Skip to main content

Advertisement

Log in

Biological and pathological activities of interleukin-22

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Interleukin (IL)-22, a member of the IL-10 family, is a cytokine secreted by several types of immune cells including IL-22+CD4+ T cells (Th22) and IL-22 expressing innate leukocytes (ILC22). Recent studies have demonstrated that IL-22 is a key component in mucosal barrier defense, tissue repair, epithelial cell survival, and proliferation. Furthermore, accumulating evidence has defined both protective and pathogenic properties of IL-22 in a number of conditions including autoimmune disease, infection, and malignancy. In this review, we summarize the expression and signaling pathway and functional characteristics of the IL-22 and IL-22 receptor axis in physiological and pathological scenarios and discuss the potential to target IL-22 signaling to treat human diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sabat R, Ouyang W, Wolk K (2014) Therapeutic opportunities of the IL-22-IL-22R1 system. Nat Rev Drug Discov 13:21–38

    Article  CAS  PubMed  Google Scholar 

  2. Dumoutier L, Louahed J, Renauld JC (2000) Cloning and characterization of IL-10-related T cell-derived inducible factor (IL-TIF), a novel cytokine structurally related to IL-10 and inducible by IL-9. J Immunol (Baltimore, Md: 1950) 164:1814–1819

    Article  CAS  Google Scholar 

  3. Dumoutier L, Van Roost E, Ameye G, Michaux L, Renauld JC (2000) IL-TIF/IL-22: genomic organization and mapping of the human and mouse genes. Genes Immun 1:488–494

    Article  CAS  PubMed  Google Scholar 

  4. Dumoutier L, Van Roost E, Colau D, Renauld JC (2000) Human interleukin-10-related T cell-derived inducible factor: molecular cloning and functional characterization as an hepatocyte-stimulating factor. Proc Natl Acad Sci U S A 97:10144–10149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Xie MH et al (2000) Interleukin (IL)-22, a novel human cytokine that signals through the interferon receptor-related proteins CRF2-4 and IL-22R. J Biol Chem 275:31335–31339

    Article  CAS  PubMed  Google Scholar 

  6. Nagem RA et al (2002) Crystal structure of recombinant human interleukin-22. Structure 10:1051–1062

    Article  CAS  PubMed  Google Scholar 

  7. Commins S, Steinke JW, Borish L (2008) The extended IL-10 superfamily: IL-10, IL-19, IL-20, IL-22, IL-24, IL-26, IL-28, and IL-29. J Allergy Clin Immunol 121:1108–1111

    Article  CAS  PubMed  Google Scholar 

  8. de Oliveira Neto M et al (2008) Interleukin-22 forms dimers that are recognized by two interleukin-22R1 receptor chains. Biophys J 94:1754–1765

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Bleicher L et al (2008) Crystal structure of the IL-22/IL-22R1 complex and its implications for the IL-22 signaling mechanism. FEBS Lett 582:2985–2992

    Article  CAS  PubMed  Google Scholar 

  10. Aggarwal S, Xie MH, Maruoka M, Foster J, Gurney AL (2001) Acinar cells of the pancreas are a target of interleukin-22. J Interf Cytokine Res Off J Int S Interf Cytokine Res 21:1047–1053

    Article  CAS  Google Scholar 

  11. Dumoutier L, Lejeune D, Colau D, Renauld JC (2001) Cloning and characterization of IL-22 binding protein, a natural antagonist of IL-10-related T cell-derived inducible factor/IL-22. J Immunol (Baltimore, Md: 1950) 166:7090–7095

    Article  CAS  Google Scholar 

  12. Ciccia F et al (2015) Interleukin (IL)-22 receptor 1 is over-expressed in primary Sjogren's syndrome and Sjogren-associated non-Hodgkin lymphomas and is regulated by IL-18. Clin Exp Immunol 181:219–229

    Article  CAS  PubMed  Google Scholar 

  13. Li J et al (2004) Temporal associations between interleukin 22 and the extracellular domains of IL-22R and IL-10R2. Int Immunopharmacol 4:693–708

    Article  CAS  PubMed  Google Scholar 

  14. Lejeune D et al (2002) Interleukin-22 (IL-22) activates the JAK/STAT, ERK, JNK, and p38 MAP kinase pathways in a rat hepatoma cell line. Pathways that are shared with and distinct from IL-10. J Biol Chem 277:33676–33682

    Article  CAS  PubMed  Google Scholar 

  15. Nagalakshmi ML, Rascle A, Zurawski S, Menon S, de Waal Malefyt R (2004) Interleukin-22 activates STAT3 and induces IL-10 by colon epithelial cells. Int Immunopharmacol 4:679–691

    Article  CAS  PubMed  Google Scholar 

  16. Hernandez PP, Mahlakoiv T (2015) Interferon-lambda and interleukin 22 act synergistically for the induction of interferon-stimulated genes and control of rotavirus infection. 16, 698–707, doi:10.1038/ni.3180

  17. Naher L et al (2012) STAT3 signal transduction through interleukin-22 in oral squamous cell carcinoma. Int J Oncol 41:1577–1586

