Skip to main content

Role of Jasmonic Acid and Salicylic Acid Signaling in Secondary Metabolite Production

  • Chapter
  • First Online:
Jasmonates and Salicylates Signaling in Plants

Part of the book series: Signaling and Communication in Plants ((SIGCOMM))

Abstract

Secondary metabolite synthesis takes place from primary metabolites. Secondary metabolites have no role in the development of plant growth, reproduction, and physiological procedures but they are needed for competitive weapons against a wide range of plant pathogens. Natural products as bioactive compounds derived from plants are mainly produced by the secondary metabolism. These metabolites are known for their wide therapeutic values. Plants are utilized for the isolation of various bioactive compounds; so they are sometimes overexploited and are getting threatened. Therefore, this problem can be overcome by enhancement of secondary metabolite production with various in vitro culture procedures. Elicitation by different molecules upscales the secondary metabolites production in a number of plants with varied potential for bioactive metabolite accumulation. Jasmonic acid (JA) and salicylic acid (SA) are significant molecules involved in the regulation of plant growth, immunity to pathogens, and abiotic stresses. The present review categorizes synthesis and enhancement of various bioactive compounds by JA and SA as elicitation using in vitro cultures. We also discuss the inception of JA and SA signaling with a focus on gene expression in relation to secondary metabolite biosynthesis.

Samapika Nandy and Tuyelee Das has equal contribution in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

12-OH-JA:

12-hydroxyjasmonic acid

APX:

Ascorbate peroxidase

CAT:

Catalase

cDNA-AFLP:

cDNA-amplified fragment length polymorphism

CJ:

cis-jasmone

CHI:

Chalcone isomerase

CS:

Chalcone synthase

F3′H:

Flavonoid 3′-hydroxylase

FH:

Fumarate hydratase

GP:

Guaiacol peroxidase

GR:

Glutathione reductase

H2O2:

Hydrogen peroxide

h6h:

Hyoscyamine-6-beta-hydroxylase

JA-Ile:

Isoleucine conjugate

IS:

Isochorismate synthase

JA:

Jasmonic acid

JAV1:

Jasmonate‐associated vq‐motif gene1

JAM1, JAM2:

JA‐associated MYC2‐like proteins

LOX:

Lipoxygenase

MeJA:

Methyl jasmonate

MYC2, MYC3, MYC4:

MYC-related transcriptional activator

NMT:

N-methyltransferase

NO:

Nitric oxide

NPR1:

Nonexpresser of pathogenesis-related protein 1

POD:

Peroxidase

PCC:

Phenolic compound content

PAL:

Phenylalanine ammonia lyase

SDH:

Succinate dehydrogenase

SA:

Salicylic acid

SABPs:

SA-binding proteins

SAR:

Systemic acquired resistance

TPC:

Total phenolic content

TFC:

Total flavonoid content

US:

Ultrasound

YUCCA:

YUCCA monooxygenase

References

  • Ahmad P, Prasad MNV (2012) Environmental adaptations and stress tolerance of plants in the era of climate change. In: Environmental adaptations and stress tolerance of plants in the era of climate change, pp 1–515. https://doi.org/10.1007/978-1-4614-0815-4

  • Ahmad P, Abass Ahanger M, Nasser Alyemeni M, Wijaya L, Alam P, Ashraf M (2018) Mitigation of sodium chloride toxicity in Solanum lycopersicum L. by supplementation of jasmonic acid and nitric oxide. J Plant Interact 13(1):64–72

    Google Scholar 

  • Ali M (2012) Enhanced production of artemisinin by hairy root cultures of Artemisia dubia. J Med Plants Res 6(9):1619–1622. https://doi.org/10.5897/jmpr11.1268

    Article  CAS  Google Scholar 

  • Ali M, Abbasi BH, Ali GS (2015) Elicitation of antioxidant secondary metabolites with jasmonates and gibberellic acid in cell suspension cultures of Artemisia absinthium L. Plant Cell, Tissue Organ Cult (PCTOC) 120(3):1099–1106

    Google Scholar 

  • Babst BA, Ferrieri RA, Gray DW, Lerdau M, Schlyer DJ, Schueller M, Thorpe MR, Orians CM (2005) Jasmonic acid induces rapid changes in carbon transport and partitioning in Populus. New Phytol 167(1):63–72

    Article  CAS  Google Scholar 

  • Balažová A et al (2020) Enhancement of macarpine production in Eschscholzia californica suspension cultures under salicylic acid elicitation and precursor supplementation. Molecules 25(6). https://doi.org/10.3390/molecules25061261

  • Bali S, Jamwal VL, Kohli SK, Kaur P, Tejpal R, Bhalla V, Ohri P, Gandhi SG, Bhardwaj R, Al-Huqail AA, Siddiqui MH (2019) Jasmonic acid application triggers detoxification of lead (Pb) toxicity in tomato through the modifications of secondary metabolites and gene expression. Chemosphere 235:734–748

