. Rev Physiol Biochem Pharmacol. 2003;149:1–38.

    PubMed  Google Scholar 

  130. Abdel-Haq A, et al. Interleukin-6 and neopterin levels in the serum and saliva of patients with Lichen planus and oral Lichen planus. J Oral Pathol Med. 2014;43(10):734–9.

    Article  PubMed  Google Scholar 

  131. Yin M, et al. Identifying the association between interleukin-6 and lichen planus: a meta-analysis. Biomed Rep. 2017;6(5):571–5.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Sun A, et al. Serum interleukin-6 level is a useful marker in evaluating therapeutic effects of levamisole and Chinese medicinal herbs on patients with oral lichen planus. J Oral Pathol Med. 2002;31(4):196–203.

    Article  PubMed  Google Scholar 

  133. Zhang Y, et al. NF-kappaB-dependent cytokines in saliva and serum from patients with oral lichen planus: a study in an ethnic Chinese population. Cytokine. 2008;41(2):144–9.

    Article  PubMed  Google Scholar 

  134. Sun A, et al. Serum interleukin-8 level is a more sensitive marker than serum interleukin-6 level in monitoring the disease activity of oral lichen planus. Br J Dermatol. 2005;152(6):1187–92.

    Article  PubMed  Google Scholar 

  135. Ohno S, et al. Enhanced expression of Toll-like receptor 2 in lesional tissues and peripheral blood monocytes of patients with oral lichen planus. J Dermatol. 2011;38(4):335–44.

    Article  PubMed  Google Scholar 

  136. Gee K, et al. The IL-12 family of cytokines in infection, inflammation and autoimmune disorders. Inflamm Allergy Drug Targets. 2009;8(1):40–52.

    Article  PubMed  Google Scholar 

  137. Müller G, et al. Identification and induction of human keratinocyte-derived IL-12. J Clin Invest. 1994;94(5):1799–805.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Huang Y, Zhou S, Cai Y. Expression of interleukin-12 and interleukin-27 proteins and immune status in serum of patients with oral lichen planus. Hua Xi Kou Qiang Yi Xue Za Zhi. 2016;34(2):140–4.

    PubMed  Google Scholar 

  139. Janardhanam SB, et al. Differential expression of TLR-2 and TLR-4 in the epithelial cells in oral lichen planus. Arch Oral Biol. 2012;57(5):495–502.

    Article  PubMed  Google Scholar 

  140. Tao XA, et al. Differential gene expression profiles of whole lesions from patients with oral lichen planus. J Oral Pathol Med. 2009;38(5):427–33.

    Article  PubMed  Google Scholar 

  141. Shirazian S, et al. Comparison of interleukin 17 and 22 in saliva of oral lichen planus patients with healthy people. Biosci Biotechnol Res Commun. 2017;10:587–91.

    Article  Google Scholar 

  142. Gueiros LA, et al. IL17A polymorphism and elevated IL17A serum levels are associated with oral lichen planus. Oral Dis. 2018;24(3):377–83.

    Article  PubMed  Google Scholar 

  143. Chen Q, Cai Y, Feng Q. Expression of IFN-γ, IL-4 and IL-1 7 proteins in peripheral blood of patients with oral lichen planu. J Pract Stomatol. 2014:698–700.

    Google Scholar 

  144. Wang R, et al. Re-evaluation of transcription factor function in tomato fruit development and ripening with CRISPR/Cas9-mutagenesis. Sci Rep. 2019;9(1):1–10.

    Google Scholar 

  145. Boraschi D, Dinarello CA. IL-18 in autoimmunity. Eur Cytokine Netw. 2006;17(4):224–52.

    PubMed  Google Scholar 

  146. Zhang Y, et al. Salivary and serum interleukin-18 in patients with oral lichen planus: a study in an ethnic Chinese population. Inflammation. 2012;35(2):399–404.

    Article  PubMed  Google Scholar 

  147. Negi D, et al. Assessment of Interleukin-18 gene polymorphism and serum levels in oral lichen planus in an Indian population. J Oral Pathol Med. 2019;48(3):244–50.

    Article  PubMed  Google Scholar 

  148. Mardani M, et al. Serum levels of IL-22 in patients with oral lichen planus and cutaneous lichen planus. J Dent. 2020;21(4):330.

    Google Scholar 

  149. Kurchenko A, et al. Assessment of select serum cytokines TNF-A and IL-22 in oral lichen planus patients. Ann Allergy Asthma Immunol. 2018;121(5):S50.

    Article  Google Scholar 

  150. Lanfranchi-Tizeira HE, Aguas SC, Sano SM. Malignant transformation of atypical oral lichen planus: a review of 32 cases. Med Oral. 2003;8(1):2–9.

    PubMed  Google Scholar 

  151. Abbate G, et al. Neoplastic transformation of oral lichen: case report and review of the literature. Acta Otorhinolaryngol Ital. 2006;26(1):47.

    PubMed  PubMed Central  Google Scholar 

  152. Chen Y, et al. 1, 25-Dihydroxyvitamin D promotes negative feedback regulation of TLR signaling via targeting MicroRNA-155–SOCS1 in macrophages. J Immunol. 2013;190(7):3687–95.

    Article  PubMed  Google Scholar 

  153. Lu R, et al. Overexpression and selectively regulatory roles of IL-23/IL-17 axis in the lesions of oral lichen planus. Mediat Inflamm. 2014;2014:701094.

    Article  Google Scholar 

  154. Tan ZY, et al. Interleukin-23: immunological roles and clinical implications. Int J Biochem Cell Biol. 2009;41(4):733–5.

    Article  PubMed  Google Scholar 

  155. Wang K, et al. Preliminary analysis of salivary microbiome and their potential roles in oral lichen planus. Sci Rep. 2016;6(1):1–10.

    Google Scholar 

  156. Yamamoto T, et al. Cytokine production by keratinocytes and mononuclear infiltrates in oral lichen planus. J Oral Pathol Med. 1994;23(7):309–15.

    Article  PubMed  Google Scholar 

  157. Bai J, et al. Association of polymorphisms in the tumor necrosis factor-alpha and interleukin-10 genes with oral lichen planus: a study in a chinese cohort with Han ethnicity. J Interf Cytokine Res. 2009;29(7):381–8.

    Article  Google Scholar 

  158. Al-Mohaya MA, et al. TNF-α, TNF-β and IL-10 gene polymorphism and association with oral lichen planus risk in Saudi patients. J Appl Oral Sci. 2015;23(3):295–301.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Ciccia F, et al. Potential involvement of IL-22 and IL-22-producing cells in the inflamed salivary glands of patients with Sjögren’s syndrome. Ann Rheum Dis. 2012;71(2):295–301.

    Article  PubMed  Google Scholar 

  160. Ghilardi N, Ouyang W. Targeting the development and effector functions of TH17 cells. In: Seminars in immunology. London: Elsevier; 2007.

    Google Scholar 

  161. Wang H, et al. Interaction between oral lichen planus and chronic periodontitis with Th17-associated cytokines in serum. Inflammation. 2013;36(3):696–704.

    Article  PubMed  Google Scholar 

  162. Thongprasom K, et al. Expression of TNF-α in oral lichen planus treated with fluocinolone acetonide 0.1%. J Oral Pathol Med. 2006;35(3):161–6.

    Article  PubMed  Google Scholar 

  163. Nandhini J, et al. Estimation of the level of salivary proinflammatory cytokine in oral lichen planus–A case–control study in cuddalore-based population. J Indian Acad Oral Med Radiol. 2019;31(2):128.

    Article  Google Scholar 

  164. Qidwai T, Khan F. Tumour necrosis factor gene polymorphism and disease prevalence. Scand J Immunol. 2011;74(6):522–47.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Liu W, et al. IFN-gamma and IL-4 in saliva of patients with oral lichen planus: a study in an ethnic Chinese population. Inflammation. 2009;32(3):176–81.

    Article  PubMed  Google Scholar 

  166. Mozaffari HR, et al. Serum and salivary interleukin-4 levels in patients with oral lichen planus: a systematic review and meta-analysis. Oral Surg Oral Med Oral Pathol Oral Radiol. 2019;128(2):123–31.

    Article  PubMed  Google Scholar 

  167. Dan H, et al. Elevated IL-10 concentrations in serum and saliva from patients with oral lichen planus. Quintessence Int. 2011;42(2):157–63.

    PubMed  Google Scholar 

  168. Sugermann P, et al. Is there a role for tumor necrosis factor-alpha (TNF-α) in oral lichen planus? J Oral Pathol Med. 1996;25(5):219–24.

    Article  PubMed  Google Scholar 

  169. Kimkong I, et al. Tumour necrosis factor-alpha gene polymorphisms and susceptibility to oral lichen planus. Oral Dis. 2011;17(2):206–9.

    Article  PubMed  Google Scholar 

  170. O’Neill ID. Off-label use of biologicals in the management of inflammatory oral mucosal disease. J Oral Pathol Med. 2008;37(10):575–81.

    Article  PubMed  Google Scholar 

  171. O’Neill I, Scully C. Biologics in oral medicine: ulcerative disorders. Oral Dis. 2013;19(1):37–45.

    Article  PubMed  Google Scholar 

  172. Bradley J. TNF-mediated inflammatory disease. J Pathol. 2008;214(2):149–60.

    Article  PubMed  Google Scholar 

  173. Azab NA, et al. Interferon gamma and interleukin 8 gene polymorphisms in patients with hepatitis C virus related oral lichen planus. Arch Oral Biol. 2018;96:189–94.

    Article  PubMed  Google Scholar 

  174. Prime S, et al. TGF-β signal transduction in oro-facial health and non-malignant disease (part I). Crit Rev Oral Biol Med. 2004;15(6):324–36.

    Article  PubMed  Google Scholar 

  175. Cui-jie W, et al. Correlation of Treg and IL-15 expression in the peripheral blood of patients with oral lichen planus. Shanghai J Stomatol. 2016;25(4):438.

    Google Scholar 

  176. Dinarello CA, Simon A, Van Der Meer JW. Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases. Nat Rev Drug Discov. 2012;11(8):633–52.

    Article  PubMed  PubMed Central  Google Scholar 

  177. Gabay C, Lamacchia C, Palmer G. IL-1 pathways in inflammation and human diseases. Nat Rev Rheumatol. 2010;6(4):232–41.

    Article  PubMed  Google Scholar 

  178. Sims JE, Smith DE. The IL-1 family: regulators of immunity. Nat Rev Immunol. 2010;10(2):89–102.

    Article  PubMed  Google Scholar 

  179. Ge Y, et al. The molecular mechanisms of the effect of Dexamethasone and Cyclosporin A on TLR4/NF-κB signaling pathway activation in oral lichen planus. Gene. 2012;508(2):157–64.

    Article  PubMed  Google Scholar 

  180. Femiano F, Scully C. Functions of the cytokines in relation oral lichen planus-hepatitis C. Med Oral Patol Oral Cir Bucal. 2005;10(Suppl 1):E40–4.