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Jones BC, Logsdon NJ, Walter MR (2008) Structure of IL-22 bound to its high-affinity IL-22R1 chain. Structure (London, England: 1993) 16:1333–1344

    Article  CAS  Google Scholar 

  19. Kotenko SV et al (2001) Identification, cloning, and characterization of a novel soluble receptor that binds IL-22 and neutralizes its activity. J Immunol (Baltimore, Md : 1950) 166:7096–7103

    Article  CAS  Google Scholar 

  20. Wei CC, Ho TW, Liang WG, Chen GY, Chang MS (2003) Cloning and characterization of mouse IL-22 binding protein. Genes Immun 4:204–211

    Article  CAS  PubMed  Google Scholar 

  21. Wu PW et al (2008) IL-22R, IL-10R2, and IL-22BP binding sites are topologically juxtaposed on adjacent and overlapping surfaces of IL-22. J Mol Biol 382:1168–1183

    Article  CAS  PubMed  Google Scholar 

  22. de Moura PR et al (2009) Crystal structure of a soluble decoy receptor IL-22BP bound to interleukin-22. FEBS Lett 583:1072–1077

    Article  PubMed  CAS  Google Scholar 

  23. Martin JC et al (2014) Interleukin-22 binding protein (IL-22BP) is constitutively expressed by a subset of conventional dendritic cells and is strongly induced by retinoic acid. Mucosal Immunol 7:101–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Huber S et al (2012) IL-22BP is regulated by the inflammasome and modulates tumorigenesis in the intestine. Nature 491:259–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gruenberg BH et al (2001) A novel, soluble homologue of the human IL-10 receptor with preferential expression in placenta. Genes Immun 2:329–334

    Article  CAS  PubMed  Google Scholar 

  26. Weiss B et al (2004) Cloning of murine IL-22 receptor alpha 2 and comparison with its human counterpart. Genes Immun 5:330–336

    Article  CAS  PubMed  Google Scholar 

  27. Martin JC et al (2015) IL-22BP is produced by eosinophils in human gut and blocks IL-22 protective actions during colitis. Mucosal Immunol. doi:10.1038/mi.2015.83

    PubMed Central  Google Scholar 

  28. Yang X et al (2014) Increased urinary interleukin 22 binding protein levels correlate with lupus nephritis activity. Jo Rheumatol 41:1793–1800

    Article  CAS  Google Scholar 

  29. Laaksonen H et al (2014) The multiple sclerosis risk gene IL22RA2 contributes to a more severe murine autoimmune neuroinflammation. Genes Immun 15:457–465

    Article  CAS  PubMed  Google Scholar 

  30. Wolk K et al (2007) IL-22 induces lipopolysaccharide-binding protein in hepatocytes: a potential systemic role of IL-22 in Crohn's disease. J Immunol (Baltimore, Md: 1950) 178:5973–5981

    Article  CAS  Google Scholar 

  31. Liu Y et al (2011) Interleukin-21 induces the differentiation of human Tc22 cells via phosphorylation of signal transducers and activators of transcription. Immunology 132:540–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wolk K, Kunz S, Asadullah K, Sabat R (2002) Cutting edge: immune cells as sources and targets of the IL-10 family members? J Immunol (Baltimore, Md: 1950) 168:5397–5402

    Article  CAS  Google Scholar 

  33. Chung Y et al (2006) Expression and regulation of IL-22 in the IL-17-producing CD4+ T lymphocytes. Cell Res 16:902–907

    Article  CAS  PubMed  Google Scholar 

  34. Nograles KE et al (2009) IL-22-producing "T22" T cells account for upregulated IL-22 in atopic dermatitis despite reduced IL-17-producing TH17 T cells. J Allergy Clin Immunol 123:1244–1252.e1242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liang SC et al (2006) Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med 203:2271–2279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rutz S, Eidenschenk C, Ouyang W (2013) IL-22, not simply a Th17 cytokine. Immunol Rev 252:116–132

    Article  PubMed  CAS  Google Scholar 

  37. Duhen T, Geiger R, Jarrossay D, Lanzavecchia A, Sallusto F (2009) Production of interleukin 22 but not interleukin 17 by a subset of human skin-homing memory T cells. Nat Immunol 10:857–863

    Article  CAS  PubMed  Google Scholar 

  38. Brembilla NC et al (2011) In vivo dioxin favors interleukin-22 production by human CD4+ T cells in an aryl hydrocarbon receptor (AhR)-dependent manner. PLoS One 6, e18741. doi:10.1371/journal.pone.0018741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ramirez JM et al (2010) Activation of the aryl hydrocarbon receptor reveals distinct requirements for IL-22 and IL-17 production by human T helper cells. Eur J Immunol 40:2450–2459

    Article  CAS  PubMed  Google Scholar 

  40. Mangan PR et al (2006) Transforming growth factor-beta induces development of the T(H)17 lineage. Nature 441:231–234

    Article  CAS  PubMed  Google Scholar 

  41. Aliahmadi E et al (2009) TLR2-activated human langerhans cells promote Th17 polarization via IL-1beta, TGF-beta and IL-23. Eur J Immunol 39:1221–1230