    Article  CAS  Google Scholar 

  • Bhattacharyya D et al (2012) Proteins differentially expressed in elicited cell suspension culture of Podophyllum hexandrum with enhanced podophyllotoxin content. Proteome Sci 10(1):1–12. https://doi.org/10.1186/1477-5956-10-34

    Article  CAS  Google Scholar 

  • Campos ML, Kang JH, Howe GA (2014) Jasmonate-Triggered Plant Immunity. J Chem Ecol 40(7):657–675. https://doi.org/10.1007/s10886-014-0468-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaichana N, Dheeranupattana S (2012) Effects of methyl jasmonate and salicylic acid on alkaloid production from in vitro culture of Stemona sp. Int J Biosci Biochem Bioinf 2(3):146–150. https://doi.org/10.7763/ijbbb.2012.v2.89

  • Chen H, Chen F (1999) Effects of methyl jasmonate and salicylic acid on cell growth and cryptotanshinone formation in Ti transformed Salvia miltiorrhiza cell suspension cultures. Biotech Lett 21(9):803–807

    Article  CAS  Google Scholar 

  • Chen H, Jones AD, Howe GA (2006) Constitutive activation of the jasmonate signaling pathway enhances the production of secondary metabolites in tomato. FEBS Lett 580(11):2540–2546

    Article  CAS  Google Scholar 

  • Chini A et al (2018) An OPR3-independent pathway uses 4,5-didehydrojasmonate for jasmonate synthesis. Nat Chem Biol 14(2):171–178. https://doi.org/10.1038/nchembio.2540

    Article  CAS  PubMed  Google Scholar 

  • Cho HY et al (2007) Enhanced benzophenanthridine alkaloid production and protein expression with combined elicitor in Eschscholtzia californica suspension cultures. Biotech Lett 29(12):2001–2005. https://doi.org/10.1007/s10529-007-9469-4

    Article  CAS  Google Scholar 

  • Cho HY et al (2008) Synergistic effects of sequential treatment with methyl jasmonate, salicylic acid and yeast extract on benzophenanthridine alkaloid accumulation and protein expression in Eschscholtzia californica suspension cultures. J Biotechnol 135(1):117–122. https://doi.org/10.1016/j.jbiotec.2008.02.020

    Article  CAS  PubMed  Google Scholar 

  • Chodisetti B, Rao K, Gandi S, Giri A (2015) Gymnemic acid enhancement in the suspension cultures of Gymnema sylvestre by using the signaling molecules—methyl jasmonate and salicylic acid. In Vitro Cell Dev Biol Plant 51(1):88–92. https://doi.org/10.1007/s11627-014-9655-8

    Article  CAS  Google Scholar 

  • Chotikadachanarong K (2011) Influence of salicylic acid on alkaloid production by root cultures of Stemona curtisii Hook F, 3, pp 322–325

    Google Scholar 

  • Chung I-M et al (2016) Elicitation enhanced the production of phenolic compounds and biological activities in hairy root cultures of bitter melon (Momordica charantia L.). Braz Arch Biol Technol 59:1–10. https://doi.org/10.1590/1678-4324-2016160393

    Article  CAS  Google Scholar 

  • Chung IM et al (2017) Jasmonic and salicylic acids enhanced phytochemical production and biological activities in cell suspension cultures of spine gourd (Momordica dioica roxb). Acta Biol Hung 68(1):88–100. https://doi.org/10.1556/018.68.2017.1.8

    Article  CAS  PubMed  Google Scholar 

  • Cingoz GS, Gurel E (2016) Effects of salicylic acid on thermotolerance and cardenolide accumulation under high temperature stress in Digitalis trojana Ivanina. Plant Physiol Biochem 105:145–149. https://doi.org/10.1016/j.plaphy.2016.04.023

    Article  CAS  PubMed  Google Scholar 

  • Cirak C, Radušienė J, Kurtarc ES, Marksa M, Ivanauskas L (2020) In vitro plant regeneration and jasmonic acid induced bioactive chemical accumulations in two Hypericum species from Turkey. S Afr J Bot 128:312–318

    Article  CAS  Google Scholar 

  • Clarke SM et al (2009) Jasmonates act with salicylic acid to confer basal thermotolerance in Arabidopsis thaliana. New Phytol 182(1):175–187. https://doi.org/10.1111/j.1469-8137.2008.02735.x

    Article  CAS  PubMed  Google Scholar 

  • Dasari R et al (2020) Enhancement of production of pharmaceutically important anti-cancerous compound; cucurbitacin E via elicitation and precursor feeding of in vitro culture of Citrullus colocynthis (L.) Schard. Vegetos 33(2):323–334. https://doi.org/10.1007/s42535-020-00110-z