    PubMed  Google Scholar 

  181. Malek TR. The biology of interleukin-2. Annu Rev Immunol. 2008;26:453–79.

    Article  PubMed  Google Scholar 

  182. Banchereau J, Pascual V, O’garra A. From IL-2 to IL-37: the expanding spectrum of anti-inflammatory cytokines. Nat Immunol. 2012;13(10):925–31.

    Article  PubMed  PubMed Central  Google Scholar 

  183. Mozzanica N, et al. Immunohistologic evaluation of the effect of cyclosporine treatment on the lichen planus immune infiltrate. J Am Acad Dermatol. 1991;24(4):550–4.

    Article  PubMed  Google Scholar 

  184. Du GH, et al. The high expression level of programmed death-1 ligand 2 in oral lichen planus and the possible costimulatory effect on human T cells. J Oral Pathol Med. 2011;40(7):525–32.

    Article  PubMed  Google Scholar 

  185. Zhou G, et al. Increased B7-H1 expression on peripheral blood T cells in oral lichen planus correlated with disease severity. J Clin Immunol. 2012;32(4):794–801.

    Article  PubMed  Google Scholar 

  186. Paul WE, Zhu J. How are T(H)2-type immune responses initiated and amplified? Nat Rev Immunol. 2010;10(4):225–35.

    Article  PubMed  PubMed Central  Google Scholar 

  187. Zhu LY, et al. Essential role of IL-4 and IL-4Rα interaction in adaptive immunity of zebrafish: insight into the origin of Th2-like regulatory mechanism in ancient vertebrates. J Immunol. 2012;188(11):5571–84.

    Article  PubMed  Google Scholar 

  188. Johnson DJ, et al. Shp1 regulates T cell homeostasis by limiting IL-4 signals. J Exp Med. 2013;210(7):1419–31.

    Article  PubMed  PubMed Central  Google Scholar 

  189. Cooney LA, et al. Sensitivity and resistance to regulation by IL-4 during Th17 maturation. J Immunol. 2011;187(9):4440–50.

    Article  PubMed  Google Scholar 

  190. Ding M, et al. Interactions between Golli-MBP and Th1/Th2 cytokines in patients with oral lichen planus. Oral Dis. 2014;20(2):205–11.

    Article  PubMed  Google Scholar 

  191. Kouro T, Takatsu K. IL-5- and eosinophil-mediated inflammation: from discovery to therapy. Int Immunol. 2009;21(12):1303–9.

    Article  PubMed  Google Scholar 

  192. Kishimoto T. IL-6: from its discovery to clinical applications. Int Immunol. 2010;22(5):347–52.

    Article  PubMed  Google Scholar 

  193. Gu GM, et al. Oral and serum IL-6 levels in oral lichen planus patients. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2004;98(6):673–8.

    Article  PubMed  Google Scholar 

  194. Kho H-S, et al. MUC1 and Toll-like receptor-2 expression in burning mouth syndrome and oral lichen planus. Arch Oral Biol. 2013;58(7):837–42.

    Article  PubMed  Google Scholar 

  195. Fayyazi A, et al. T lymphocytes and altered keratinocytes express interferon-gamma and interleukin 6 in lichen planus. Arch Dermatol Res. 1999;291(9):485–90.

    Article  PubMed  Google Scholar 

  196. Goel S, et al. Role of serum interleukin-6 in deciding therapy for multidrug resistant oral lichen planus. J Clin Exp Dent. 2015;7(4):e477–82.

    Article  PubMed  PubMed Central  Google Scholar 

  197. Matsushima K, et al. Molecular cloning of a human monocyte-derived neutrophil chemotactic factor (MDNCF) and the induction of MDNCF mRNA by interleukin 1 and tumor necrosis factor. J Exp Med. 1988;167(6):1883–93.

    Article  PubMed  Google Scholar 

  198. Trompezinski S, et al. Comparative effects of polyphenols from green tea (EGCG) and soybean (genistein) on VEGF and IL-8 release from normal human keratinocytes stimulated with the proinflammatory cytokine TNFalpha. Arch Dermatol Res. 2003;295(3):112–6.

    Article  PubMed  Google Scholar 

  199. Simone RE, et al. Lycopene inhibits NF-kB-mediated IL-8 expression and changes redox and PPARγ signalling in cigarette smoke-stimulated macrophages. PLoS One. 2011;6(5):e19652.

    Article  PubMed  PubMed Central  Google Scholar 

  200. Waugh DJ, Wilson C. The interleukin-8 pathway in cancer. Clin Cancer Res. 2008;14(21):6735–41.

    Article  PubMed  Google Scholar 

  201. Little MC, et al. Oral mucosal keratinocytes express RANTES and ICAM-1, but not interleukin-8, in oral lichen planus and oral lichenoid reactions induced by amalgam fillings. Clin Exp Dermatol. 2003;28(1):64–9.

    Article  PubMed  Google Scholar 

  202. Mahmoud MM, Afifi MM. Anti-angiogenic therapy (bevacizumab) in the management of oral lichen planus. Eur J Oral Sci. 2016;124(2):119–26.

    Article  PubMed  Google Scholar 

  203. Dan H, et al. Association of interleukin-8 gene polymorphisms and haplotypes with oral lichen planus in a Chinese population. Inflammation. 2010;33(2):76–81.

    Article  PubMed  Google Scholar 

  204. Ouyang W, et al. Regulation and functions of the IL-10 family of cytokines in inflammation and disease. Annu Rev Immunol. 2011;29:71–109.

    Article  PubMed  Google Scholar 

  205. Sabat R, et al. Biology of interleukin-10. Cytokine Growth Factor Rev. 2010;21(5):331–44.

    Article  PubMed  Google Scholar 

  206. Saraiva M, O’Garra A. The regulation of IL-10 production by immune cells. Nat Rev Immunol. 2010;10(3):170–81.

    Article  PubMed  Google Scholar 

  207. Lavaee F, et al. The evaluation of the serum level of IL-10 in OLP patients. Comp Clin Pathol. 2018;27(1):131–4.

    Article  Google Scholar 

  208. Stephens JC, et al. Haplotype variation and linkage disequilibrium in 313 human genes. Science. 2001;293(5529):489–93.

    Article  PubMed  Google Scholar 

  209. Del Vecchio M, et al. Interleukin-12: biological properties and clinical application. Clin Cancer Res. 2007;13(16):4677–85.

    Article  PubMed  Google Scholar 

  210. Constant SL, Bottomly K. Induction of Th1 and Th2 CD4+ T cell responses: the alternative approaches. Annu Rev Immunol. 1997;15:297–322.

    Article  PubMed  Google Scholar 

  211. Kang K, et al. IL-12 synthesis by human Langerhans cells. J Immunol. 1996;156(4):1402–7.

    Article  PubMed  Google Scholar 

  212. Jiang C, et al. Association of interleukin 12A gene polymorphisms with oral lichen planus in Chinese population. J Oral Pathol Med. 2015;44(8):602–6.

    Article  PubMed  Google Scholar 

  213. Onishi RM, Gaffen SL. Interleukin-17 and its target genes: mechanisms of interleukin-17 function in disease. Immunology. 2010;129(3):311–21.

    Article  PubMed  PubMed Central  Google Scholar 

  214. Yu JJ, Gaffen SL. Interleukin-17: a novel inflammatory cytokine that bridges innate and adaptive immunity. Front Biosci. 2008;13:170–7.

    Article  PubMed  Google Scholar 

  215. Cosmi L, et al. Evidence of the transient nature of the Th17 phenotype of CD4+CD161+ T cells in the synovial fluid of patients with juvenile idiopathic arthritis. Arthritis Rheum. 2011;63(8):2504–15.

    Article  PubMed  Google Scholar 

  216. Lee YK, et al. Late developmental plasticity in the T helper 17 lineage. Immunity. 2009;30(1):92–107.

    Article  PubMed  PubMed Central  Google Scholar 

  217. Cosmi L, et al. Human interleukin 17-producing cells originate from a CD161+CD4+ T cell precursor. J Exp Med. 2008;205(8):1903–16.

    Article  PubMed  PubMed Central  Google Scholar 

  218. Shen Z, et al. Expression of Foxp3 and interleukin-17 in lichen planus lesions with emphasis on difference in oral and cutaneous variants. Arch Dermatol Res. 2014;306(5):441–6.

    Article  PubMed  Google Scholar 

  219. Firth FA, et al. Regulation of immune cells in oral lichen planus. Arch Dermatol Res. 2015;307(4):333–9.

    Article  PubMed  Google Scholar 

  220. Wang J, et al. Long non-coding RNA DQ786243 modulates the induction and function of CD4(+) Treg cells through Foxp3-miR-146a-NF-κB axis: implications for alleviating oral lichen planus. Int Immunopharmacol. 2019;75:105761.

    Article  PubMed  Google Scholar 

  221. Ge X, et al. Renin promotes STAT4 phosphorylation to induce IL-17 production in keratinocytes of oral lichen planus. iScience. 2020;23(4):100983.

    Article  PubMed  PubMed Central  Google Scholar 

  222. Liang J, et al. Correlation of miRNA-155 and IL-17 mRNA expression in peripheral blood of female patients with oral lichen planus. Int J Clin Exp Med. 2016;9(10):10569–74.

    Google Scholar 

  223. Hussine AA, et al. EVALUATION OF THE POSSIBLE ROLE OF IL-17 AND ITS RECEPTOR IL-17R IN THE PATHOGENESIS OF ORAL LICHEN PLANUS. Al-Azhar J Dental Sci. 2016;19(1):1–8.

    Article  Google Scholar 

  224. Liu J, et al. Association of IL-17A and IL-17F polymorphisms with gastric cancer risk in Asians: a meta-analysis. Hum Immunol. 2015;76(1):6–12.

    Article  PubMed  Google Scholar 

  225. Zhang X, et al. Genetic polymorphisms of interleukin 17A and interleukin 17F and their association with inflammatory bowel disease in a Chinese Han population. Inflamm Res. 2013;62(8):743–50.

    Article  PubMed  Google Scholar 

  226. Hammad A, et al. Interleukin-17A rs2275913, Interleukin-17F rs763780 and rs2397084 gene polymorphisms as possible risk factors in Juvenile lupus and lupus related nephritis. Autoimmunity. 2016;49(1):31–40.

    Article  PubMed  Google Scholar 

  227. Shi G, Zhang L. Influence of interleukin-17 gene polymorphisms on the development of pulmonary tuberculosis. Genet Mol Res. 2015;14(3):8526–31.

    Article  PubMed  Google Scholar 

  228. Smith DE. The biological paths of IL-1 family members IL-18 and IL-33. J Leukoc Biol. 2011;89(3):383–92.

    Article  PubMed  Google Scholar 

  229. Orozco A, et al. Interleukin 18 and periodontal disease. J Dent Res. 2007;86(7):586–93.

    Article  PubMed  Google Scholar 

  230. Bai J, et al. Interleukin-18 gene polymorphisms and haplotypes in patients with oral lichen planus: a study in an ethnic Chinese cohort. Tissue Antigens. 2007;70(5):390–7.

    Article  PubMed  Google Scholar 

  231. Perusina Lanfranca M, et al. Biological and pathological activities of interleukin-22. J Mol Med. 2016;94(5):523–34.