    Article  CAS  PubMed  Google Scholar 

  42. Dubin PJ, Kolls JK (2008) Th17 cytokines and mucosal immunity. Immunol Rev 226:160–171

    Article  CAS  PubMed  Google Scholar 

  43. Zou W, Restifo NP (2010) T(H)17 cells in tumour immunity and immunotherapy. Nat Rev Immunol 10:248–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Trifari S, Kaplan CD, Tran EH, Crellin NK, Spits H (2009) Identification of a human helper T cell population that has abundant production of interleukin 22 and is distinct from T(H)-17, T(H)1 and T(H)2 cells. Nat Immunol 10:864–871

    Article  CAS  PubMed  Google Scholar 

  45. Benham H et al (2013) Th17 and Th22 cells in psoriatic arthritis and psoriasis. Arthritis Res Ther 15:R136

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Zhang N, Pan HF, Ye DQ (2011) Th22 in inflammatory and autoimmune disease: prospects for therapeutic intervention. Mol Cell Biochem 353:41–46

    Article  CAS  PubMed  Google Scholar 

  47. Mabuchi T, Takekoshi T, Hwang ST (2011) Epidermal CCR6+ gammadelta T cells are major producers of IL-22 and IL-17 in a murine model of psoriasiform dermatitis. J Immunol (Baltimore, Md: 1950) 187:5026–5031

    Article  CAS  Google Scholar 

  48. Zhou L et al (2008) TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function. Nature 453:236–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sutton CE et al (2009) Interleukin-1 and IL-23 induce innate IL-17 production from gammadelta T cells, amplifying Th17 responses and autoimmunity. Immunity 31:331–341

    Article  CAS  PubMed  Google Scholar 

  50. Mielke LA et al (2013) Retinoic acid expression associates with enhanced IL-22 production by gammadelta T cells and innate lymphoid cells and attenuation of intestinal inflammation. J Exp Med 210:1117–1124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Van Maele L et al (2010) TLR5 signaling stimulates the innate production of IL-17 and IL-22 by CD3(neg)CD127+ immune cells in spleen and mucosa. J Immunol (Baltimore, Md: 1950) 185:1177–1185

    Article  CAS  Google Scholar 

  52. Tominaga A et al (2013) Autonomous cure of damaged human intestinal epithelial cells by TLR2 and TLR4-dependent production of IL-22 in response to Spirulina polysaccharides. Int Immunopharmacol 17:1009–1019

    Article  CAS  PubMed  Google Scholar 

  53. Kulkarni OP et al (2014) Toll-like receptor 4-induced IL-22 accelerates kidney regeneration. J Am Soc Nephrol 25:978–989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sonnenberg GF, Mjosberg J, Spits H, Artis D (2013) SnapShot: innate lymphoid cells. Immunity 39:622–622.e621

    Article  CAS  PubMed  Google Scholar 

  55. Hazenberg MD, Spits H (2014) Human innate lymphoid cells. Blood 124:700–709

    Article  CAS  PubMed  Google Scholar 

  56. Eken A, Singh AK, Treuting PM, Oukka M (2014) IL-23R+ innate lymphoid cells induce colitis via interleukin-22-dependent mechanism. Mucosal Immunol 7:143–154

    Article  CAS  PubMed  Google Scholar 

  57. Guo X et al (2014) Induction of innate lymphoid cell-derived interleukin-22 by the transcription factor STAT3 mediates protection against intestinal infection. Immunity 40:25–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kirchberger S et al (2013) Innate lymphoid cells sustain colon cancer through production of interleukin-22 in a mouse model. Jo Exp Med 210:917–931

    Article  CAS  Google Scholar 

  59. Lee Y et al (2013) Intestinal Lin- c-Kit+ NKp46- CD4- population strongly produces IL-22 upon IL-1beta stimulation. J Immunol (Baltimore, Md: 1950) 190:5296–5305

    Article  CAS  Google Scholar 

  60. Longman RS et al (2014) CX(3)CR1(+) mononuclear phagocytes support colitis-associated innate lymphoid cell production of IL-22. J Exp Med 211:1571–1583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Annunziato F, Romagnani C, Romagnani S (2015) The 3 major types of innate and adaptive cell-mediated effector immunity. Jo Allergy Clin Immunol 135:626–635

    Article  CAS  Google Scholar 

  62. Walker JA, Barlow JL, McKenzie AN (2013) Innate lymphoid cells--how did we miss them? Nat Rev Immunol 13:75–87

    Article  CAS  PubMed  Google Scholar 

  63. Killig M, Glatzer T, Romagnani C (2014) Recognition strategies of group 3 innate lymphoid cells. Front Immunol 5:142

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Satoh-Takayama N et al (2008) Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. Immunity 29:958–970

    Article  CAS  PubMed  Google Scholar 

  65. Sanos SL et al (2009) RORgammat and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells. Nat Immunol 10:83–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Spits H, Di Santo JP (2011) The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling. Nat Immunol 12:21–27

    Article  CAS  PubMed  Google Scholar 

  67. Xu W et al (2015) NFIL3 orchestrates the emergence of common helper innate lymphoid cell precursors. Cell Rep 10:2043–2054