    Article  Google Scholar 

  • Deepthi S, Satheeshkumar K (2017) Cell line selection combined with jasmonic acid elicitation enhance camptothecin production in cell suspension cultures of Ophiorrhiza mungos L. Appl Microbiol Biotechnol 101(2):545–558. https://doi.org/10.1007/s00253-016-7808-x

    Article  CAS  PubMed  Google Scholar 

  • Dey A et al (2020) Methyl jasmonate and salicylic acid elicit indole alkaloid production and modulate antioxidant defence and biocidal properties in Rauvolfia serpentina Benth. ex Kurz. in vitro cultures. S Afr J Bot 135:1–17. https://doi.org/10.1016/j.sajb.2020.07.020

    Article  CAS  Google Scholar 

  • Doornbos RF, Geraats BP, Kuramae EE, Van Loon LC, Bakker PA (2011) Effects of jasmonic acid, ethylene, and salicylic acid signaling on the rhizosphere bacterial community of Arabidopsis thaliana. Mol Plant Microbe Interact 24(4):395–407

    Article  CAS  Google Scholar 

  • Ee SF, Oh JM, Noor NM, Kwon TR, Mohamed-Hussein ZA, Ismail I, Zainal Z (2013) Transcriptome profiling of genes induced by salicylic acid and methyl jasmonate in Polygonum minus. Mol Biol Rep 40(3):2231–2241

    Article  CAS  Google Scholar 

  • El-Esawi MA et al (2017) Salicylic acid-regulated antioxidant mechanisms and gene expression enhance rosemary performance under saline conditions. Frontiers Physiol 8(September):1–14. https://doi.org/10.3389/fphys.2017.00716

  • Ellinger D et al (2010) DGL and DAD1 lipases are not essential for wound-and pathogen-induced jasmonate biosynthesis: redundant lipases contribute to jasmonate formation. Plant Physiol 153(1):114–127. https://doi.org/10.1104/pp.110.155093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farmer EE, Ryan CA (1990) Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc Natl Acad Sci USA 87(19):7713–7716. https://doi.org/10.1073/pnas.87.19.7713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gadzovska S et al (2013) The influence of salicylic acid elicitation of shoots, callus, and cell suspension cultures on production of naphtodianthrones and phenylpropanoids in Hypericum perforatum L. Plant Cell, Tissue Organ Cult 113(1):25–39. https://doi.org/10.1007/s11240-012-0248-0

  • Gadzovska S, Maury S, Delaunay A, Spasenoski M, Joseph C, Hagege D (2007) Jasmonic acid elicitation of Hypericum perforatum L. cell suspensions and effects on the production of phenylpropanoids and naphtodianthrones. Plant Cell, Tissue Organ Cult 89(1):1–13

    Google Scholar 

  • Gai QY et al (2019) Elicitation of Isatis tinctoria L. hairy root cultures by salicylic acid and methyl jasmonate for the enhanced production of pharmacologically active alkaloids and flavonoids. Plant Cell, Tissue Organ Cult 137(1):77–86. https://doi.org/10.1007/s11240-018-01553-8

    Article  CAS  Google Scholar 

  • Golkar P, Taghizadeh M, Yousefian Z (2019) The effects of chitosan and salicylic acid on elicitation of secondary metabolites and antioxidant activity of safflower under in vitro salinity stress. Plant Cell, Tissue Organ Cult 137(3):575–585. https://doi.org/10.1007/s11240-019-01592-9

    Article  CAS  Google Scholar 

  • Guo B et al (2019) Salicylic acid signals plant defence against cadmium toxicity. Int J Mol Sci 20(12). https://doi.org/10.3390/ijms20122960

  • Gupta A et al (2017) Global profiling of phytohormone dynamics during combined drought and pathogen stress in Arabidopsis thaliana reveals ABA and JA as major regulators. Sci Rep 7(1):1–13. https://doi.org/10.1038/s41598-017-03907-2

    Article  CAS  Google Scholar 

  • Hadizadeh M et al (2019) Elicitation of pharmaceutical alkaloids biosynthesis by salicylic acid in marine microalgae Arthrospira platensis. Algal Res 42(May):101597. https://doi.org/10.1016/j.algal.2019.101597

    Article  Google Scholar 

  • Heinrich M, Hettenhausen C, Lange T, Wünsche H, Fang J, Baldwin IT, Wu J (2013) High levels of jasmonic acid antagonize the biosynthesis of gibberellins and inhibit the growth of Nicotiana attenuata stems. Plant J 73(4):591–606