    Article  PubMed  Google Scholar 

  232. Eyerich S, et al. Th22 cells represent a distinct human T cell subset involved in epidermal immunity and remodeling. J Clin Invest. 2009;119(12):3573–85.

    PubMed  PubMed Central  Google Scholar 

  233. Zhu J, Yamane H, Paul WE. Differentiation of effector CD4 T cell populations. Annu Rev Immunol. 2010;28:445.

    Article  PubMed  PubMed Central  Google Scholar 

  234. Ghoreschi K, et al. Generation of pathogenic TH17 cells in the absence of TGF-β signalling. Nature. 2010;467(7318):967–71.

    Article  PubMed  PubMed Central  Google Scholar 

  235. Parks OB, et al. Interleukin-22 signaling in the regulation of intestinal health and disease. Front Cell Dev Biol. 2016;3:85.

    Article  PubMed  PubMed Central  Google Scholar 

  236. Lu Z, et al. MicroRNAs: new regulators of IL-22. Cell Immunol. 2016;304:1–8.

    Article  PubMed  Google Scholar 

  237. Yu R, et al. IL-22 mediates the oral mucosal wound healing via STAT3 in keratinocytes. Arch Oral Biol. 2016;72:14–20.

    Article  PubMed  Google Scholar 

  238. Van Belle AB, et al. IL-22 is required for imiquimod-induced psoriasiform skin inflammation in mice. J Immunol. 2012;188(1):462–9.

    Article  PubMed  Google Scholar 

  239. Fujita H. The role of IL-22 and Th22 cells in human skin diseases. J Dermatol Sci. 2013;72(1):3–8.

    Article  PubMed  Google Scholar 

  240. Kim C, et al. A role for mucosal IL-22 production and Th22 cells in HIV-associated mucosal immunopathogenesis. Mucosal Immunol. 2012;5(6):670–80.

    Article  PubMed  Google Scholar 

  241. Radaeva S, et al. Interleukin 22 (IL-22) plays a protective role in T cell-mediated murine hepatitis: IL-22 is a survival factor for hepatocytes via STAT3 activation. Hepatology. 2004;39(5):1332–42.

    Article  PubMed  Google Scholar 

  242. De Luca A, et al. IL-22 defines a novel immune pathway of antifungal resistance. Mucosal Immunol. 2010;3(4):361–73.

    Article  PubMed  Google Scholar 

  243. Yang X, Zheng SG. Interleukin-22: a likely target for treatment of autoimmune diseases. Autoimmun Rev. 2014;13(6):615–20.

    Article  PubMed  PubMed Central  Google Scholar 

  244. Pan H-F, et al. Emerging role of interleukin-22 in autoimmune diseases. Cytokine Growth Factor Rev. 2013;24(1):51–7.

    Article  PubMed  Google Scholar 

  245. Zhao M, Li Y, Xiao W. Anti-apoptotic effect of interleukin-22 on fibroblast-like synoviocytes in patients with rheumatoid arthritis is mediated via the signal transducer and activator of transcription 3 signaling pathway. Int J Rheum Dis. 2017;20(2):214–24.

    Article  PubMed  Google Scholar 

  246. Pennino D, et al. IL-22 suppresses IFN-γ–mediated lung inflammation in asthmatic patients. J Allergy Clin Immunol. 2013;131(2):562–70.

    Article  PubMed  Google Scholar 

  247. Basu R, et al. Th22 cells are an important source of IL-22 for host protection against enteropathogenic bacteria. Immunity. 2012;37(6):1061–75.

    Article  PubMed  PubMed Central  Google Scholar 

  248. Croxford AL, Mair F, Becher B. IL-23: one cytokine in control of autoimmunity. Eur J Immunol. 2012;42(9):2263–73.

    Article  PubMed  Google Scholar 

  249. Chen J, et al. Immunoexpression of interleukin-22 and interleukin-23 in oral and cutaneous lichen planus lesions: a preliminary study. Mediat Inflamm. 2013;2013:801974.

    Article  Google Scholar 

  250. Dong C. TH17 cells in development: an updated view of their molecular identity and genetic programming. Nat Rev Immunol. 2008;8(5):337–48.

    Article  PubMed  Google Scholar 

  251. McGeachy MJ, et al. The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17–producing effector T helper cells in vivo. Nat Immunol. 2009;10(3):314–24.

    Article  PubMed  PubMed Central  Google Scholar 

  252. Toussirot É. The IL23/Th17 pathway as a therapeutic target in chronic inflammatory diseases. Inflamm Allergy Drug Targets. 2012;11(2):159–68.

    Article  PubMed  Google Scholar 

  253. Hillyer P, et al. Investigating the role of the interleukin-23/-17A axis in rheumatoid arthritis. Rheumatology. 2009;48(12):1581–9.

    Article  PubMed  PubMed Central  Google Scholar 

  254. Kryczek I, et al. Induction of IL-17+ T cell trafficking and development by IFN-γ: mechanism and pathological relevance in psoriasis. J Immunol. 2008;181(7):4733–41.

    Article  PubMed  Google Scholar 

  255. Larsen JM, et al. IL-23 and TH17-mediated inflammation in human allergic contact dermatitis. J Allergy Clin Immunol. 2009;123(2):486–492.e1.

    Article  PubMed  Google Scholar 

  256. Geremia A, Jewell DP. The IL-23/IL-17 pathway in inflammatory bowel disease. Expert Rev Gastroenterol Hepatol. 2012;6(2):223–37.

    Article  PubMed  Google Scholar 

  257. Yen D, et al. IL-23 is essential for T cell–mediated colitis and promotes inflammation via IL-17 and IL-6. J Clin Invest. 2006;116(5):1310–6.

    Article  PubMed  PubMed Central  Google Scholar 

  258. Hölttä V, et al. IL-23/IL-17 immunity as a hallmark of Crohn’s disease. Inflamm Bowel Dis. 2008;14(9):1175–84.

    Article  PubMed  Google Scholar 

  259. Ohyama H, et al. The involvement of IL-23 and the Th17 pathway in periodontitis. J Dent Res. 2009;88(7):633–8.

    Article  PubMed  Google Scholar 

  260. Lester SR, et al. Gingival concentrations of interleukin-23 and-17 at healthy sites and at sites of clinical attachment loss. J Periodontol. 2007;78(8):1545–50.

    Article  PubMed  Google Scholar 

  261. Zheng Y, et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat Med. 2008;14(3):282–9.

    Article  PubMed  Google Scholar 

  262. Silva LC, Ortigosa LC, Benard G. Anti-TNF-α agents in the treatment of immune-mediated inflammatory diseases: mechanisms of action and pitfalls. Immunotherapy. 2010;2(6):817–33.

    Article  PubMed  Google Scholar 

  263. Parameswaran N, Patial S. Tumor necrosis factor-α signaling in macrophages. Crit Rev Eukaryot Gene Expr. 2010;20(2):87–103.

    Article  PubMed  PubMed Central  Google Scholar 

  264. Postal M, Appenzeller S. The role of tumor necrosis factor-alpha (TNF-α) in the pathogenesis of systemic lupus erythematosus. Cytokine. 2011;56(3):537–43.

    Article  PubMed  Google Scholar 

  265. Schottelius AJ, et al. Biology of tumor necrosis factor-α–implications for psoriasis. Exp Dermatol. 2004;13(4):193–222.

    Article  PubMed  Google Scholar 

  266. Younes F, et al. Expression of TNF and the 55-kDa TNF receptor in epidermis, oral mucosa, lichen planus and squamous cell carcinoma. Oral Dis. 1996;2(1):25–31.

    Article  PubMed  Google Scholar 

  267. Sklavounou-Andrikopoulou A, et al. Elevated serum levels of the apoptosis related molecules TNF-α, Fas/Apo-1 and Bcl-2 in oral lichen planus. J Oral Pathol Med. 2004;33(7):386–90.

    Article  PubMed  Google Scholar 

  268. Karatsaidis A, et al. Survival signalling in keratinocytes of erythematous oral lichen planus. J Oral Pathol Med. 2007;36(4):215–22.

    Article  PubMed  Google Scholar 

  269. Zhou G, et al. Activation of nuclear factor-kappa B correlates with tumor necrosis factor-alpha in oral lichen planus: a clinicopathologic study in atrophic-erosive and reticular form. J Oral Pathol Med. 2009;38(7):559–64.

    Article  PubMed  Google Scholar 

  270. Pezelj-Ribaric S, et al. Salivary levels of tumor necrosis factor-α in oral lichen planus. Mediat Inflamm. 2004;13(2):131–3.

    Article  Google Scholar 

  271. Ghallab NA, El-Wakeel N, Shaker OG. Levels of salivary IFN-gamma, TNF-alfa, and TNF receptor-2 as prognostic markers in (erosive) oral lichen planus. Mediat Inflamm. 2010;2010:847632.

    Article  Google Scholar 

  272. Zhou ZT, Wei BJ, Shi P. Osteopontin expression in oral lichen planus. J Oral Pathol Med. 2008;37(2):94–8.

    Article  PubMed  Google Scholar 

  273. Yamamoto T, et al. Serum cytokine levels in patients with oral mucous membrane disorders. J Oral Pathol Med. 1991;20(6):275–9.

    Article  PubMed  Google Scholar 

  274. Yamamoto T, et al. Serum cytokines, interleukin-2 receptor, and soluble intercellular adhesion molecule-1 in oral disorders. Oral Surg Oral Med Oral Pathol. 1994;78(6):727–35.

    Article  PubMed  Google Scholar 

  275. Sun A, et al. Levamisole can reduce the high serum tumour necrosis factor-α level to a normal level in patients with erosive oral lichen planus. Clin Exp Dermatol. 2007;32(3):308–10.

    Article  PubMed  Google Scholar 

  276. Akpınar Kara Y. The measurement of serum TNF-α levels in patients with lichen planus. Acta Dermatovenerol Alp Pannonica Adriat. 2017;26(4):85–8.

    PubMed  Google Scholar 

  277. Simark-Mattsson C, Eklund C. Reduced immune responses to purified protein derivative and C andida albicans in oral lichen planus. J Oral Pathol Med. 2013;42(9):691–7.

    Article  PubMed  Google Scholar 

  278. Mozaffari HR, et al. Salivary and serum levels of tumor necrosis factor-alpha in oral lichen planus: a systematic review and meta-analysis study. Oral Surg Oral Med Oral Pathol Oral Radiol. 2017;124(3):e183–9.

    Article  PubMed  Google Scholar 

  279. Chauhan I, et al. Association of cytokine gene polymorphisms with oral lichen planus in Malayalam-speaking ethnicity from South India (Kerala). J Interf Cytokine Res. 2013;33(8):420–7.

    Article  Google Scholar 

  280. Carrozzo M, et al. Cytokine gene polymorphisms in hepatitis C virus-related oral lichen planus. Exp Dermatol. 2007;16(9):730–6.

    Article  PubMed  Google Scholar 

  281. Jin X, et al. Association between-308 G/A polymorphism in TNF-α gene and lichen planus: a meta-analysis. J Dermatol Sci. 2012;68(3):127–34.

    Article  PubMed  Google Scholar 

  282. Zhou Y, Vieira AR. Association between TNFα-308 G/A polymorphism and oral lichen planus (OLP): a meta-analysis. J Appl Oral Sci. 2018;26:e20170184.