    Article  CAS  PubMed  Google Scholar 

  68. Yu, X et al (2014) The basic leucine zipper transcription factor NFIL3 directs the development of a common innate lymphoid cell precursor. eLife 3, doi:10.7554/eLife.04406

  69. Geiger TL et al (2014) Nfil3 is crucial for development of innate lymphoid cells and host protection against intestinal pathogens. J Exp Med 211:1723–1731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Seillet C et al (2014) Nfil3 is required for the development of all innate lymphoid cell subsets. J Exp Med 211:1733–1740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Constantinides MG et al (2015) PLZF expression maps the early stages of ILC1 lineage development. Proc Natl Acad Sci U S A 112:5123–5128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Spits H, Cupedo T (2012) Innate lymphoid cells: emerging insights in development, lineage relationships, and function. Annu Rev Immunol 30:647–675

    Article  CAS  PubMed  Google Scholar 

  73. Cupedo T et al (2009) Human fetal lymphoid tissue-inducer cells are interleukin 17-producing precursors to RORC+ CD127+ natural killer-like cells. Nat Immunol 10:66–74

    Article  CAS  PubMed  Google Scholar 

  74. Sun, Z et al (2000) Requirement for RORgamma in thymocyte survival and lymphoid organ development. Science 288, 2369–2373, doi:8641

  75. Mebius RE, Rennert P, Weissman IL (1997) Developing lymph nodes collect CD4+CD3- LTbeta+ cells that can differentiate to APC, NK cells, and follicular cells but not T or B cells. Immunity 7, 493–504, doi:S1074-7613(00)80371-4

  76. Takatori H et al (2009) Lymphoid tissue inducer-like cells are an innate source of IL-17 and IL-22. J Exp Med 206:35–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Luci C et al (2009) Influence of the transcription factor RORgammat on the development of NKp46+ cell populations in gut and skin. Nat Immunol 10:75–82

    Article  CAS  PubMed  Google Scholar 

  78. Cella M et al (2009) A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature 457:722–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ikeuchi H et al (2005) Expression of interleukin-22 in rheumatoid arthritis: potential role as a proinflammatory cytokine. Arthritis Rheum 52:1037–1046

    Article  CAS  PubMed  Google Scholar 

  80. Mashiko S et al (2015) Human mast cells are major IL-22 producers in patients with psoriasis and atopic dermatitis. J Allergy Clin Immunol 136:351–359.e351

    Article  CAS  PubMed  Google Scholar 

  81. Hansson M, Silverpil E, Linden A, Glader P et al (2013) Interleukin-22 produced by alveolar macrophages during activation of the innate immune response. Inflamm Res Off J Eur Histamine Res Soc 62:561–569

    CAS  Google Scholar 

  82. Zindl CL et al (2013) IL-22-producing neutrophils contribute to antimicrobial defense and restitution of colonic epithelial integrity during colitis. Proc Natl Acad Sci U S A 110:12768–12773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Singh B, Nikoopour E, Huszarik K, Elliott JF, Jevnikar AM (2011) Immunomodulation and regeneration of islet Beta cells by cytokines in autoimmune type 1 diabetes. J Interf Cytokine Res Off J Int Soc Interf Cytokine Res 31:711–719

    Article  CAS  Google Scholar 

  84. Hill T et al (2013) The involvement of interleukin-22 in the expression of pancreatic beta cell regenerative Reg genes. Cell Regen (London, England) 2, 2, doi:10.1186/2045-9769-2-2

  85. Dudakov JA et al (2012) Interleukin-22 drives endogenous thymic regeneration in mice. Science (New York, NY) 336:91–95

    Article  CAS  Google Scholar 

  86. Mitra A, Raychaudhuri SK, Raychaudhuri SP (2012) IL-22 induced cell proliferation is regulated by PI3K/Akt/mTOR signaling cascade. Cytokine 60:38–42

    Article  CAS  PubMed  Google Scholar 

  87. Zhu X et al (2012) Participation of Gab1 and Gab2 in IL-22-mediated keratinocyte proliferation, migration, and differentiation. Mol Cell Biochem 369:255–266

    Article  CAS  PubMed  Google Scholar 

  88. Feng D et al (2012) Interleukin-22 ameliorates cerulein-induced pancreatitis in mice by inhibiting the autophagic pathway. Int J Biol Sci 8:249–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zenewicz LA et al (2007) Interleukin-22 but not interleukin-17 provides protection to hepatocytes during acute liver inflammation. Immunity 27:647–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Radaeva S, Sun R, Pan HN, Hong F, Gao B (2004) Interleukin 22 (IL-22) plays a protective role in T cell-mediated murine hepatitis: IL-22 is a survival factor for hepatocytes via STAT3 activation. Hepatology (Baltimore, Md) 39:1332–1342

    Article  CAS  Google Scholar 

  91. Ki SH et al (2010) Interleukin-22 treatment ameliorates alcoholic liver injury in a murine model of chronic-binge ethanol feeding: role of signal transducer and activator of transcription 3. Hepatology (Baltimore, Md) 52:1291–1300