    Article  CAS  Google Scholar 

  • Hind SR et al (2010) Tissue-type specific systemin perception and the elusive systemin receptor. Plant Signal Behav 5(1):42–44. https://doi.org/10.4161/psb.5.1.10119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ho TT, Murthy HN, Park SY (2020) Methyl Jasmonate Induced oxidative stress and accumulation of secondary metabolites in plant cell and organ cultures. Int J Mol Sci 21(3):716

    Article  CAS  Google Scholar 

  • Hong G, Wang J, Hochstetter D, Gao Y, Xu P, Wang Y (2015) Epigallocatechin-3-gallate functions as a physiological regulator by modulating the jasmonic acid pathway. Physiol Plant 153(3):432–439

    Article  CAS  Google Scholar 

  • Hu FX, Zhong JJ (2007) Role of jasmonic acid in alteration of ginsenoside heterogeneity in elicited cell cultures of Panax ginseng. J Biosci Bioeng 104(6):513–516

    Article  CAS  Google Scholar 

  • Hu X, Neill S, Cai W, Tang Z (2003) Hydrogen peroxide and jasmonic acid mediate oligogalacturonic acid-induced saponin accumulation in suspension-cultured cells of Panax ginseng. Physiol Plant 118(3):414–421

    Article  CAS  Google Scholar 

  • Idrees M et al (2011) Salicylic acid mitigates salinity stress by improving antioxidant defence system and enhances vincristine and vinblastine alkaloids production in periwinkle [Catharanthus roseus (L.) G. Don]. Acta Physiol Plant 33(3):987–999. https://doi.org/10.1007/s11738-010-0631-6

    Article  CAS  Google Scholar 

  • Jaisi A, Panichayupakaranant P (2016) Increased production of plumbagin in Plumbago indica root cultures by biotic and abiotic elicitors. Biotech Lett 38(2):351–355. https://doi.org/10.1007/s10529-015-1969-z

    Article  CAS  Google Scholar 

  • Ji J et al (2019) Response of bioactive metabolite and biosynthesis related genes to methyl jasmonate elicitation in Codonopsis pilosula. Molecules 24(3). https://doi.org/10.3390/molecules24030533

  • Kang SM et al (2006) Effects of methyl jasmonate and salicylic acid on the production of bilobalide and ginkgolides in cell cultures of Ginkgo biloba. In Vitro Cell Dev Biol Plant 42(1):44–49. https://doi.org/10.1079/IVP2005719

    Article  CAS  Google Scholar 

  • Karban R et al (2000) Communication between plants: Induced resistance in wild tobacco plants following clipping of neighboring sagebrush. Oecologia 125(1):66–71. https://doi.org/10.1007/PL00008892

    Article  CAS  PubMed  Google Scholar 

  • Kaur P et al (2020) Optimization of salicylic acid and chitosan treatment for bitter secoiridoid and xanthone glycosides production in shoot cultures of Swertia paniculata using response surface methodology and artificial neural network. BMC Plant Biol 20(1):1–13. https://doi.org/10.1186/s12870-020-02410-7

    Article  CAS  Google Scholar 

  • Kazmi A et al (2019) Elicitation directed growth and production of steviol glycosides in the adventitious roots of Stevia rebaudiana Bertoni. Ind Crops Prod 139(April 2020):111530. https://doi.org/10.1016/j.indcrop.2019.111530

  • Khan T et al (2019) Effects of chitosan and salicylic acid on the production of pharmacologically attractive secondary metabolites in callus cultures of Fagonia indica. Ind Crops Prod 129(April 2018):525–535. https://doi.org/10.1016/j.indcrop.2018.12.048

  • Khare S, Singh NB, Singh A, Hussain I, Niharika K, Yadav V, Bano C, Yadav RK, Amist N (2020) Plant secondary metabolites synthesis and their regulations under biotic and abiotic constraints. J Plant Biol 63(3):203–216

    Article  CAS  Google Scholar 

  • Khojasteh A et al (2016) Methyl jasmonate enhanced production of rosmarinic acid in cell cultures of Satureja khuzistanica in a bioreactor. Eng Life Sci 16(8):740–749. https://doi.org/10.1002/elsc.201600064

    Article  CAS  Google Scholar 

  • Kim HJ, Chen F, Wang X, Rajapakse NC (2006) Effect of methyl jasmonate on secondary metabolites of sweet basil (Ocimum basilicum L.). J Agric Food Chem 54(6):2327–2332

    Google Scholar 

  • Kitisripanya T et al (2013) Dicentrine production in callus and cell suspension cultures of Stephania venosa. Nat Prod Commun 8(4):443–445. https://doi.org/10.1177/1934578x1300800408

    Article  CAS  PubMed  Google Scholar 

  • Kollárová R et al (2014) Lipoxygenase activity and sanguinarine production in cell suspension cultures of California poppy (Eschscholtzia californica CHAM.). Pharmazie 69(8):637–640. https://doi.org/10.1691/ph.2014.4518

    Article  CAS  PubMed  Google Scholar 

  • Kørner CJ et al (2015) Endoplasmic reticulum stress signaling in plant immunity—at the crossroad of life and death. Int J Mol Sci 16(11):26582–26598. https://doi.org/10.3390/ijms161125964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kost C, Heil M (2008) The defensive role of volatile emission and extrafloral nectar secretion for lima bean in nature. J Chem Ecol 34(1):2–13. https://doi.org/10.1007/s10886-007-9404-0

    Article  CAS  Google Scholar 

  • Krzyzanowska J, Czubacka A, Pecio L, Przybys M, Doroszewska T, Stochmal A, Oleszek W (2012) The effects of jasmonic acid and methyl jasmonate on rosmarinic acid production in Mentha× piperita cell suspension cultures. Plant Cell, Tissue Organ Culture (PCTOC) 108(1):73–81

    Google Scholar 

  • Kumar A, Giridhar P (2015) Salicylic acid and methyljasmonate restore the transcription of caffeine biosynthetic N-methyltransferases from a transcription inhibition noticed during late endosperm maturation in coffee. Plant Gene 4:38–44. https://doi.org/10.1016/j.plgene.2015.09.002

    Article  CAS  Google Scholar 

  • Largia MJV et al (2015) Methyl jasmonate and salicylic acid synergism enhances bacoside A content in shoot cultures of Bacopa monnieri (L.). Plant Cell Tissue Organ Cult 122(1):9–20. https://doi.org/10.1007/s11240-015-0745-z

    Article  CAS  Google Scholar 

  • Li Q et al (2017) Transporter-mediated nuclear entry of jasmonoyl-isoleucine is essential for jasmonate signaling. Mol Plant 10(5):695–708. https://doi.org/10.1016/j.molp.2017.01.010

    Article  CAS  PubMed  Google Scholar 

  • Liechti R, Farmer EE (2002) The Jasmonate pathway. Science 296(5573):1649–1650. https://doi.org/10.1126/science.1071547

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Jiang H, Ye S, Chen WP, Liang W, Xu Y, Sun B, Sun J, Wang Q, Cohen JD, Li C (2010) The Arabidopsis P450 protein CYP82C2 modulates jasmonate-induced root growth inhibition, defense gene expression and indole glucosinolate biosynthesis. Cell Res 20(5):539–552

    Article  CAS  Google Scholar 

  • Loc NH, Giang NT, Huy ND (2016) Effect of salicylic acid on expression level of genes related with isoprenoid pathway in Centella (Centella asiatica (L.) Urban) cells. 3 Biotech 6(1):1–7. https://doi.org/10.1007/s13205-016-0404-z

  • Lu H (2009) Dissection of salicylic acid-mediated defense signaling networks. Plant Signaling Behav, 713–717. https://doi.org/10.4161/psb.4.8.9173

  • Mahalakshmi R, Eganathan P, Parida AK (2013) Salicylic acid elicitation on production of secondary metabolite by cell cultures of Jatropha Curcas L. Int J Pharm Pharm Sci 5(SUPPL 4):655–659

    Google Scholar 

  • Majdi M, Abdollahi MR, Maroufi A (2015) Parthenolide accumulation and expression of genes related to parthenolide biosynthesis affected by exogenous application of methyl jasmonate and salicylic acid in Tanacetum parthenium. Plant Cell Rep 34:1909–1918. https://doi.org/10.1007/s00299-015-1837-2

    Article  CAS  PubMed  Google Scholar 

  • Malarz J, Stojakowska A, Kisiel W (2007) Effect of methyl jasmonate and salicylic acid on sesquiterpene lactone accumulation in hairy roots of Cichorium intybus. Acta Physiol Plant 29(2):127–132. https://doi.org/10.1007/s11738-006-0016-z

    Article  CAS  Google Scholar 

  • Manivannan A, Soundararajan P, Park YG, Jeong BR (2016) Chemical elicitor-induced modulation of antioxidant metabolism and enhancement of secondary metabolite accumulation in cell suspension cultures of Scrophularia kakudensis Franch. Int J Mol Sci 17(3):399

    Article  Google Scholar 

  • Mateo A et al (2006) Controlled levels of salicylic acid are required for optimal photosynthesis and redox homeostasis. J Exp Bot 57(8):1795–1807. https://doi.org/10.1093/jxb/erj196

    Article  CAS  PubMed  Google Scholar 

  • Mendoza D et al (2018) Effect of salicylic acid and methyl jasmonate in the production of phenolic compounds in plant cell suspension cultures of Thevetia peruviana. Biotechnol Rep 19(63):e00273. https://doi.org/10.1016/j.btre.2018.e00273

    Article  Google Scholar 

  • Mhamdi A, Hager J, Chaouch S, Queval G, Han Y, Taconnat L, Saindrenan P, Gouia H, Issakidis-Bourguet E, Renou JP, Noctor G (2010) Arabidopsis GLUTATHIONE REDUCTASE1 plays a crucial role in leaf responses to intracellular hydrogen peroxide and in ensuring appropriate gene expression through both salicylic acid and jasmonic acid signaling pathways. Plant Physiol 153(3):1144–1160

    Article  CAS  Google Scholar 

  • Moghadam YA, Habibi P (2013) Methyl Jasmonate and salicylic acid effects on the dopamine 2(May):89–94

    Google Scholar 

  • Mur LAJ et al (2006) The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy, antagonism, and oxidative stress leading to cell death. Plant Physiol 140(1):249–262. https://doi.org/10.1104/pp.105.072348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ni J et al (2018) Salicylic acid-induced flavonoid accumulation in Ginkgo biloba leaves is dependent on red and far-red light. Ind Crops Prod 118(March):102–110. https://doi.org/10.1016/j.indcrop.2018.03.044

    Article  CAS  Google Scholar 

  • Norozi A et al (2019) Enhanced h6h transcript level, antioxidant activity and tropane alkaloid production in Hyoscyamus reticulatus L. hairy roots elicited by acetylsalicylic acid. Plant Biosystems 153(3):360–366. https://doi.org/10.1080/11263504.2018.1478907

    Article  Google Scholar 

  • Park CH, Yeo HJ, Park YE, Chun SW, Chung YS, Lee SY, Park SU (2019) Influence of chitosan, salicylic acid and jasmonic acid on phenylpropanoid accumulation in germinated buckwheat (Fagopyrum esculentum Moench). Foods 8(5):153

    Article  CAS  Google Scholar 

  • Pedranzani H, Vigliocco A (2017) Regulation of jasmonic acid and salicylic acid levels in abiotic stress tolerance: past and present. In: Mechanisms behind phytohormonal signalling and crop abiotic stress tolerance, pp 329–370

    Google Scholar 

  • Pérez-Alonso N et al (2012) Increased cardenolides production by elicitation of Digitalis lanata shoots cultured in temporary immersion systems. Plant Cell, Tissue Organ Cult 110(1):153–162. https://doi.org/10.1007/s11240-012-0139-4

    Article  CAS  Google Scholar 

  • Poór P et al (2019) The multifaceted roles of plant hormone salicylic acid in endoplasmic reticulum stress and unfolded protein response. Int J Mol Sci 20(23). https://doi.org/10.3390/ijms20235842

  • Rahimi S, Devi BSR, Khorolragchaa A, Kim YJ, Kim JH, Jung SK, Yang DC (2014) Effect of salicylic acid and yeast extract on the accumulation of jasmonic acid and sesquiterpenoids in Panax ginseng adventitious roots. Russ J Plant Physiol 61(6):811–817

    Article  CAS  Google Scholar 

  • Ram M et al (2013) Influence of salicylic acid and methyl jasmonate elicitation on anthocyanin production in callus cultures of Rosa hybrida L. Plant Cell, Tissue Organ Cult 113(3):459–467. https://doi.org/10.1007/s11240-013-0287-1

    Article  CAS  Google Scholar 

  • Ren CG, Dai CC (2012) Jasmonic acid is involved in the signaling pathway for fungal endophyte-induced volatile oil accumulation of Atractylodes lancea plantlets. BMC Plant Biol 12(1):128

    Article  CAS  Google Scholar 

  • Rezaei A, Ghanati F, Dehaghi M (2011) Stimulation of taxol production by combined salicylic acid elicitation and sonication in Taxus baccata cell culture. Aust J Crop Sci 5(February 2015):17–24

    Google Scholar 

  • Rincón-Pérez J et al (2016) Fatty acids profile, phenolic compounds and antioxidant capacity in elicited callus of Thevetia peruviana (Pers.) K. Schum. J Oleo Sci 65(4):311–318. https://doi.org/10.5650/jos.ess15254

    Article  CAS  PubMed  Google Scholar 

  • Roy A, Bharadvaja N (2019) Establishment of root suspension culture of Plumbago zeylanica and enhanced production of plumbagin. Ind Crops Prod 137(May):419–427. https://doi.org/10.1016/j.indcrop.2019.05.007

    Article  CAS  Google Scholar 

  • Saeed S et al (2017) Impacts of methyl jasmonate and phenyl acetic acid on biomass accumulation and antioxidant potential in adventitious roots of Ajuga bracteosa Wall ex Benth., a high valued endangered medicinal plant. Physiol Mol Biol Plants 23(1):229–237. https://doi.org/10.1007/s12298-016-0406-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarmadi M, Karimi N, Palazón J, Ghassempour A, Mirjalili MH (2018) The effects of salicylic acid and glucose on biochemical traits and taxane production in a Taxus baccata callus culture. Plant Physiol Biochem 132:271–280. https://doi.org/10.1016/j.plaphy.2018.09.013

    Article  CAS  PubMed  Google Scholar 

  • Satdive RK, Fulzele DP, Eapen S (2007) Enhanced production of azadirachtin by hairy root cultures of Azadirachta indica A. Juss by elicitation and media optimization. J Biotechnol 128(2):281–289. https://doi.org/10.1016/j.jbiotec.2006.10.009

    Article  CAS  PubMed  Google Scholar 

  • Sayed M et al (2017) Elicitation of flavonoids by chitosan and salicylic acid in callus of Rumex vesicarius L. Acta Hort 1187:165–176. https://doi.org/10.17660/ActaHortic.2017.1187.18

    Article  Google Scholar 

  • Shabani L, Ehsanpour AA, Asghari G, Emami J (2009) Glycyrrhizin production by in vitro cultured Glycyrrhiza glabra elicited by methyl jasmonate and salicylic acid. Russ J Plant Physiol 56(5):621–626

    Article  CAS  Google Scholar 

  • Sharifzadeh Naeini M et al (2020) Production of some benzylisoquinoline alkaloids in Papaver armeniacum L. hairy root cultures elicited with salicylic acid and methyl jasmonate. In Vitro Cell Dev Biol Plant. https://doi.org/10.1007/s11627-020-10123-7

  • Shuang Z, Hong T (2020) Enhanced production of valtrate in hairy root cultures of Valeriana jatamansi Jones by methyl jasmonate, jasmonic acid and salicylic acid elicitors. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 48(2):839–848

    Article  Google Scholar 

  • Singh M et al (2020) Foliar application of elicitors enhanced the yield of withanolide contents in Withania somnifera (L.) Dunal (variety, Poshita). 3 Biotech 10(4). https://doi.org/10.1007/s13205-020-2153-2

  • Sivanandhan G et al (2012) Optimization of elicitation conditions with methyl jasmonate and salicylic acid to improve the productivity of withanolides in the adventitious root culture of Withania somnifera (L.) dunal. Appl Biochem Biotechnol 168(3):681–696. https://doi.org/10.1007/s12010-012-9809-2

    Article  CAS  PubMed  Google Scholar 

  • Soundararajan M, Swamy GS, Gaonkar SK, Deshmukh S (2018) Influence of triacontanol and jasmonic acid on metabolomics during early stages of root induction in cultured tissue of tomato (Lycopersicon esculentum). Plant Cell, Tissue Organ Cult (PCTOC) 133(1):147–157

    Google Scholar 

  • Sudha G, Ravishankar GA (2003) Elicitation of anthocyanin production in callus cultures of Daucus carota and the involvement of methyl jasmonate and salicylic acid. Acta Physiol Plant 25(3):249–256. https://doi.org/10.1007/s11738-003-0005-4

    Article  CAS  Google Scholar 

  • Taj F et al (2019) Improved production of industrially important essential oils through elicitation in the adventitious roots of Artemisia amygdalina. Plants 8(10). https://doi.org/10.3390/plants8100430

  • Tamogami S, Kodama O (2000) Coronatine elicits phytoalexin production in rice leaves (Oryza sativa L.) in the same manner as jasmonic acid. Phytochemistry 54(7):689–694

    Google Scholar 

  • Tamogami S, Rakwal R, Kodama O (1997) Phytoalexin production elicited by exogenously applied jasmonic acid in rice leaves (Oryza sativa L.) is under the control of cytokinins and ascorbic acid. FEBS Lett 412(1):61–64

    Google Scholar 

  • Thiruvengadam M et al (2016) Enhanced production of anthraquinones and phenolic compounds and biological activities in the cell suspension cultures of Polygonum multiflorum. Int J Mol Sci 17(11). https://doi.org/10.3390/ijms17111912

  • Truman W et al (2007) Arabidopsis systemic immunity uses conserved defense signaling pathways and is mediated by jasmonates. Proc Natl Acad Sci USA 104(3):1075–1080. https://doi.org/10.1073/pnas.0605423104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Fürden B, Humburg A, Fuss E (2005) Influence of methyl jasmonate on podophyllotoxin and 6- methoxypodophyllotoxin accumulation in Linum album cell suspension cultures. Plant Cell Rep 24(5):312–317. https://doi.org/10.1007/s00299-005-0954-8

    Article  CAS  PubMed  Google Scholar 

  • Veerashree V, Anuradha CM, Kumar V (2012) Elicitor-enhanced production of gymnemic acid in cell suspension cultures of Gymnema sylvestre R. Br. Plant Cell Tissue Organ Cult 108(1):27–35. https://doi.org/10.1007/s11240-011-0008-6