    Article  PubMed  PubMed Central  Google Scholar 

  283. Zhang J, et al. Biologics, an alternative therapeutic approach for oral lichen planus. J Oral Pathol Med. 2011;40(7):521–4.

    Article  PubMed  Google Scholar 

  284. Worsnop F, et al. Reaction to biological drugs: infliximab for the treatment of toxic epidermal necrolysis subsequently triggering erosive lichen planus. Clin Exp Dermatol. 2012;37(8):879–81.

    Article  PubMed  Google Scholar 

  285. Schroder K, et al. Interferon-γ: an overview of signals, mechanisms and functions. J Leukoc Biol. 2004;75(2):163–89.

    Article  PubMed  Google Scholar 

  286. Hu X, Ivashkiv LB. Cross-regulation of signaling pathways by interferon-γ: implications for immune responses and autoimmune diseases. Immunity. 2009;31(4):539–50.

    Article  PubMed  PubMed Central  Google Scholar 

  287. Szabo SJ, et al. Molecular mechanisms regulating Th1 immune responses. Annu Rev Immunol. 2003;21:713.

    Article  PubMed  Google Scholar 

  288. Hwang ES, et al. T helper cell fate specified by kinase-mediated interaction of T-bet with GATA-3. Science. 2005;307(5708):430–3.

    Article  PubMed  Google Scholar 

  289. Kelchtermans H, et al. Effector mechanisms of interleukin-17 in collagen-induced arthritis in the absence of interferon-γ and counteraction by interferon-γ. Arthritis Res Ther. 2009;11(4):1–13.

    Article  Google Scholar 

  290. Kelchtermans H, Billiau A, Matthys P. How interferon-γ keeps autoimmune diseases in check. Trends Immunol. 2008;29(10):479–86.

    Article  PubMed  Google Scholar 

  291. Mattsson CS, et al. Distribution of interferon-y mRNA-positive cells in oral lichen planus lesions. J Oral Pathol Med. 1998;27(10):483–8.

    Article  Google Scholar 

  292. Youngnak-Piboonratanakit P, et al. Expression of IFN-γ before and after treatment of oral lichen planus with 0.1% fluocinolone acetonide in orabase. J Oral Pathol Med. 2009;38(9):689–94.

    Article  PubMed  Google Scholar 

  293. Colobran R, et al. The chemokine network. II. On how polymorphisms and alternative splicing increase the number of molecular species and configure intricate patterns of disease susceptibility. Clin Exp Immunol. 2007;150(1):1–12.

    Article  PubMed  PubMed Central  Google Scholar 

  294. Kimkong I, et al. Association of interferon-gamma gene polymorphisms with susceptibility to oral lichen planus in the Thai population. Arch Oral Biol. 2012;57(5):491–4.

    Article  PubMed  Google Scholar 

  295. Akhurst RJ, Hata A. Targeting the TGFβ signalling pathway in disease. Nat Rev Drug Discov. 2012;11(10):790–811.

    Article  PubMed  PubMed Central  Google Scholar 

  296. Kubiczkova L, et al. TGF-β–an excellent servant but a bad master. J Transl Med. 2012;10(1):1–24.

    Article  Google Scholar 

  297. Simark-Mattsson C, et al. Distribution of interleukin-2, -4, -10, tumour necrosis factor-alpha and transforming growth factor-beta mRNAs in oral lichen planus. Arch Oral Biol. 1999;44(6):499–507.

    Article  PubMed  Google Scholar 

  298. Zhang J, Zhou G. Green tea consumption: an alternative approach to managing oral lichen planus. Inflamm Res. 2012;61(6):535–9.

    Article  PubMed  Google Scholar 

  299. Chen Y, et al. MMPs, TIMP-2, and TGF-β1 in the cancerization of oral lichen planus. Head Neck. 2008;30(9):1237–45.

    Article  PubMed  Google Scholar 

  300. Taghavi ZA, et al. Evaluation of serum TNF-α and TGF-β in patients with oral lichen planus: serum markers in oral lichen planus. J Dental Res Dental Clin Dent Prospects. 2012;6(4):143–7.

    Google Scholar 

  301. Tan YQ, et al. Increased circulating CXCR 5+ CD 4+ T follicular helper-like cells in oral lichen planus. J Oral Pathol Med. 2017;46(9):803–9.

    Article  PubMed  Google Scholar 

  302. Wang H, et al. IL-25 promotes Th2-type reactions and correlates with disease severity in the pathogenesis of oral lichen planus. Arch Oral Biol. 2019;98:115–21.

    Article  PubMed  Google Scholar 

  303. Javvadi L, et al. Expression of IL33 and IL35 in oral lichen planus. Arch Dermatol Res. 2018;310(5):431–41.

    Article  PubMed  Google Scholar 

  304. De Carvalho MFMS, et al. Cytokines levels and salivary microbiome play a potential role in oral lichen planus diagnosis. Sci Rep. 2019;9(1):1–10.

    Article  Google Scholar 

  305. Messer G, et al. Polymorphic structure of the tumor necrosis factor (TNF) locus: an NcoI polymorphism in the first intron of the human TNF-beta gene correlates with a variant amino acid in position 26 and a reduced level of TNF-beta production. J Exp Med. 1991;173(1):209–19.

    Article  PubMed  Google Scholar 

  306. Godessart N, Kunkel SL. Chemokines in autoimmune disease. Curr Opin Immunol. 2001;13(6):670–5.

    Article  PubMed  Google Scholar 

  307. Bombeccari GP, et al. Ruolo delle epatopatie nella fase acuta del lichen planus orale. Dental Cadmos. 2012;80(4):171–81.

    Article  Google Scholar 

  308. Lebre MC, et al. Differential expression of inflammatory chemokines by Th1-and Th2-cell promoting dendritic cells: a role for different mature dendritic cell populations in attracting appropriate effector cells to peripheral sites of inflammation. Immunol Cell Biol. 2005;83(5):525–35.

    Article  PubMed  Google Scholar 

  309. Iijima W, et al. Infiltrating CD8+ T cells in oral lichen planus predominantly express CCR5 and CXCR3 and carry respective chemokine ligands RANTES/CCL5 and IP-10/CXCL10 in their cytolytic granules: a potential self-recruiting mechanism. Am J Pathol. 2003;163(1):261–8.

    Article  PubMed  PubMed Central  Google Scholar 

  310. Vu TH, Werb Z. Matrix metalloproteinases: effectors of development and normal physiology. Genes Dev. 2000;14(17):2123–33.

    Article  PubMed  Google Scholar 

  311. Bode W, et al. Insights into MMP-TIMP interactions. Ann N Y Acad Sci. 1999;878(1):73–91.

    Article  PubMed  Google Scholar 

  312. Saklatvala J, et al. Structural basis of matrix metalloproteinase function. In: Biochemical society symposia. Cambridge: Portland Press; 2003.

    Google Scholar 

  313. Sutinen M, et al. Expression of matrix metalloproteinases (MMP-1 and-2) and their inhibitors (TIMP-1,-2 and-3) in oral lichen planus, dysplasia, squamous cell carcinoma and lymph node metastasis. Br J Cancer. 1998;77(12):2239–45.

    Article  PubMed  PubMed Central  Google Scholar 

  314. Rubaci AH, et al. The roles of matrix metalloproteinases-2,-7,-10 and tissue inhibitor of metalloproteinase-1 in the pathogenesis of oral lichen planus. J Oral Pathol Med. 2012;41(9):689–96.

    Article  PubMed  Google Scholar 

  315. Mazzarella N, et al. Matrix metalloproteinase gene expression in oral lichen planus: erosive vs. reticular forms. J Eur Acad Dermatol Venereol. 2006;20(8):953–7.

    PubMed  Google Scholar 

  316. De Iudicibus S, et al. Molecular mechanism of glucocorticoid resistance in inflammatory bowel disease. World J Gastroenterol: WJG. 2011;17(9):1095.

    Article  PubMed  PubMed Central  Google Scholar 

  317. Li CC, et al. Suppression of dendritic cell-derived IL-12 by endogenous glucocorticoids is protective in LPS-induced sepsis. PLoS Biol. 2015;13(10):e1002269.

    Article  PubMed  PubMed Central  Google Scholar 

  318. Galon J, et al. Gene profiling reveals unknown enhancing and suppressive actions of glucocorticoids on immune cells. FASEB J. 2002;16(1):61–71.

    Article  PubMed  Google Scholar 

  319. Nicolaides NC, et al. Recent advances in the molecular mechanisms determining tissue sensitivity to glucocorticoids: novel mutations, circadian rhythm and ligand-induced repression of the human glucocorticoid receptor. BMC Endocr Disord. 2014;14(1):1–12.

    Article  Google Scholar 

  320. Hearing SD, et al. Wide variation in lymphocyte steroid sensitivity among healthy human volunteers. J Clin Endocrinol Metab. 1999;84(11):4149–54.

    PubMed  Google Scholar 

  321. Creed TJ, et al. The effects of cytokines on suppression of lymphocyte proliferation by dexamethasone. J Immunol. 2009;183(1):164–71.

    Article  PubMed  Google Scholar 

  322. Wang L, et al. MicroRNA microarray-based identification of involvement of miR-155 and miR-19a in development of oral lichen planus (OLP) by modulating Th1/Th2 balance via targeting eNOS and toll-like receptor 2 (TLR2). Med Sci Monit. 2018;24:3591.

    Article  PubMed  PubMed Central  Google Scholar 

  323. Ma F, et al. The microRNA miR-29 controls innate and adaptive immune responses to intracellular bacterial infection by targeting interferon-γ. Nat Immunol. 2011;12(9):861–9.

    Article  PubMed  Google Scholar 

  324. Urbanek MO, Nawrocka AU, Krzyzosiak WJ. Small RNA detection by in situ hybridization methods. Int J Mol Sci. 2015;16(6):13259–86.

    Article  PubMed  PubMed Central  Google Scholar 

  325. Liu M, et al. TNF-α is a novel target of miR-19a. Int J Oncol. 2011;38(4):1013–22.

    PubMed  Google Scholar 

  326. Stanczyk J, et al. Altered expression of microRNA-203 in rheumatoid arthritis synovial fibroblasts and its role in fibroblast activation. Arthritis Rheum. 2011;63(2):373–81.

    Article  PubMed  PubMed Central  Google Scholar 

  327. Cui Y. In silico mapping of polymorphic miRNA–mRNA interactions in autoimmune thyroid diseases. Autoimmunity. 2014;47(5):327–33.

    Article  PubMed  Google Scholar 

  328. Wu D, et al. Association of single nucleotide polymorphisms in MPO and COX genes with oral lichen planus. Int J Immunogenet. 2015;42(3):161–7.

    Article  PubMed  Google Scholar 

  329. Zhou Q, et al. Decreased expression of miR-146a and miR-155 contributes to an abnormal Treg phenotype in patients with rheumatoid arthritis. Ann Rheum Dis. 2015;74(6):1265–74.