    Article  CAS  Google Scholar 

  92. Brand S et al (2007) IL-22-mediated liver cell regeneration is abrogated by SOCS-1/3 overexpression in vitro. Am J Physiol Gastrointest Liver Physiol 292:G1019–1028

    Article  CAS  PubMed  Google Scholar 

  93. Aujla SJ et al (2008) IL-22 mediates mucosal host defense against Gram-negative bacterial pneumonia. Nat Med 14:275–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zheng Y et al (2008) Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat Med 14:282–289

    Article  CAS  PubMed  Google Scholar 

  95. Zhao R et al (2014) Elevated peripheral frequencies of Th22 cells: a novel potent participant in obesity and type 2 diabetes. PLoS One 9, e85770. doi:10.1371/journal.pone.0085770

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Wang X et al (2014) Interleukin-22 alleviates metabolic disorders and restores mucosal immunity in diabetes. Nature 514:237–241

    CAS  PubMed  Google Scholar 

  97. Di Lullo G et al (2015) Th22 cells increase in poor prognosis multiple myeloma and promote tumor cell growth and survival. Oncoimmunology 4, e1005460. doi:10.1080/2162402x.2015.1005460

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Huang YH, Cao YF, Jiang ZY, Zhang S, Gao F (2015) Th22 cell accumulation is associated with colorectal cancer development. World J Gastroenterol 21:4216–4224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Akil H et al (2015) IL22/IL-22R pathway induces cell survival in human glioblastoma cells. PLoS One 10, e0119872. doi:10.1371/journal.pone.0119872

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Nardinocchi L et al (2015) Interleukin-17 and interleukin-22 promote tumor progression in human nonmelanoma skin cancer. Eur J Immunol 45:922–931

    Article  CAS  PubMed  Google Scholar 

  101. Qin SY et al (2015) Association of interleukin 22 polymorphisms with gastric cancer risk. Tumour Biol J Int Soc Oncodev Biol Med 36:2033–2039

    Article  CAS  Google Scholar 

  102. Koltsova EK, Grivennikov SI (2014) IL-22 gets to the stem of colorectal cancer. Immunity 40, 639–641, doi:10.1016/j.cytogfr.2014.04.005 10.1016/j.immuni.2014.04.014

  103. Kryczek I et al (2014) IL-22(+)CD4(+) T cells promote colorectal cancer stemness via STAT3 transcription factor activation and induction of the methyltransferase DOT1L. Immunity 40:772–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wolk K et al (2006) IL-22 regulates the expression of genes responsible for antimicrobial defense, cellular differentiation, and mobility in keratinocytes: a potential role in psoriasis. Eur J Immunol 36:1309–1323

    Article  CAS  PubMed  Google Scholar 

  105. Wolk K et al (2009) The Th17 cytokine IL-22 induces IL-20 production in keratinocytes: a novel immunological cascade with potential relevance in psoriasis. Eur J Immunol 39:3570–3581

    Article  CAS  PubMed  Google Scholar 

  106. Wolk K et al (2009) IL-22 and IL-20 are key mediators of the epidermal alterations in psoriasis while IL-17 and IFN-gamma are not. J Mol Med (Berlin, Germany) 87:523–536

    Article  CAS  Google Scholar 

  107. Li W et al (2009) The serine protease marapsin is expressed in stratified squamous epithelia and is up-regulated in the hyperproliferative epidermis of psoriasis and regenerating wounds. J Biol Chem 284:218–228

    Article  CAS  PubMed  Google Scholar 

  108. Brand S et al (2006) IL-22 is increased in active Crohn's disease and promotes proinflammatory gene expression and intestinal epithelial cell migration. Am J Physiol Gastrointest Liver Physiol 290:G827–838

    Article  CAS  PubMed  Google Scholar 

  109. Zenewicz LA et al (2008) Innate and adaptive interleukin-22 protects mice from inflammatory bowel disease. Immunity 29:947–957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Sugimoto K et al (2008) IL-22 ameliorates intestinal inflammation in a mouse model of ulcerative colitis. J Clin Invest 118:534–544

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Mizuno S et al (2014) Cross-talk between RORgammat+ innate lymphoid cells and intestinal macrophages induces mucosal IL-22 production in Crohn's disease. Inflamm Bowel Dis 20:1426–1434

    Article  PubMed  Google Scholar 

  112. Schmechel S et al (2008) Linking genetic susceptibility to Crohn's disease with Th17 cell function: IL-22 serum levels are increased in Crohn's disease and correlate with disease activity and IL23R genotype status. Inflamm Bowel Dis 14:204–212

    Article  PubMed  Google Scholar 

  113. Monteleone I, Pallone F, Monteleone G (2013) Aryl hydrocarbon receptor and colitis. Semin Immunopathol 35:671–675

    Article  CAS  PubMed  Google Scholar 

  114. Sun X, Chalmers L, Fu X, Zhao M (2012) A Molecular Link Between Interleukin 22 and Intestinal Mucosal Wound Healing. Adv Wound Care 1:231–237