  • Vera-Reyes I et al (2015) Monoterpenoid indole alkaloids and phenols are required antioxidants in glutathione depleted Uncaria tomentosa root cultures. Frontiers Environ Sci 3(April):1–11. https://doi.org/10.3389/fenvs.2015.00027

  • Walker TS, Bais HP, Vivanco JM (2002) Jasmonic acid-induced hypericin production in cell suspension cultures of Hypericum perforatum L. (St. John's wort). Phytochemistry 60(3):289–293

    Google Scholar 

  • Wang F et al (2017) Transcriptome analysis of salicylic acid treatment in Rehmannia glutinosa hairy roots using RNA-seq technique for identification of genes involved in acteoside biosynthesis. Front Plant Sci 8(May):1–15. https://doi.org/10.3389/fpls.2017.00787

    Article  Google Scholar 

  • Wasternack C, Hause B (2013) Jasmonates: Biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann Bot 111(6):1021–1058. https://doi.org/10.1093/aob/mct067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiktorowska E, Długosz M, Janiszowska W (2010) Significant enhancement of oleanolic acid accumulation by biotic elicitors in cell suspension cultures of Calendula officinalis L. Enzyme and Microbial Technol 46(1):14–20

    Article  CAS  Google Scholar 

  • Xu A, Zhan JC, Huang WD (2015) Effects of ultraviolet C, methyl jasmonate and salicylic acid, alone or in combination, on stilbene biosynthesis in cell suspension cultures of Vitis vinifera L. cv. Cabernet Sauvignon. Plant Cell Tissue Organ Cult 122(1):197–211. https://doi.org/10.1007/s11240-015-0761-z

    Article  CAS  Google Scholar 

  • Yan L et al (2013) Role of tomato lipoxygenase D in wound-induced jasmonate biosynthesis and plant immunity to insect herbivores. PLoS Genet 9(12). https://doi.org/10.1371/journal.pgen.1003964

  • Yang DH, Baldwin IT, Wu J (2013) Silencing Brassinosteroid Receptor BRI1 Impairs Herbivory-elicited accumulation of Jasmonic Acid-isoleucine and Diterpene Glycosides, but not Jasmonic Acid and Trypsin Proteinase Inhibitors in Nicotiana attenuata. J Integr Plant Biol 55(6):514–526

    Article  CAS  Google Scholar 

  • Yu KW, Gao W, Hahn EJ, Paek KY (2002) Jasmonic acid improves ginsenoside accumulation in adventitious root culture of Panax ginseng CA Meyer. Biochem Eng J 11(2–3):211–215

    Article  CAS  Google Scholar 

  • Zhang C, Lei Y, Lu C, Wang L, Wu J (2020) MYC2, MYC3, and MYC4 function additively in wounding-induced jasmonic acid biosynthesis and catabolism. J Integr Plant Biol 62(8):1159–1175

    Article  CAS  Google Scholar 

  • Zhou J, Fang L, Li X, Guo L, Huang L (2012) Jasmonic acid (JA) acts as a signal molecule in LaCl 3-induced baicalin synthesis in Scutellaria baicalensis seedlings. Biol Trace Elem Res 148(3):392–395

    Article  CAS  Google Scholar 

  • Zhou J, Ran ZF, Liu Q, Xu ZX, Xiong YH, Fang L, Guo LP (2019) Jasmonic acid serves as a signal role in smoke-isolated butenolide-induced tanshinones biosynthesis in Salvia miltiorrhiza hairy root. S Afr J Bot 121:355–359

    Article  CAS  Google Scholar 

  • Zhu X, Chen J, Xie Z, Gao J, Ren G, Gao S, Zhou X, Kuai B (2015) Jasmonic acid promotes degreening via MYC 2/3/4-and ANAC 019/055/072-mediated regulation of major chlorophyll catabolic genes. Plant J 84(3):597–610

    Article  CAS  Google Scholar 

  • Złotek U, Michalak-Majewska M, Szymanowska U (2016) Effect of jasmonic acid elicitation on the yield, chemical composition, and antioxidant and anti-inflammatory properties of essential oil of lettuce leaf basil (Ocimum basilicum L.). Food Chem 213:1–7 (www.chemspider.com)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhijit Dey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nandy, S., Das, T., Dey, A. (2021). Role of Jasmonic Acid and Salicylic Acid Signaling in Secondary Metabolite Production. In: Aftab, T., Yusuf, M. (eds) Jasmonates and Salicylates Signaling in Plants. Signaling and Communication in Plants. Springer, Cham. https://doi.org/10.1007/978-3-030-75805-9_5

Download citation

Publish with us

Policies and ethics