    Article  PubMed  Google Scholar 

  330. Banerjee A, et al. Micro-RNA-155 inhibits IFN-γ signaling in CD4+ T cells. Eur J Immunol. 2010;40(1):225–31.

    Article  PubMed  PubMed Central  Google Scholar 

  331. Gassling V, et al. Disease-associated miRNA-mRNA networks in oral lichen planus. PLoS One. 2013;8(5):e63015.

    Article  PubMed  PubMed Central  Google Scholar 

  332. Liu F, Wu J, Ye F. Expression of miRNA-155 and miRNA-146a in peripheral blood mononuclear cells and plasma of oral lichen planus patients. Zhonghua Kou Qiang Yi Xue Za Zhi=Chinese J Stomatol. 2015;50(1):23–7.

    Google Scholar 

  333. Arão TC, et al. Increased miRNA-146a and miRNA-155 expressions in oral lichen planus. Arch Dermatol Res. 2012;304(5):371–5.

    Article  PubMed  Google Scholar 

  334. Ma H, et al. MicroRNAs in oral lichen planus and potential miRNA–mRNA pathogenesis with essential cytokines: a review. Oral Surg Oral Med Oral Pathol Oral Radiol. 2016;122(2):164–73.

    Article  PubMed  Google Scholar 

  335. Fritzsche C, Schleicher U, Bogdan C. Endothelial nitric oxide synthase limits the inflammatory response in mouse cutaneous leishmaniasis. Immunobiology. 2010;215(9–10):826–32.

    Article  PubMed  Google Scholar 

  336. Shah SM, et al. Differential expression of Th1-and Th2-type cytokines in peripheral blood mononuclear cells of murrah buffalo (Bubalus bubalis) on TLR2 induction by B. Subtilis peptidoglycan. Asian-Australasian J Anim Sci. 2012;25(7):1021.

    Article  Google Scholar 

  337. Fukushima A, et al. TLR2 agonist ameliorates murine experimental allergic conjunctivitis by inducing CD4 positive T-cell apoptosis rather than by affecting the Th1/Th2 balance. Biochem Biophys Res Commun. 2006;339(4):1048–55.

    Article  PubMed  Google Scholar 

  338. Thacher TD, Clarke BL. Vitamin D insufficiency. In: Mayo clinic proceedings. London: Elsevier; 2011.

    Google Scholar 

  339. Holick MF. Vitamin D deficiency. N Engl J Med. 2007;357(3):266–81.

    Article  PubMed  Google Scholar 

  340. Liu W, et al. Intestinal epithelial vitamin D receptor signaling inhibits experimental colitis. J Clin Invest. 2013;123(9):3983–96.

    Article  PubMed  PubMed Central  Google Scholar 

  341. Haussler MR, et al. The nuclear vitamin D receptor: biological and molecular regulatory properties revealed. J Bone Miner Res. 1998;13(3):325–49.

    Article  PubMed  Google Scholar 

  342. Gupta J, et al. Vitamin D in the treatment of oral lichen planus: a pilot clinical study. J Indian Acad Oral Med Radiol. 2019;31(3):222.

    Article  Google Scholar 

  343. Aranow C. Vitamin D and the immune system. J Investig Med. 2011;59(6):881–6.

    Article  PubMed  PubMed Central  Google Scholar 

  344. Steinman L. A brief history of TH17, the first major revision in the TH1/TH2 hypothesis of T cell–mediated tissue damage. Nat Med. 2007;13(2):139–45.

    Article  PubMed  Google Scholar 

  345. D’Aurizio F, et al. Is vitamin D a player or not in the pathophysiology of autoimmune thyroid diseases? Autoimmun Rev. 2015;14(5):363–9.

    Article  PubMed  Google Scholar 

  346. Kriegel MA, Manson JE, Costenbader KH. Does vitamin D affect risk of developing autoimmune disease? A systematic review. in Seminars in arthritis and rheumatism. London: Elsevier; 2011.

    Google Scholar 

  347. Du J, et al. Experimental study on 1, 25 (OH) 2D3 amelioration of oral lichen planus through regulating NF-κB signaling pathway. Oral Dis. 2017;23(6):770–8.

    Article  PubMed  Google Scholar 

  348. Marzano A, et al. Evidence for vitamin D deficiency and increased prevalence of fractures in autoimmune bullous skin diseases. Br J Dermatol. 2012;167(3):688–91.

    Article  PubMed  Google Scholar 

  349. Marzano AV, et al. Vitamin D and skeletal health in autoimmune bullous skin diseases: a case control study. Orphanet J Rare Dis. 2015;10(1):1–7.

    Article  Google Scholar 

  350. EL-Komy M, Samir N, Shaker O. Estimation of vitamin D levels in patients with pemphigus vulgaris. J Eur Acad Dermatol Venereol. 2014;28(7):859–63.

    Article  PubMed  Google Scholar 

  351. Alshouibi E, et al. Vitamin D and periodontal health in older men. J Dent Res. 2013;92(8):689–93.

    Article  PubMed  PubMed Central  Google Scholar 

  352. Garcia MN, et al. One-year effects of vitamin D and calcium supplementation on chronic periodontitis. J Periodontol. 2011;82(1):25–32.

    Article  PubMed  Google Scholar 

  353. Dietrich T, et al. Association between serum concentrations of 25-hydroxyvitamin D and gingival inflammation. Am J Clin Nutr. 2005;82(3):575–80.

    Article  PubMed  Google Scholar 

  354. Dietrich T, et al. Association between serum concentrations of 25-hydroxyvitamin D3 and periodontal disease in the US population. Am J Clin Nutr. 2004;80(1):108–13.

    PubMed  Google Scholar 

  355. De Filippis A, et al. Vitamin D reduces the inflammatory response by Porphyromonas gingivalis infection by modulating human β-defensin-3 in human gingival epithelium and periodontal ligament cells. Int Immunopharmacol. 2017;47:106–17.

    Article  PubMed  Google Scholar 

  356. McMahon L, et al. Vitamin D-mediated induction of innate immunity in gingival epithelial cells. Infect Immun. 2011;79(6):2250–6.

    Article  PubMed  PubMed Central  Google Scholar 

  357. Oh C, Kim HJ, Kim H-M. Vitamin D maintains E-cadherin intercellular junctions by downregulating MMP-9 production in human gingival keratinocytes treated by TNF-α. J Periodontal Implant Sci. 2019;49(5):270–86.

    Article  PubMed  PubMed Central  Google Scholar 

  358. Bosshardt D, Lang N. The junctional epithelium: from health to disease. J Dent Res. 2005;84(1):9–20.

    Article  PubMed  Google Scholar 

  359. Du J, et al. 1, 25-Dihydroxyvitamin D protects intestinal epithelial barrier by regulating the myosin light chain kinase signaling pathway. Inflamm Bowel Dis. 2015;21(11):2495–506.

    Article  PubMed  Google Scholar 

  360. Nakano K, Vousden KH. PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell. 2001;7(3):683–94.

    Article  PubMed  Google Scholar 

  361. Han J-W, et al. Expression of bbc3, a pro-apoptotic BH3-only gene, is regulated by diverse cell death and survival signals. Proc Natl Acad Sci. 2001;98(20):11318–23.

    Article  PubMed  PubMed Central  Google Scholar 

  362. Ahmed SA. The role of serum vitamin D deficency in oral lichen planus case control study. Diyala J Med. 2019;17(2):189–98.

    Article  Google Scholar 

  363. Ge X, et al. Vitamin D/VDR signaling induces miR-27a/b expression in oral lichen planus. Sci Rep. 2020;10(1):1–10.

    Article  Google Scholar 

  364. Shen H, et al. Vitamin D receptor genetic polymorphisms are associated with oral lichen planus susceptibility in a Chinese Han population. BMC Oral Health. 2020;20(1):1–7.

    Article  Google Scholar 

  365. Alalwani MS, Kharma MY, Aws G. Profound study for functions of antimicrobial peptides in prevention of oral disease. Br J Med Med Res. 2016;14(5):1.

    Article  Google Scholar 

  366. Fábián TK, Fejérdy P, Csermely P. Saliva in health and disease, chemical biology of. In: Wiley encyclopedia of chemical biology, vol. 4. Hoboken: Wiley; 2008. p. 1–9.

    Google Scholar 

  367. Brandtzaeg P. Do salivary antibodies reliably reflect both mucosal and systemic immunity? Ann N Y Acad Sci. 2007;1098(1):288–311.

    Article  PubMed  Google Scholar 

  368. Khurshid Z, et al. Oral antimicrobial peptides: types and role in the oral cavity. Saudi Pharm J. 2016;24(5):515–24.

    Article  PubMed  Google Scholar 

  369. Yang D, et al. Mammalian defensins in immunity: more than just microbicidal. Trends Immunol. 2002;23(6):291–6.

    Article  PubMed  Google Scholar 

  370. Yang D, et al. Multiple roles of antimicrobial defensins, cathelicidins, and eosinophil-derived neurotoxin in host defense. Annu Rev Immunol. 2004;22:181.

    Article  PubMed  Google Scholar 

  371. Koczulla AR, Bals R. Antimicrobial peptides. Drugs. 2003;63(4):389–406.

    Article  PubMed  Google Scholar 

  372. Mookherjee N, Hancock R. Cationic host defence peptides: innate immune regulatory peptides as a novel approach for treating infections. Cell Mol Life Sci. 2007;64(7):922–33.

    Article  PubMed  Google Scholar 

  373. Ganz T. Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol. 2003;3(9):710–20.

    Article  PubMed  Google Scholar 

  374. Wang W, et al. Activity of α-and θ-defensins against primary isolates of HIV-1. J Immunol. 2004;173(1):515–20.

    Article  PubMed  Google Scholar 

  375. Diamond G, Ryan L. Beta-defensins: what are they REALLY doing in the oral cavity? Oral Dis. 2011;17(7):628–35.

    Article  PubMed  PubMed Central  Google Scholar 

  376. MacKay B, et al. Isolation of milligram quantities of a group of histidine-rich polypeptides from human parotid saliva. Infect Immun. 1984;44(3):688–94.

    Article  PubMed  PubMed Central  Google Scholar 

  377. Troxler R, et al. Structural relationship between human salivary histatins. J Dent Res. 1990;69(1):2–6.

    Article  PubMed  Google Scholar 

  378. Bercier JG, et al. Salivary histatins in patients with recurrent oral candidiasis. J Oral Pathol Med. 1999;28(1):26–9.

    Article  PubMed  Google Scholar 

  379. Oudhoff M, et al. Histatins enhance wound closure with oral and non-oral cells. J Dent Res. 2009;88(9):846–50.

    Article  PubMed  Google Scholar 

  380. Larrick JW, et al. Human CAP18: a novel antimicrobial lipopolysaccharide-binding protein. Infect Immun. 1995;63(4):1291–7.

    Article  PubMed  PubMed Central  Google Scholar 

  381. Nishikimi T, et al. Adrenomedullin. In: Endocrinology of the heart in health and disease. London: Elsevier; 2017. p. 41–58.

    Chapter  Google Scholar 

  382. Lundy FT, et al. Radioimmunoassay quantification of adrenomedullin in human gingival crevicular fluid. Arch Oral Biol. 2006;51(4):334–8.