    Article  Google Scholar 

  115. Hanash AM et al (2012) Interleukin-22 protects intestinal stem cells from immune-mediated tissue damage and regulates sensitivity to graft versus host disease. Immunity 37:339–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Xue J, Nguyen DT, Habtezion A (2012) Aryl hydrocarbon receptor regulates pancreatic IL-22 production and protects mice from acute pancreatitis. Gastroenterology 143:1670–1680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Pan H, Hong F, Radaeva S, Gao B (2004) Hydrodynamic gene delivery of interleukin-22 protects the mouse liver from concanavalin A-, carbon tetrachloride-, and Fas ligand-induced injury via activation of STAT3. Cell Mol Immunol 1:43–49

    CAS  PubMed  Google Scholar 

  118. Xu X et al (2014) Conventional NK cells can produce IL-22 and promote host defense in Klebsiella pneumoniae pneumonia. J Immunol (Baltimore, Md: 1950) 192:1778–1786

    Article  CAS  PubMed Central  Google Scholar 

  119. Eidenschenk C, Rutz S, Liesenfeld O, Ouyang W (2014) Role of IL-22 in microbial host defense. Curr Top Microbiol Immunol 380:213–236

    CAS  PubMed  Google Scholar 

  120. Van Maele L et al (2014) Activation of Type 3 innate lymphoid cells and interleukin 22 secretion in the lungs during Streptococcus pneumoniae infection. J Infect Dis 210:493–503

    Article  PubMed  CAS  Google Scholar 

  121. Mear JB et al (2014) Candida albicans airway exposure primes the lung innate immune response against Pseudomonas aeruginosa infection through innate lymphoid cell recruitment and interleukin-22-associated mucosal response. Infect Immun 82:306–315

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Matthews K et al (2011) Predominance of interleukin-22 over interleukin-17 at the site of disease in human tuberculosis. Tuberculosis (Edinburgh, Scotland) 91:587–593

    Article  CAS  Google Scholar 

  123. Dhiman R et al (2014) Interleukin 22 inhibits intracellular growth of Mycobacterium tuberculosis by enhancing calgranulin A expression. J Infect Dis 209:578–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Dhiman R et al (2009) IL-22 produced by human NK cells inhibits growth of Mycobacterium tuberculosis by enhancing phagolysosomal fusion. J Immunol (Baltimore, Md: 1950) 183:6639–6645

    Article  CAS  Google Scholar 

  125. Zhang B et al (2014) Viral infection. Prevention and cure of rotavirus infection via TLR5/NLRC4-mediated production of IL-22 and IL-18. Science (New York, NY) 346:861–865

    Article  CAS  Google Scholar 

  126. Guabiraba R et al (2013) IL-22 modulates IL-17A production and controls inflammation and tissue damage in experimental dengue infection. Eur J Immunol 43:1529–1544

    Article  CAS  PubMed  Google Scholar 

  127. Cobleigh MA, Robek MD (2013) Protective and pathological properties of IL-22 in liver disease: implications for viral hepatitis. Am J Pathol 182:21–28

    Article  CAS  PubMed  Google Scholar 

  128. Paget C et al (2012) Interleukin-22 is produced by invariant natural killer T lymphocytes during influenza A virus infection: potential role in protection against lung epithelial damages. J Biol Chem 287:8816–8829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Guo H, Topham DJ (2010) Interleukin-22 (IL-22) production by pulmonary Natural Killer cells and the potential role of IL-22 during primary influenza virus infection. J Virol 84:7750–7759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Misse D et al (2007) IL-22 participates in an innate anti-HIV-1 host-resistance network through acute-phase protein induction. J Immunol (Baltimore, Md: 1950) 178:407–415

    Article  CAS  Google Scholar 

  131. Wang P et al (2012) IL-22 signaling contributes to West Nile encephalitis pathogenesis. PLoS One 7, e44153. doi:10.1371/journal.pone.0044153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Pociask DA et al (2013) IL-22 is essential for lung epithelial repair following influenza infection. Am J Pathol 182:1286–1296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Kumar P, Thakar MS, Ouyang W, Malarkannan S (2013) IL-22 from conventional NK cells is epithelial regenerative and inflammation protective during influenza infection. Mucosal Immunol 6:69–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Zhao J et al (2014) Pathological functions of interleukin-22 in chronic liver inflammation and fibrosis with hepatitis B virus infection by promoting T helper 17 cell recruitment. Hepatology (Baltimore, Md) 59:1331–1342

    Article  CAS  Google Scholar 

  135. Wu LY et al (2015) Up-regulation of interleukin-22 mediates liver fibrosis via activating hepatic stellate cells in patients with hepatitis C. Clin Immunol (Orlando, Fla) 158:77–87

    Article  CAS  Google Scholar 

  136. Sun D et al (2015) Th22 cells control colon tumorigenesis through STAT3 and Polycomb Repression complex 2 signalling. Oncoimmunology

  137. Liu F et al (2014) Genetic polymorphisms and plasma levels of interleukin-22 contribute to the development of nonsmall cell lung cancer. DNA Cell Biol 33:705–714

    Article  PubMed  CAS  Google Scholar 

  138. Kobold S et al (2013) Interleukin-22 is frequently expressed in small- and large-cell lung cancer and promotes growth in chemotherapy-resistant cancer cells. J Thorac Oncol Off Publ Int Assoc Stud Lung Cancer 8:1032–1042

    CAS  Google Scholar 

  139. Zhang W et al (2008) Antiapoptotic activity of autocrine interleukin-22 and therapeutic effects of interleukin-22-small interfering RNA on human lung cancer xenografts. Clin Cancer Res: an Off J Am Assoc Cancer Res 14:6432–6439

    Article  CAS  Google Scholar 

  140. Wen Z et al (2014) High expression of interleukin-22 and its receptor predicts poor prognosis in pancreatic ductal adenocarcinoma. Ann Surg Oncol 21:125–132

    Article  PubMed  Google Scholar 

  141. Waidmann O et al (2014) Interleukin-22 serum levels are a negative prognostic indicator in patients with hepatocellular carcinoma. Hepatology (Baltimore, Md) 59:1207

    Article  CAS  Google Scholar 

  142. Jiang R et al (2011) Interleukin-22 promotes human hepatocellular carcinoma by activation of STAT3. Hepatology (Baltimore, Md) 54:900–909

    Article  CAS  Google Scholar 

  143. Jiang R et al (2013) IL-22 is related to development of human colon cancer by activation of STAT3. BMC Cancer 13:59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Yu LZ et al (2013) Expression of interleukin-22/STAT3 signaling pathway in ulcerative colitis and related carcinogenesis. World J Gastroenterol 19:2638–2649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Liu T et al (2012) Increased circulating Th22 and Th17 cells are associated with tumor progression and patient survival in human gastric cancer. J Clin Immunol 32:1332–1339

    Article  PubMed  CAS  Google Scholar 

  146. Zhuang Y et al (2012) Increased intratumoral IL-22-producing CD4(+) T cells and Th22 cells correlate with gastric cancer progression and predict poor patient survival. Cancer Immunol Immunother 61:1965–1975

    Article  CAS  PubMed  Google Scholar 

  147. Ji Y et al (2014) IL-22 promotes the migration and invasion of gastric cancer cells via IL-22R1/AKT/MMP-9 signaling. Int J Clin Exp Pathol 7:3694–3703

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Qin S et al (2014) Th22 cells are associated with hepatocellular carcinoma development and progression. Chin J Cancer Res = Chung-kuo yen cheng yen chiu 26:135–141

    CAS  PubMed  Google Scholar 

  149. Park O et al (2011) In vivo consequences of liver-specific interleukin-22 expression in mice: Implications for human liver disease progression. Hepatology (Baltimore, Md) 54:252–261

    Article  CAS  Google Scholar 

  150. Zhao D et al (2015) Metformin decreases IL-22 secretion to suppress tumor growth in an orthotopic mouse model of hepatocellular carcinoma. Int J Cancer J Int du Cancer 136:2556–2565

    Article  CAS  Google Scholar 

  151. Hidalgo M et al (2015) Addressing the challenges of pancreatic cancer: future directions for improving outcomes. Pancreatol Off J Int Assoc Pancreatol (IAP) 15:8–18

    Article  Google Scholar 

  152. Xu X et al (2014) Increased intratumoral interleukin 22 levels and frequencies of interleukin 22-producing CD4+ T cells correlate with pancreatic cancer progression. Pancreas 43:470–477

    Article  CAS  PubMed  Google Scholar 

  153. Curd LM, Favors SE, Gregg RK (2012) Pro-tumour activity of interleukin-22 in HPAFII human pancreatic cancer cells. Clin Exp Immunol 168:192–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Jin D et al (2011) Diagnostic value of interleukin 22 and carcinoembryonic antigen in tuberculous and malignant pleural effusions. Exp Ther Med 2:1205–1209

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Ye ZJ et al (2012) Interleukin 22-producing CD4+ T cells in malignant pleural effusion. Cancer Lett 326:23–32

    Article  CAS  PubMed  Google Scholar 

  156. Zhang M et al (2011) B cell infiltration is associated with the increased IL-17 and IL-22 expression in the lungs of patients with tuberculosis. Cell Immunol 270:217–223

    Article  CAS  PubMed  Google Scholar 

  157. Kim K et al (2014) Interleukin-22 promotes epithelial cell transformation and breast tumorigenesis via MAP3K8 activation. Carcinogenesis 35:1352–1361

    Article  CAS  PubMed  Google Scholar 

  158. Weber GF et al (2006) IL-22-mediated tumor growth reduction correlates with inhibition of ERK1/2 and AKT phosphorylation and induction of cell cycle arrest in the G2-M phase. J Immunol (Baltimore, Md: 1950) 177:8266–8272

    Article  CAS  Google Scholar 

  159. Zhang F, Shang D, Zhang Y, Tian Y (2011) Interleukin-22 suppresses the growth of A498 renal cell carcinoma cells via regulation of STAT1 pathway. PLoS One 6, e20382. doi:10.1371/journal.pone.0020382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Siegel R, Naishadham D, Jemal A (2012) Cancer statistics, 2012. CA: a Cancer J Clin 62:10–29

    Article  Google Scholar 

  161. Zhang S et al (2013) Increased Tc22 and Treg/CD8 ratio contribute to aggressive growth of transplant associated squamous cell carcinoma. PLoS One 8, e62154. doi:10.1371/journal.pone.0062154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Miyagaki T et al (2011) IL-22, but not IL-17, dominant environment in cutaneous T-cell lymphoma. Clin Cancer Res: an Off J Am Assoc Cancer Res 17:7529–7538

    Article  CAS  Google Scholar 

  163. Feng D et al (2012) Interleukin-22 promotes proliferation of liver stem/progenitor cells in mice and patients with chronic hepatitis B virus infection. Gastroenterology 143:188–198.e187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. McGee HM et al (2013) IL-22 promotes fibroblast-mediated wound repair in the skin. J Investig Dermatol 133:1321–1329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Pickert G et al (2009) STAT3 links IL-22 signaling in intestinal epithelial cells to mucosal wound healing. J Exp Med 206:1465–1472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Li Z, Burns AR, Miller SB, Smith CW (2011) CCL20, gammadelta T cells, and IL-22 in corneal epithelial healing. FASEB J Off Publ Fed Am Soc Exp Biol 25:2659–2668

    CAS  Google Scholar 

  167. Ren X, Hu B, Colletti LM (2010) IL-22 is involved in liver regeneration after hepatectomy. Am J Physiol Gastrointest Liver Physiol 298:G74–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Simonian PL et al (2010) gammadelta T cells protect against lung fibrosis via IL-22. J Exp Med 207:2239–2253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Liang M et al (2013) Interleukin-22 inhibits bleomycin-induced pulmonary fibrosis. Mediat Inflamm 2013:209179

    Article  CAS  Google Scholar 

  170. Kong X, Feng D, Mathews S, Gao B (2013) Hepatoprotective and anti-fibrotic functions of interleukin-22: therapeutic potential for the treatment of alcoholic liver disease. J Gastroenterol Hepatol 28(Suppl 1):56–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Lu DH et al (2015) Interleukin-22 ameliorates liver fibrogenesis by attenuating hepatic stellate cell activation and downregulating the levels of inflammatory cytokines. World J Gastroenterol 21:1531–1545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Kanda N, Watanabe S (2012) Increased serum human beta-defensin-2 levels in atopic dermatitis: relationship to IL-22 and oncostatin M. Immunobiology 217:436–445

    Article  CAS  PubMed  Google Scholar 

  173. Wolk K et al (2004) IL-22 increases the innate immunity of tissues. Immunity 21:241–254

    Article  CAS  PubMed  Google Scholar 

  174. Murano T et al (2014) Hes1 promotes the IL-22-mediated antimicrobial response by enhancing STAT3-dependent transcription in human intestinal epithelial cells. Biochem Biophys Res Commun 443:840–846

    Article  CAS  PubMed  Google Scholar 

  175. Munoz M et al (2015) Interleukin-22 induces interleukin-18 expression from epithelial cells during intestinal infection. Immunity 42:321–331

    Article  CAS  PubMed  Google Scholar 

  176. Cho KA, Suh JW, Lee KH, Kang JL, Woo SY (2012) IL-17 and IL-22 enhance skin inflammation by stimulating the secretion of IL-1beta by keratinocytes via the ROS-NLRP3-caspase-1 pathway. Int Immunol 24:147–158

    Article  CAS  PubMed  Google Scholar 

  177. Kong X et al (2012) Interleukin-22 induces hepatic stellate cell senescence and restricts liver fibrosis in mice. Hepatology (Baltimore, Md) 56:1150–1159

    Article  CAS  Google Scholar 

  178. Andoh A et al (2005) Interleukin-22, a member of the IL-10 subfamily, induces inflammatory responses in colonic subepithelial myofibroblasts. Gastroenterology 129:969–984

    Article  CAS  PubMed  Google Scholar 

  179. Liang SC et al (2010) IL-22 induces an acute-phase response. J Immunol (Baltimore, Md: 1950) 185:5531–5538

    Article  CAS  Google Scholar 

  180. Zhang Y et al (2011) A proinflammatory role for interleukin-22 in the immune response to hepatitis B virus. Gastroenterology 141:1897–1906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Shioya M, Andoh A, Kakinoki S, Nishida A, Fujiyama Y (2008) Interleukin 22 receptor 1 expression in pancreas islets. Pancreas 36:197–199

    Article  CAS  PubMed  Google Scholar 

  182. Kotenko SV et al (2001) Identification of the functional interleukin-22 (IL-22) receptor complex: the IL-10R2 chain (IL-10Rbeta ) is a common chain of both the IL-10 and IL-22 (IL-10-related T cell-derived inducible factor, IL-TIF) receptor complexes. The J Biol Chem 276:2725–2732

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weiping Zou or Timothy Frankel.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perusina Lanfranca, M., Lin, Y., Fang, J. et al. Biological and pathological activities of interleukin-22. J Mol Med 94, 523–534 (2016). https://doi.org/10.1007/s00109-016-1391-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-016-1391-6

Keywords

Navigation