    Article  PubMed  Google Scholar 

  383. Vitorino R, et al. Identification of human whole saliva protein components using proteomics. Proteomics. 2004;4(4):1109–15.

    Article  PubMed  Google Scholar 

  384. Wilmarth PA, et al. Two-dimensional liquid chromatography study of the human whole saliva proteome. J Proteome Res. 2004;3(5):1017–23.

    Article  PubMed  Google Scholar 

  385. Denny P, et al. The proteomes of human parotid and submandibular/sublingual gland salivas collected as the ductal secretions. J Proteome Res. 2008;7(5):1994–2006.

    Article  PubMed  PubMed Central  Google Scholar 

  386. Gorr S-U. Antimicrobial peptides of the oral cavity. Periodontol 2000. 2009;51(1):152–80.

    Article  PubMed  Google Scholar 

  387. Dhaifalah I, et al. Azurocidin levels in maternal serum in the first trimester can predict preterm prelabor rupture of membranes. J Matern Fetal Neonatal Med. 2014;27(5):511–5.

    Article  PubMed  Google Scholar 

  388. El Karim IA, et al. Antimicrobial activity of neuropeptides against a range of micro-organisms from skin, oral, respiratory and gastrointestinal tract sites. J Neuroimmunol. 2008;200(1–2):11–6.

    Article  PubMed  Google Scholar 

  389. Salem A. Histamine H4 receptor: a potential novel therapeutic target in oral lichen planus and oral tongue cancer. DSHealth Dissertation Series; 2019.

    Google Scholar 

  390. Joly S, et al. Loss of human β-defensin 1, 2, and 3 expression in oral squamous cell carcinoma. Oral Microbiol Immunol. 2009;24(5):353–60.

    Article  PubMed  Google Scholar 

  391. Abiko Y, et al. Differential expression of human beta-defensin 2 in keratinized and non-keratinized oral epithelial lesions; immunohistochemistry and in situ hybridization. Virchows Arch. 2001;438(3):248–53.

    Article  PubMed  Google Scholar 

  392. Augustine J, et al. Epithelial loss correlated with decreased beta defensins and increased risk of candida infections in oral lichen planus. Oral Surg Oral Med Oral Pathol Oral Radiol. 2015;119(3):e111.

    Article  Google Scholar 

  393. Kucukkolbasi H, et al. Evaluation of hβD-1 and hβD-2 levels in saliva of patients with oral mucosal diseases. West Indian Med J. 2013;62(3):230–8.

    PubMed  Google Scholar 

  394. Azzi L, et al. Human β2-defensin in oral lichen planus expresses the degree of inflammation. J Biol Regul Homeost Agents. 2017;31(2 Suppl 1):77–87.

    PubMed  Google Scholar 

  395. Polesello V, et al. DEFB1 polymorphisms and salivary hBD-1 concentration in Oral Lichen Planus patients and healthy subjects. Arch Oral Biol. 2017;73:161–5.

    Article  PubMed  Google Scholar 

  396. Shi N, et al. Overexpression of human β-defensin 2 promotes growth and invasion during esophageal carcinogenesis. Oncotarget. 2014;5(22):11333.

    Article  PubMed  PubMed Central  Google Scholar 

  397. Verma C, et al. Defensins: antimicrobial peptides for therapeutic development. Biotechnol J. 2007;2(11):1353–9.

    Article  PubMed  Google Scholar 

  398. Kanda N, Watanabe S. Histamine enhances the production of human β-defensin-2 in human keratinocytes. Am J Phys Cell Phys. 2007;293(6):C1916–23.

    Google Scholar 

  399. Niyonsaba F, et al. Evaluation of the effects of peptide antibiotics human β-defensins-1/-2 and LL-37 on histamine release and prostaglandin D2 production from mast cells. Eur J Immunol. 2001;31(4):1066–75.

    Article  PubMed  Google Scholar 

  400. Subramanian H, et al. β-Defensins activate human mast cells via Mas-related gene X2. J Immunol. 2013;191(1):345–52.

    Article  PubMed  Google Scholar 

  401. Mineshiba J, et al. Transcriptional regulation of β-defensin-2 by lipopolysaccharide in cultured human cervical carcinoma (HeLa) cells. FEMS Immunol Med Microbiol. 2005;45(1):37–44.

    Article  PubMed  Google Scholar 

  402. Horr B, et al. STAT1 phosphorylation and cleavage is regulated by the histamine (H4) receptor in human atopic and non-atopic lymphocytes. Int Immunopharmacol. 2006;6(10):1577–85.

    Article  PubMed  Google Scholar 

  403. Salem A, et al. Human β-defensin 2 expression in oral epithelium: potential therapeutic targets in oral lichen planus. Int J Mol Sci. 2019;20(7):1780.

    Article  PubMed  PubMed Central  Google Scholar 

  404. Rivera ES, et al. Histamine as an autocrine growth factor: an unusual role for a widespread mediator. Semin Cancer Biol. 2000;10(1):15–23.

    Article  PubMed  Google Scholar 

  405. Darvas Z, et al. Autonomous histamine metabolism in human melanoma cells. Melanoma Res. 2003;13(3):239–46.

    Article  PubMed  Google Scholar 

  406. Dy M, Schneider E. Histamine–cytokine connection in immunity and hematopoiesis. Cytokine Growth Factor Rev. 2004;15(5):393–410.

    Article  PubMed  Google Scholar 

  407. Medina VA, Rivera ES. Histamine receptors and cancer pharmacology. Br J Pharmacol. 2010;161(4):755–67.

    Article  PubMed  PubMed Central  Google Scholar 

  408. Maintz L, Novak N. Histamine and histamine intolerance. Am J Clin Nutr. 2007;85(5):1185–96.

    Article  PubMed  Google Scholar 

  409. Thangam EB, et al. The role of histamine and histamine receptors in mast cell-mediated allergy and inflammation: the hunt for new therapeutic targets. Front Immunol. 2018;9:1873.

    Article  PubMed  PubMed Central  Google Scholar 

  410. Walter M, Stark H. Histamine receptor subtypes: a century of rational drug design. Front Biosci. 2012;4(2):461–88.

    Article  Google Scholar 

  411. Konttinen YT, et al. Non-professional histamine producing cells, immune responses and autoimmunity. Histamine H4 receptor: a novel drug target in immunoregulation and inflammation. London: Versita; 2013. p. 201–38.

    Google Scholar 

  412. Panula P, et al. International union of basic and clinical pharmacology. XCVIII. Histamine receptors. Pharmacol Rev. 2015;67(3):601–55.

    Article  PubMed  PubMed Central  Google Scholar 

  413. Smolinska S, et al. Histamine and gut mucosal immune regulation. Allergy. 2014;69(3):273–81.

    Article  PubMed  Google Scholar 

  414. Klocker J, et al. Expression of histamine degrading enzymes in porcine tissues. Inflamm Res. 2005;54:S54–7.

    Article  PubMed  Google Scholar 

  415. Massari NA, Nicoud MB, Medina VA. Histamine receptors and cancer pharmacology: an update. Br J Pharmacol. 2020;177(3):516–38.

    Article  PubMed  Google Scholar 

  416. Nakamura T, et al. Molecular cloning and characterization of a new human histamine receptor, HH4R. Biochem Biophys Res Commun. 2000;279(2):615–20.

    Article  PubMed  Google Scholar 

  417. Akdis CA, Simons FER. Histamine receptors are hot in immunopharmacology. Eur J Pharmacol. 2006;533(1–3):69–76.

    Article  PubMed  Google Scholar 

  418. Kubo Y, Nakano K. Regulation of histamine synthesis in mouse CD4+ and CD8+ T lymphocytes. Inflamm Res. 1999;48(3):149–53.

    Article  PubMed  Google Scholar 

  419. Szeberényi JB, et al. Inhibition of effects of endogenously synthesized histamine disturbs in vitro human dendritic cell differentiation. Immunol Lett. 2001;76(3):175–82.

    Article  PubMed  Google Scholar 

  420. Dib K, et al. The histamine H4 receptor is a potent inhibitor of adhesion-dependent degranulation in human neutrophils. Wiley Online Library; 2014.

    Book  Google Scholar 

  421. Thurmond RL. The histamine H4 receptor: from orphan to the clinic. Front Pharmacol. 2015;6:65.

    Article  PubMed  PubMed Central  Google Scholar 

  422. Garcia-Pola MJ, Huerta G. Ansiety as an etiologic factor in oral lichen planus. Med Oral. 2000;5(1):7–13.

    PubMed  Google Scholar 

  423. Falus A, et al. Paracrine and autocrine interactions in melanoma: histamine is a relevant player in local regulation. Trends Immunol. 2001;22(12):648–52.

    Article  PubMed  Google Scholar 

  424. Faustino-Rocha AI, et al. Antihistamines as promising drugs in cancer therapy. Life Sci. 2017;172:27–41.

    Article  PubMed  Google Scholar 

  425. Johnson C, et al. Inhibition of mast cell-derived histamine decreases human cholangiocarcinoma growth and differentiation via c-kit/stem cell factor–dependent signaling. Am J Pathol. 2016;186(1):123–33.

    Article  PubMed  PubMed Central  Google Scholar 

  426. Grimm M, et al. Prognostic value of histamine H1 receptor expression in oral squamous cell carcinoma. Clin Oral Investig. 2013;17(3):949–55.

    Article  PubMed  Google Scholar 

  427. Martinel Lamas DJ, Rivera ES, Medina VA. Histamine H4 receptor: insights into a potential therapeutic target in breast cancer. Front Biosci. 2015;7(1):1–9.

    Article  Google Scholar 

  428. Medina VA, et al. Histamine in cancer. Histamine H4 receptor: a novel drug target in immunoregulatory and inflammatory diseases; 2013.

    Google Scholar 

  429. Khazaie K, et al. The significant role of mast cells in cancer. Cancer Metastasis Rev. 2011;30(1):45–60.

    Article  PubMed  Google Scholar 

  430. Wei T, et al. Interleukin-17A promotes tongue squamous cell carcinoma metastasis through activating miR-23b/versican pathway. Oncotarget. 2017;8(4):6663.

    Article  PubMed  Google Scholar 

  431. Lodi G, et al. Interventions for treating oral lichen planus: a systematic review. Br J Dermatol. 2012;166(5):938–47.

    Article  PubMed  Google Scholar 

  432. Oda T, et al. Molecular cloning and characterization of a novel type of histamine receptor preferentially expressed in leukocytes. J Biol Chem. 2000;275(47):36781–6.

    Article  PubMed  Google Scholar 

  433. Yamaura K, et al. Expression of the histamine H4 receptor in dermal and articular tissues. Life Sci. 2013;92(2):108–13.

    Article  PubMed  Google Scholar 

  434. Inami Y, Andoh T, Kuraishi Y. Prevention of topical surfactant–induced itch-related responses by chlorogenic acid through the inhibition of increased histamine production in the epidermis. J Pharmacol Sci. 2013;121(3):242–5.

    Article  PubMed  Google Scholar 

  435. Hämäläinen L, et al. Alterations in the expression of EMT-related proteins claudin-1, claudin-4 and claudin-7, E-cadherin, TWIST1 and ZEB1 in oral lichen planus. J Oral Pathol Med. 2019;48(8):735–44.

    Article  PubMed  Google Scholar 

  436. Bussink AP, et al. Evolution of mammalian chitinase (-like) members of family 18 glycosyl hydrolases. Genetics. 2007;177(2):959–70.

    Article  PubMed  PubMed Central  Google Scholar 

  437. Kawai T, Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity. 2011;34(5):637–50.

    Article  PubMed  Google Scholar 

  438. Tampa M, et al. Markers of oral lichen planus malignant transformation. Dis Markers. 2018;2018:1959506.

    Article  PubMed  PubMed Central  Google Scholar 

  439. Poon IK, et al. Apoptotic cell clearance: basic biology and therapeutic potential. Nat Rev Immunol. 2014;14(3):166–80.

    Article  PubMed  PubMed Central  Google Scholar 

  440. Lee CG, et al. Role of chitin and chitinase/chitinase-like proteins in inflammation, tissue remodeling, and injury. Annu Rev Physiol. 2011;73:479–501.

    Article  PubMed  Google Scholar 

  441. Johansen JS, et al. Serum YKL-40, a new prognostic biomarker in cancer patients? Cancer Epidemiol Biomark Prev. 2006;15(2):194–202.

    Article  Google Scholar 

  442. Imai Y, et al. YKL-40 is a serum biomarker reflecting the severity of cutaneous lesions in psoriatic arthritis. J Dermatol. 2013;40(4):294–6.

    Article  PubMed  Google Scholar 

  443. Imai Y, et al. YKL-40 (chitinase 3-like-1) as a biomarker for psoriasis vulgaris and pustular psoriasis. J Dermatol Sci. 2011;64(1):75–7.

    Article  PubMed  Google Scholar 

  444. Alpsoy S, et al. Atherosclerosis, some serum inflammatory markers in psoriasis. G Ital Dermatol Venereol. 2014;149(2):167–75.

    PubMed  Google Scholar 

  445. Erfan G, et al. Serum YKL-40: a potential biomarker for psoriasis or endothelial dysfunction in psoriasis? Mol Cell Biochem. 2015;400(1):207–12.

    Article  PubMed  Google Scholar 

  446. Salomon J, et al. Chitinase-3-like protein 1 (YKL-40) Is expressed in lesional skin in hidradenitis suppurativa. In Vivo. 2019;33(1):141–3.

    Article  PubMed  PubMed Central  Google Scholar 

  447. Salomon J, et al. Chitinase-3-like protein 1 (YKL-40) is a new biomarker of inflammation in psoriasis. Mediat Inflamm. 2017;2017:9538451.

    Article  Google Scholar 

  448. Abu El-Hamd M, et al. Serum YKL-40 in patients with psoriasis vulgaris treated by narrow-band UVB phototherapy. J Dermatolog Treat. 2019;30(6):545–8.

    Article  PubMed  Google Scholar 

  449. Khattab FM, Said NM. Chitinase-3-like protein 1 (YKL-40): novel biomarker of lichen planus. Int J Dermatol. 2019;58(9):993–6.

    Article  PubMed  Google Scholar 

  450. Humberto JSM, et al. Cytokines, cortisol, and nitric oxide as salivary biomarkers in oral lichen planus: a systematic review. Braz Oral Res. 2018;32:e82.

    Article  PubMed  Google Scholar 

  451. Monaco C, et al. T-cell-mediated signalling in immune, inflammatory and angiogenic processes: the cascade of events leading to inflammatory diseases. Curr Drug Targets Inflamm Allergy. 2004;3(1):35–42.

    Article  PubMed  Google Scholar 

  452. Christopoulos A, et al. Biology of vascular endothelial growth factor and its receptors in head and neck cancer: beyond angiogenesis. Head Neck. 2011;33(8):1220–9.

    Article  PubMed  Google Scholar 

  453. Li Y, et al. Salivary mycobiome dysbiosis and its potential impact on bacteriome shifts and host immunity in oral lichen planus. Int J Oral Sci. 2019;11(2):1–10.

    Article  Google Scholar 

  454. Rios H, et al. Periostin null mice exhibit dwarfism, incisor enamel defects, and an early-onset periodontal disease-like phenotype. Mol Cell Biol. 2005;25(24):11131–44.

    Article  PubMed  PubMed Central  Google Scholar 

  455. Ruan K, Bao S, Ouyang G. The multifaceted role of periostin in tumorigenesis. Cell Mol Life Sci. 2009;66(14):2219–30.

    Article  PubMed  Google Scholar 

  456. Zhang ZR, et al. Expression and clinical significance of periostin in oral lichen planus. Exp Therap Med. 2018;15(6):5141–7.

    Google Scholar 

  457. Barnes L, et al. Pathology and genetics of head and neck tumours, vol. 9. IARC; 2005.

    Google Scholar 

  458. Rode M, Kogoj-Rode M. Malignant potential of the reticular form of oral lichen planus over a 25-year observation period in 55 patients from Slovenia. J Oral Sci. 2002;44(2):109–11.

    PubMed  Google Scholar 

  459. van der Meij EH, Mast H, van der Waal I. The possible premalignant character of oral lichen planus and oral lichenoid lesions: a prospective five-year follow-up study of 192 patients. Oral Oncol. 2007;43(8):742–8.

    Article  PubMed  Google Scholar 

  460. Oliveira Alves MG, et al. Oral lichen planus: a retrospective study of 110 Brazilian patients. BMC Res Notes. 2010;3:157.

    Article  PubMed  PubMed Central  Google Scholar 

  461. Radochová V, Dřízhal I, Slezák R. A retrospective study of 171 patients with oral lichen planus in the East Bohemia-Czech Republic–single center experience. J Clin Exp Dent. 2014;6(5):e556.

    Article  PubMed  PubMed Central  Google Scholar 

  462. Georgakopoulou EA, et al. Oral lichen planus as a preneoplastic inflammatory model. J Biomed Biotechnol. 2012;2012:759626.

    Article  PubMed  PubMed Central  Google Scholar 

  463. Lodi G, et al. Current controversies in oral lichen planus: report of an international consensus meeting. Part 2. Clinical management and malignant transformation. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2005;100(2):164–78.

    Article  PubMed  Google Scholar 

  464. van der Meij EH, et al. A review of the recent literature regarding malignant transformation of oral lichen planus. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1999;88(3):307–10.

    Article  PubMed  Google Scholar 

  465. Mattsson U, Jontell M, Holmstrup P. Oral lichen planus and malignant transformation: is a recall of patients justified? Crit Rev Oral Biol Med. 2002;13(5):390–6.

    Article  PubMed  Google Scholar 

  466. Larsson A, Warfvinge G. Malignant transformation of oral lichen planus. Oral Oncol. 2003;39(6):630–1.

    Article  PubMed  Google Scholar 

  467. Gonzalez-Moles MA, Scully C, Gil-Montoya JA. Oral lichen planus: controversies surrounding malignant transformation. Oral Dis. 2008;14(3):229–43.

    Article  PubMed  Google Scholar 

  468. Fitzpatrick SG, Hirsch SA, Gordon SC. The malignant transformation of oral lichen planus and oral lichenoid lesions: a systematic review. J Am Dent Assoc. 2014;145(1):45–56.

    Article  PubMed  Google Scholar 

  469. Ingafou M, et al. Oral lichen planus: a retrospective study of 690 British patients. Oral Dis. 2006;12(5):463–8.

    Article  PubMed  Google Scholar 

  470. Pakfetrat A, et al. Oral Lichen Planus: a retrospective study of 420 Iranian patients. Med Oral Patol Oral Cir Bucal. 2009;14(7):E315–8.

    PubMed  Google Scholar 

  471. Kaplan I, et al. The dynamics of oral lichen planus: a retrospective clinicopathological study. Head Neck Pathol. 2012;6(2):178–83.

    Article  PubMed  Google Scholar 

  472. Bermejo-Fenoll A, et al. A retrospective clinicopathological study of 550 patients with oral lichen planus in south-eastern Spain. J Oral Pathol Med. 2010;39(6):491–6.

    Article  PubMed  Google Scholar 

  473. Torrente-Castells E, et al. Clinical features of oral lichen planus. A retrospective study of 65 cases. Med Oral Patol Oral Cir Bucal. 2010;15(5):e685–90.

    Article  PubMed  Google Scholar 

  474. Shen ZY, et al. A retrospective clinicopathological study on oral lichen planus and malignant transformation: analysis of 518 cases. Med Oral Patol Oral Cir Bucal. 2012;17(6):e943–7.

    Article  PubMed  PubMed Central  Google Scholar 

  475. Aghbari SMH, et al. Malignant transformation of oral lichen planus and oral lichenoid lesions: a meta-analysis of 20095 patient data. Oral Oncol. 2017;68:92–102.

    Article  PubMed  Google Scholar 

  476. Krutchkoff DJ, Cutler L, Laskowski S. Oral lichen planus: the evidence regarding potential malignant transformation. J Oral Pathol. 1978;7(1):1–7.

    Article  PubMed  Google Scholar 

  477. Rad M, et al. Correlation between clinical and histopathologic diagnoses of oral lichen planus based on modified WHO diagnostic criteria. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;107(6):796–800.

    Article  PubMed  Google Scholar 

  478. van der Meij EH, Schepman KP, van der Waal I. The possible premalignant character of oral lichen planus and oral lichenoid lesions: a prospective study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2003;96(2):164–71.

    Article  PubMed  Google Scholar 

  479. van der Meij EH, van der Waal I. Lack of clinicopathologic correlation in the diagnosis of oral lichen planus based on the presently available diagnostic criteria and suggestions for modifications. J Oral Pathol Med. 2003;32(9):507–12.

    Article  PubMed  Google Scholar 

  480. Giuliani M, et al. Rate of malignant transformation of oral lichen planus: a systematic review. Oral Dis. 2019;25(3):693–709.

    Article  PubMed  Google Scholar 

  481. González-Moles M, et al. Malignant transformation risk of oral lichen planus: a systematic review and comprehensive meta-analysis. Oral Oncol. 2019;96:121–30.

    Article  PubMed  Google Scholar 

  482. Gandolfo S, et al. Risk of oral squamous cell carcinoma in 402 patients with oral lichen planus: a follow-up study in an Italian population. Oral Oncol. 2004;40(1):77–83.

    Article  PubMed  Google Scholar 

  483. Lozada-Nur F. Oral lichen planus and oral cancer: is there enough epidemiologic evidence? Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2000;89(3):265–6.

    Article  PubMed  Google Scholar 

  484. Ma J, et al. The magnitude of the association between human papillomavirus and oral lichen planus: a meta-analysis. PLoS One. 2016;11(8):e0161339.

    Article  PubMed  PubMed Central  Google Scholar 

  485. Liu T, et al. Study on expression of p16 and human papillomavirus 16 and 18 (E6) in OLP and its malignant transformation. Pathol Res Pract. 2018;214(2):296–302.

    Article  PubMed  Google Scholar 

  486. Ismail SB, Kumar SK, Zain RB. Oral lichen planus and lichenoid reactions: etiopathogenesis, diagnosis, management and malignant transformation. J Oral Sci. 2007;49(2):89–106.

    Article  PubMed  Google Scholar 

  487. Eisenberg E. Oral lichen planus: a benign lesion. J Oral Maxillofac Surg. 2000;58(11):1278–85.

    Article  PubMed  Google Scholar 

  488. Mignogna MD, Fedele S, Lo Russo L. Dysplasia/neoplasia surveillance in oral lichen planus patients: a description of clinical criteria adopted at a single centre and their impact on prognosis. Oral Oncol. 2006;42(8):819–24.

    Article  PubMed  Google Scholar 

  489. Mignogna MD, et al. Field cancerization in oral lichen planus. Eur J Surg Oncol. 2007;33(3):383–9.

    Article  PubMed  Google Scholar 

  490. Mignogna MD, et al. Clinical guidelines in early detection of oral squamous cell carcinoma arising in oral lichen planus: a 5-year experience. Oral Oncol. 2001;37(3):262–7.

    Article  PubMed  Google Scholar 

  491. Slaughter DP, Southwick HW, Smejkal W. Field cancerization in oral stratified squamous epithelium; clinical implications of multicentric origin. Cancer. 1953;6(5):963–8.

    Article  PubMed  Google Scholar 

  492. Braakhuis BJ, et al. A genetic explanation of Slaughter’s concept of field cancerization: evidence and clinical implications. Cancer Res. 2003;63(8):1727–30.

    PubMed  Google Scholar 

  493. Cheng YS, et al. Diagnosis of oral lichen planus: a position paper of the American Academy of Oral and Maxillofacial Pathology. Oral Surg Oral Med Oral Pathol Oral Radiol. 2016;122(3):332–54.

    Article  PubMed  Google Scholar 

  494. Kramer IR, et al. Definition of leukoplakia and related lesions: an aid to studies on oral precancer. Oral Surg Oral Med Oral Pathol. 1978;46(4):518–39.

    Article  PubMed  Google Scholar 

  495. van der Meij EH, et al. Interobserver and intraobserver variability in the clinical assessment of oral lichen planus. J Oral Pathol Med. 2002;31(2):95–8.

    Article  PubMed  Google Scholar 

  496. Choi S, Myers JN. Molecular pathogenesis of oral squamous cell carcinoma: implications for therapy. J Dent Res. 2008;87(1):14–32.

    Article  PubMed  Google Scholar 

  497. Fatahzadeh M, Rinaggio J, Chiodo T. Squamous cell carcinoma arising in an oral lichenoid lesion. J Am Dent Assoc. 2004;135(6):754–9. quiz 796

    Article  PubMed  Google Scholar 

  498. Lo Muzio L, et al. The possible association between oral lichen planus and oral squamous cell carcinoma: a clinical evaluation on 14 cases and a review of the literature. Oral Oncol. 1998;34(4):239–46.

    Article  PubMed  Google Scholar 

  499. Hande AH, et al. Evidence based demonstration of the concept of ‘field cancerization’ by p53 expression in mirror image biopsies of patients with oral squamous cell carcinoma—an immunohistochemical study. Romanian J Morphol Embryol. 2015;56(3):1027–33.

    Google Scholar 

  500. Mignogna MD, et al. Clinical behaviour of malignant transforming oral lichen planus. Eur J Surg Oncol. 2002;28(8):838–43.

    Article  PubMed  Google Scholar 

  501. Markopoulos AK, et al. Malignant potential of oral lichen planus; a follow-up study of 326 patients. Oral Oncol. 1997;33(4):263–9.

    Article  PubMed  Google Scholar 

  502. Mignogna MD, et al. Immune activation and chronic inflammation as the cause of malignancy in oral lichen planus: is there any evidence ? Oral Oncol. 2004;40(2):120–30.

    Article  PubMed  Google Scholar 

  503. Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010;140(6):883–99.

    Article  PubMed  PubMed Central  Google Scholar 

  504. Zamarron BF, Chen W. Dual roles of immune cells and their factors in cancer development and progression. Int J Biol Sci. 2011;7(5):651–8.

    Article  PubMed  PubMed Central  Google Scholar 

  505. Rich J, Borton A, Wang X. Transforming growth factor-beta signaling in cancer. Microsc Res Tech. 2001;52(4):363–73.

    Article  PubMed  Google Scholar 

  506. Xia J, et al. Expressions of CXCR7/ligands may be involved in oral carcinogenesis. J Mol Histol. 2011;42(2):175–80.

    Article  PubMed  Google Scholar 

  507. Kane LP, et al. Induction of NF-kappaB by the Akt/PKB kinase. Curr Biol. 1999;9(11):601–4.

    Article  PubMed  Google Scholar 

  508. Kane LP, et al. Akt-dependent phosphorylation specifically regulates Cot induction of NF-kappa B-dependent transcription. Mol Cell Biol. 2002;22(16):5962–74.

    Article  PubMed  PubMed Central  Google Scholar 

  509. Chan G, et al. Cyclooxygenase-2 expression is up-regulated in squamous cell carcinoma of the head and neck. Cancer Res. 1999;59(5):991–4.

    PubMed  Google Scholar 

  510. Yao L, et al. The function and mechanism of COX-2 in angiogenesis of gastric cancer cells. J Exp Clin Cancer Res. 2011;30(1):13.

    Article  PubMed  PubMed Central  Google Scholar 

  511. Wang D, Dubois RN. Prostaglandins and cancer. Gut. 2006;55(1):115–22.

    Article  PubMed  PubMed Central  Google Scholar 

  512. Lysitsa S, et al. COX-2 expression in oral lichen planus. Dermatology. 2008;217(2):150–5.

    Article  PubMed  Google Scholar 

  513. Battino M, et al. Oxidative stress markers in oral lichen planus. Biofactors. 2008;33(4):301–10.

    Article  PubMed  Google Scholar 

  514. Ergun S, et al. Evaluation of oxidative stress and antioxidant profile in patients with oral lichen planus. J Oral Pathol Med. 2011;40(4):286–93.

    Article  PubMed  Google Scholar 

  515. Kawanishi S, et al. Oxidative and nitrative DNA damage in animals and patients with inflammatory diseases in relation to inflammation-related carcinogenesis. Biol Chem. 2006;387(4):365–72.

    Article  PubMed  Google Scholar 

  516. Zhang L, et al. Molecular analysis of oral lichen planus. A premalignant lesion? Am J Pathol. 1997;151(2):323–7.

    PubMed  PubMed Central  Google Scholar 

  517. Kim J, et al. Evaluation of premalignant potential in oral lichen planus using interphase cytogenetics. J Oral Pathol Med. 2001;30(2):65–72.

    Article  PubMed  Google Scholar 

  518. Mithani SK, et al. Molecular genetics of premalignant oral lesions. Oral Dis. 2007;13(2):126–33.

    Article  PubMed  Google Scholar 

  519. Zhang L, et al. High frequency of allelic loss in dysplastic lichenoid lesions. Lab Investig. 2000;80(2):233–7.

    Article  PubMed  Google Scholar 

  520. Accurso BT, et al. Allelic imbalance in oral lichen planus and assessment of its classification as a premalignant condition. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011;112(3):359–66.

    Article  PubMed  PubMed Central  Google Scholar 

  521. Sudbø J, et al. DNA content as a prognostic marker in patients with oral leukoplakia. N Engl J Med. 2001;344(17):1270–8.

    Article  PubMed  Google Scholar 

  522. Sudbø J, et al. The influence of resection and aneuploidy on mortality in oral leukoplakia. N Engl J Med. 2004;350(14):1405–13.

    Article  PubMed  Google Scholar 

  523. Girod SC, Pape HD, Krueger GR. p53 and PCNA expression in carcinogenesis of the oropharyngeal mucosa. Eur J Cancer B Oral Oncol. 1994;30b(6):419–23.

    Article  PubMed  Google Scholar 

  524. O’Flatharta C, et al. Telomerase activity detected in oral lichen planus by RNA in situ hybridisation: not a marker for malignant transformation. J Clin Pathol. 2002;55(8):602–7.

    Article  PubMed  PubMed Central  Google Scholar 

  525. Valente G, et al. Sequential immunohistochemical p53 expression in biopsies of oral lichen planus undergoing malignant evolution. J Oral Pathol Med. 2001;30(3):135–40.

    Article  PubMed  Google Scholar 

  526. Kilpi A, et al. Expression of c-erbB-2 protein in keratinocytes of oral mucosal lichen planus and subsequent squamous cell carcinoma. Eur J Oral Sci. 1996;104(3):278–84.

    Article  PubMed  Google Scholar 

  527. Parise Junior O, et al. Prognostic impact of p53, c-erbB-2 and epidermal growth factor receptor on head and neck carcinoma. Sao Paulo Med J. 2004;122(6):264–8.

    Article  PubMed  Google Scholar 

  528. Acay RR, et al. Evaluation of proliferative potential in oral lichen planus and oral lichenoid lesions using immunohistochemical expression of p53 and Ki67. Oral Oncol. 2006;42(5):475–80.

    Article  PubMed  Google Scholar 

  529. Zargaran M, et al. Suitability/unsuitability of cell proliferation as an indicator of malignant potential in oral lichen planus: an immunohistochemical study. Asian Pac J Cancer Prev. 2013;14(11):6979–83.

    Article  PubMed  Google Scholar 

  530. Nankivell P, et al. Investigation of p16(INK4a) as a prognostic biomarker in oral epithelial dysplasia. J Oral Pathol Med. 2014;43(4):245–9.

    Article  PubMed  Google Scholar 

  531. Han JS, et al. Bimodal activation of BubR1 by Bub3 sustains mitotic checkpoint signaling. Proc Natl Acad Sci U S A. 2014;111(40):E4185–93.

    Article  PubMed  PubMed Central  Google Scholar 

  532. Mukherjee A, et al. The role of BUB and CDC proteins in low-grade breast cancers. Lancet. 2015;385(Suppl 1):S72.

    Article  PubMed  Google Scholar 

  533. Bangur CS, et al. Identification of genes over-expressed in small cell lung carcinoma using suppression subtractive hybridization and cDNA microarray expression analysis. Oncogene. 2002;21(23):3814–25.

    Article  PubMed  Google Scholar 

  534. Friedman RS, et al. Molecular and immunological evaluation of the transcription factor SOX-4 as a lung tumor vaccine antigen. J Immunol. 2004;172(5):3319–27.

    Article  PubMed  Google Scholar 

  535. Rosa EA, et al. Oral lichen planus and malignant transformation: the role of p16, Ki-67, Bub-3 and SOX4 in assessing precancerous potential. Exp Ther Med. 2018;15(5):4157–66.

    PubMed  PubMed Central  Google Scholar 

  536. van der Waal I. Oral potentially malignant disorders: is malignant transformation predictable and preventable? Med Oral Patol Oral Cir Bucal. 2014;19(4):e386–90.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaetano Isola .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Isola, G., Santonocito, S., Leonardi, R., Polizzi, A. (2023). Pathogenesis. In: Oral Lichen Planus and Lichenoid Lesions. Springer, Cham. https://doi.org/10.1007/978-3-031-29765-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-29765-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-29764-9

  • Online ISBN: 978-3-031-29765-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics