Skip to main content
Log in

Jasmonate-Triggered Plant Immunity

  • Review Article
  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The plant hormone jasmonate (JA) exerts direct control over the production of chemical defense compounds that confer resistance to a remarkable spectrum of plant-associated organisms, ranging from microbial pathogens to vertebrate herbivores. The underlying mechanism of JA-triggered immunity (JATI) can be conceptualized as a multi-stage signal transduction cascade involving: i) pattern recognition receptors (PRRs) that couple the perception of danger signals to rapid synthesis of bioactive JA; ii) an evolutionarily conserved JA signaling module that links fluctuating JA levels to changes in the abundance of transcriptional repressor proteins; and iii) activation (de-repression) of transcription factors that orchestrate the expression of myriad chemical and morphological defense traits. Multiple negative feedback loops act in concert to restrain the duration and amplitude of defense responses, presumably to mitigate potential fitness costs of JATI. The convergence of diverse plant- and non-plant-derived signals on the core JA module indicates that JATI is a general response to perceived danger. However, the modular structure of JATI may accommodate attacker-specific defense responses through evolutionary innovation of PRRs (inputs) and defense traits (outputs). The efficacy of JATI as a defense strategy is highlighted by its capacity to shape natural populations of plant attackers, as well as the propensity of plant-associated organisms to subvert or otherwise manipulate JA signaling. As both a cellular hub for integrating informational cues from the environment and a common target of pathogen effectors, the core JA module provides a focal point for understanding immune system networks and the evolution of chemical diversity in the plant kingdom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abe H, Shimoda T, Ohnishi J, Kugimiya S, Narusaka M, Seo S, Narusaka Y, Tsuda S, Kobayashi M (2009) Jasmonate-dependent plant defenses restricts thrips performance and preference. BMC Plant Biol 9:97

    PubMed  PubMed Central  Google Scholar 

  • Abuqamar S, Chai MF, Luo H, Song F, Mengiste T (2008) Tomato protein kinase 1b mediates signaling of plant responses to necrotrophic fungi and insect herbivory. Plant Cell 20:1964–1983

    CAS  PubMed  PubMed Central  Google Scholar 

  • Acosta IF, Gasperini D, Chételat A, Stolz S, Santuari L, Farmer EE (2013) Role of NINJA in root jasmonate signaling. Proc Natl Acad Sci U S A 110:15473–15478

    CAS  PubMed  PubMed Central  Google Scholar 

  • Agrawal AA (1999) Induced responses to herbivory in wild radish: effects on several herbivores and plant fitness. Ecology 80:1713–1723

    Google Scholar 

  • Alborn HT, Turlings TCJ, Jones TH, Stenhagen G, Loughrin JH, Tumlinson JH (1997) An elicitor of plant volatiles from beet armyworm oral secretion. Science 276:945–949

    CAS  Google Scholar 

  • Arimura GI, Maffei ME (2010) Calcium and secondary CPK signaling in plants in response to herbivore attack. Biochem Bioph ResCommun 400:455–460

    CAS  Google Scholar 

  • Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez-Gomez L, Boller T, Ausubel FM, Sheen J (2002) MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415:977–983

    CAS  PubMed  Google Scholar 

  • Attaran E, Zeier TE, Griebel T, Zeier J (2009) Methyl salicylate production and jasmonate signaling are not essential for systemic acquired resistance in Arabidopsis. Plant Cell 21:954–971

    CAS  PubMed  PubMed Central  Google Scholar 

  • Attaran E, Major IT, Cruz JA, Rosa BA, Koo AJ, Chen J, Kramer DM, He SY, Howe GA (2014) Temporal dynamics of growth and photosynthesis suppression in response to jasmonate signaling. Plant Physiol., in press.

  • Baldwin IT (1998) Jasmonate-induced responses are costly but benefit plants under attack in native populations. Proc Natl Acad Sci U S A 95:8113–8118

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baldwin IT, Callahan P (1993) Autotoxicity and chemical defense: nicotine accumulation and carbon gain in solanaceous plants. Oecologia 94:534–541

    Google Scholar 

  • Ballaré CL (2011) Jasmonate-induced defenses: a tale of intelligence, collaborators and rascals. Trends Plant Sci 16:249–257

    PubMed  Google Scholar 

  • Ballaré CL (2014) Light regulation of plant defense. Annu Rev Plant Biol 65:15.21–15.29

    Google Scholar 

  • Barr KL, Hearne LB, Briesacher S, Clark TL, Davis GE (2010) Microbial symbionts in insects influence down-regulation of defense genes in maize. PLoS One 5:e11339

    PubMed  PubMed Central  Google Scholar 

  • Bender CL, Liyanage H, Palmer D, Ulrich M, Young S, Mitchell R (1993) Characterization of the genes controlling the biosynthesis of the polyketide phytotoxin coronatine including conjugation between coronafacic and coronamic acid. Gene 133:31–38

    CAS  PubMed  Google Scholar 

  • Berenbaum MR, Zangerl AR (2008) Facing the future of plant-insect interaction research: le retour à la “raison d’être”. Plant Physiol 146:804–811

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bergey DR, Howe GA, Ryan CA (1996) Polypeptide signaling for plant defensive genes exhibits analogies to defense signaling in animals. Proc Natl Acad Sci U S A 93:12053–12058

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhosale R, Jewell JB, Hollunder J, Koo AJK, Vuylsteke M, Michoel T, Hilson P, Goossens A, Howe GA, Browse J, Maere S (2013) Predicting gene function from uncontrolled expression variation among individual wild-type Arabidopsis plants. Plant Cell 25:2865–2877

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bidart-Bouzat MG, Kliebenstein D (2011) An ecological genomic approach challenging the paradigm of differential plant responses to specialist versus generalist insect. Oecologia 167:677–689

    PubMed  Google Scholar 

  • Boller T, Felix G (2009) A renaissance of elicitors: Perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60:379–406

    CAS  PubMed  Google Scholar 

  • Boller T, He SY (2009) Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science 324:742–744

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bonaventure G, Gfeller A, Proebsting WM, Hörtensteiner S, Chételat A, Martinoia E, Farmer EE (2007) A gain-of-function allele of TPC1 activates oxylipin biogenesis after leaf wounding in Arabidopsis. Plant J 49:889–898

    CAS  PubMed  Google Scholar 

  • Boudsocq M, Willmann MR, McCormack M, Lee H, Shan L, He P, Bush J, Cheng SH, Sheen J (2010) Differential innate immune signalling via Ca2+ sensor protein kinases. Nature 464:418–422

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boughton AJ, Hoover K, Felton GW (2005) Methyl jasmonate application induces increased density of glandular trichomes on tomato, Lycopersicon esculentum. J Chem Ecol 31:2211–2216

    CAS  PubMed  Google Scholar 

  • Brooks DM, Bender CL, Kunkel BN (2005) The Pseudomonas syringae phytotoxin coronatine promotes virulence by overcoming salicylic acid-dependent defences in Arabidopsis thaliana. Mol Plant Pathol 6:629–639

    CAS  PubMed  Google Scholar 

  • Browse J (2009) Jasmonate passes muster: a receptor and targets for the defense hormone. Annu Rev Plant Biol 60:183–205

    CAS  PubMed  Google Scholar 

  • Browse J, Howe GA (2008) New weapons and a rapid response against insect attack. Plant Physiol 146:832–838

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bruessow F, Gouhier-Darimont C, Buchala A, Métraux J-P, Reymond P (2010) Insect eggs suppress plant defence against chewing herbivores. Plant J 62:876–885

    CAS  PubMed  Google Scholar 

  • Brutus A, Sicilia F, Macone A, Cervone F, Lorenzo G (2010) A domain swap approach reveals a role of the plant wall-associated kinase 1 (WAK1) as a receptor of oligogalacturonides. Proc Natl Acad Sci U S A 107:9452–9457

    CAS  PubMed  PubMed Central  Google Scholar 

  • Caillaud MC, Asai S, Rallapalli G, Piquerez S, Fabro G, Jones JDG (2013) A downy mildew effector attenuates salicylic acid-triggered immunity in Arabidopsis by interacting with the host mediator complex. PLoS Biol 11:e1001732

    PubMed  PubMed Central  Google Scholar 

  • Campos ML, de Almeida M, Rossi ML, Martinelli AP, Litholdo Junior CG, Figueira A, Rampelotti-Ferreira FT, Vendramim JD, Benedito VA, Peres LEP (2009) Brassinosteroids interact negatively with jasmonates in the formation of anti-herbivory traits in tomato. J Exp Bot 60:4347–4361

    CAS  PubMed  Google Scholar 

  • Cerrudo I, Keller MM, Cargnel MD, Demkura PV, de Wit M, Patitucci MS, Pierik R, Pieterse CMJ, Ballaré CL (2012) Low red/far-red ratios reduce Arabidopsis resistance to Botrytis cinerea and jasmonate responses via a COI1-JAZ10-dependent, salicylic acid-independent mechanism. Plant Physiol 158:2042–2052

    CAS  PubMed  PubMed Central  Google Scholar 

  • Çevik V, Kidd BN, Zhang P, Hill C, Kiddle S, Denby KJ, Holub EB, Cahill DM, Manners JM, Schenk PM, Bynon J, Kazan K (2012) MEDIATOR25 acts as an integrative hub for the regulation of jasmonate-responsive gene expression in Arabidopsis. Plant Physiol 160:541–555

    PubMed  PubMed Central  Google Scholar 

  • Chauvin A, Caldelari D, Wolfender JL, Farmer EE (2013) Four 13-lipoxygenases contribute to rapid jasmonate synthesis in wounded Arabidopsis thaliana leaves: a role for lipoxygenase 6 in responses to long-distance wound signals. New Phytol 197:566–575

    CAS  PubMed  Google Scholar 

  • Chehab EW, Yao C, Henderson Z, Kim S, Braam J (2012) Arabidopsis touch-induced morphogenesis is jasmonate mediated and protects against pests. Curr Biol 22:701–706

    CAS  PubMed  Google Scholar 

  • Chico JM, Chini A, Fonseca S, Solano R (2008) JAZ repressors set the rhythm in jasmonate signaling. Curr Opin Plant Biol 11:486–494

    CAS  PubMed  Google Scholar 

  • Chico JM, Fernández-Barbero G, Chini A, Fernández-Calvo P, Díez-Díaz M, Solano R (2014) Repression of jasmonate-dependent defenses by shade involves differential regulation of protein stability of MYC transcription factors and their JAZ repressors in Arabidopsis. Plant Cell, in press.

  • Chinchilla D, Bauer Z, Regenass M, Boller T, Felix G (2006) The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception. Plant Cell 18:465–476

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chini A, Fonseca S, Fernandez G, Adie B, Chico JM, Lorenzo O, Garcia-Casado G, Lopez-Vidriero I, Lozano FM, Ponce MR, Micol JL, Solano R (2007) The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448:666–673

    CAS  PubMed  Google Scholar 

  • Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124:803–814

    CAS  PubMed  Google Scholar 

  • Choi J, Tanaka K, Cao Y, Qi Y, Qiu J, Liang Y, Lee SY, Stacey G (2014) Identification of a plant receptor for extracellular ATP. Science 343:290–294

    CAS  PubMed  Google Scholar 

  • Chung HS, Howe GA (2009) A critical role for the TIFY motif in repression of jasmonate signaling by a stabilized splice variant of the JASMONATE ZIM-domain protein JAZ10 in Arabidopsis. Plant Cell 21:131–145

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chung HS, Koo AJK, Gao X, Jayanty S, Thines B, Jones AD, Howe GA (2008) Regulation and function of Arabidopsis JASMONATE ZIM-domain genes in response to wounding and herbivory. Plant Physiol 146:952–964

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chung HS, Niu Y, Browse J, Howe GA (2009) Top hits in contemporary JAZ: An update on jasmonate signaling. Phytochemistry 70:1547–1559

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chung HS, Cooke TF, Depew CL, Patel LC, Ogawa N, Kobayashi Y, Howe GA (2010) Alternative splicing expands the repertoire of dominant JAZ repressors of jasmonate signaling. Plant J 63:613–622

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chung SH, Rosa C, Scully ED, Peiffer M, Tooker JF, Hoover K, Luthe DS, Felton GW (2013) Herbivore exploits orally secreted bacteria to suppress plant defenses. Proc Natl Acad Sci U S A 110:15728–15733

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Geyter N, Gholami A, Goormachtig S, Goossens A (2012) Transcriptional machineries in jasmonate-elicited plant secondary metabolism. Trends Plant Sci 17:349–359

    PubMed  Google Scholar 

  • De Lorenzo G, Brutus A, Savatin DV, Sicilia F, Cervone F (2011) Engineering plant resistance by constructing chimeric receptors that recognize damage-associated molecular patterns (DAMPs). Febs Lett 585:1521–1528

    PubMed  Google Scholar 

  • De Vleesschauwer D, Gheysen G, Höfte M (2013) Hormone defense networking in rice: tales from a different world. Trends Plant Sci 18:555–565

    PubMed  Google Scholar 

  • De Vos M, Van Oosten VR, Van Poecke RMP, Van Pelt JA, Pozo MJ, Mueller MJ, Buchala AJ, Métraux J-P, Van Loon LC, Dicke M, Pieterse CMJ (2005) Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. Mol Plant Microbe Inter 18:923–937

    Google Scholar 

  • Demianski AJ, Chung KW, Kunkel BN (2012) Analysis of Arabidopsis JAZ gene expression during Pseudomonas syringae pathogenesis. Mol Plant Pathol 13:46–57

    CAS  PubMed  Google Scholar 

  • Dempsey DA, Vlot AC, Wildermuth MC, Klessig DF (2011) Salicylic acid biosynthesis and metabolism. The Arabidopsis book 9:e0156. doi:10.1199/tab.0156

    PubMed  PubMed Central  Google Scholar 

  • Dicke M, Baldwin IT (2010) The evolutionary context for herbivore-induced plant volatiles: beyond the ‘cry for help.’. Trends Plant Sci 15:167–175

    CAS  PubMed  Google Scholar 

  • Doares SH, Syrovets T, Weiler EW, Ryan CA (1995) Oligogalacturonides and chitosan activate plant defensive genes through the octadecanoid pathway. Proc Natl Acad Sci U S A 92:4095–4098

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dodds PN, Rathjen JP (2010) Plant immunity: towards an integrated view of plant-pathogen interactions. Nat Rev Genet 11:539–548

    CAS  PubMed  Google Scholar 

  • Ellis C, Karafyllidis I, Turner JG (2002) Constitutive activation of jasmonate signaling in an Arabidopsis mutant correlates with enhanced resistance to Erysiphe cichoracearum, Pseudomonas syringae, and Myzus persicae. Mol Plant Microbe Inter 15:1025–1030

    CAS  Google Scholar 

  • Elzinga DA, Jander G (2013) The role of protein effectors in plant-aphid interactions. Curr Opin Plant Biol 16:451–456

    CAS  PubMed  Google Scholar 

  • Erb M, Meldau S, Howe GA (2012) Role of phytohormones in insect-specific plant reactions. Trends Plant Sci 17:250–259

    CAS  PubMed  PubMed Central  Google Scholar 

  • Falk KL, Kästner J, Bodenhausen N, Schramm K, Paetz C, Vassão DG, Reichelt M, von Knorre D, Bergelson J, Erb M, Gershenzon J, Meldau S (2014) The role of glucosinolates and the jasmonic acid pathway in resistance of Arabidopsis thaliana against molluskan herbivores. Mol Ecol 5:1188–1205

    Google Scholar 

  • Farmer EE, Dubugnon L (2009) Detritivorous crustaceans become herbivores on jasmonate-deficient plants. Proc Natl Acad Sci U S A 106:935–940

    CAS  PubMed  PubMed Central  Google Scholar 

  • Farmer EE, Ryan CA (1990) Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc Natl Acad Sci U S A 87:7713–7716

    CAS  PubMed  PubMed Central  Google Scholar 

  • Felle HH, Zimmermann MR (2007) Systemic signalling in barley through action potentials. Planta 226:203–214

    CAS  PubMed  Google Scholar 

  • Felton GW, Tumlinson (2008) Plant-insect dialogs: complex interactions at the plant-insec interface. Curr Opin Plant Biol 11:457–463

    CAS  PubMed  Google Scholar 

  • Fernández-Calvo P, Chini A, Fernández-Barbero G, Chico JM, Gimenez-Ibanez S, Geerinck J, Eeckhout D, Schweizer F, Godoy M, Franco-Zorrilla JM, Pauwels L, Witters E, Puga MI, Paz-Ares J, Goossens A, Reymond P, De Jaeger G, Solano R (2011) The Arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses. Plant Cell 23:701–715

    PubMed  PubMed Central  Google Scholar 

  • Fonseca S, Chini A, Hamberg M, Adie B, Porzel A, Kramell R, Miersch O, Wasternack C, Solano R (2009) (+)-7-iso-Jasmonoyl-L-isoleucine is the endogenous bioactive jasmonate. Nat Chem Biol 5:344–350

    CAS  PubMed  Google Scholar 

  • Fonseca S, Fernández-Calvo P, Fernández GM, Diez-Diaz M, Gimenez-Ibanez S, López-Vidriero I, Godoy M, Fernández-Barbero G, Van Leene J, De Jaeger G, Franco-Zorrilla JM, Solano R (2014) bHLH003, bHLH013 and bHLH017 are new targets of JAZ repressors negatively regulating JA responses. PLoS One 9:e86182

    PubMed  PubMed Central  Google Scholar 

  • Fraenkel GS (1959) The raison d’être of secondary plant substances. Science 129:1466–1470

    CAS  PubMed  Google Scholar 

  • Fragoso V, Rothe E, Baldwin IT, Kim SG (2014) Root jasmonic acid synthesis and perception regulate folivore-induced shoot metabolites and increase Nicotiana attenuata resistance. New Phytol 202:1335–1345

    CAS  PubMed  Google Scholar 

  • Fu ZQ, Dong X (2013) Systemic acquired resistance: Turning local infection into global defense. Annu Rev Plant Biol 64:839–863

    CAS  PubMed  Google Scholar 

  • Gidda SK, Miersch O, Levitin A, Schmidt J, Wasternack C, Varin L (2003) Biochemical and molecular characterization of a hydroxyjasmonate sulfotransferase from Arabidopsis thaliana. J Biol Chem 278:17895–17900

    CAS  PubMed  Google Scholar 

  • Gimenez-Ibanez S, Boter M, Fernández-Barbero G, Chini A, Rathjen JP, Solano R (2014) The bacterial effector HopX1 targets JAZ transcriptional repressors to activate jasmonate signaling and promote infection in Arabidopsis. PLoS Biol 12:e1001792

    PubMed  PubMed Central  Google Scholar 

  • Glauser G, Grata E, Dubugnon L, Mousavi SAR, Rudaz S, Wolfender JL, Farmer EE (2008) Spatial and temporal dynamics of jasmonate synthesis and accumulation in Arabidopsis in response to wounding. J Biol Chem 283:16400–16407

    CAS  PubMed  Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopath 43:205–227

    CAS  Google Scholar 

  • Gog L, DeLucia EH, Berenbaum MR, Zangerl AR (2005) Autotoxic effect of essential oils on photosynthesis in parsley, parsnip, and rough lemon. Chemoecology 15:115–119

    CAS  Google Scholar 

  • Gonzales-Vigil E, Bianchetti CM, Phillips GN, Howe GA (2011) Adaptive evolution of threonine deaminase in plant defense against insect herbivores. Proc Natl Acad Sci U S A 108:5897–5902

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gouhier-Darimont C, Schmiesing A, Bonnet C, Lassueur S, Reymond P (2013) Signalling of Arabidopsis thaliana response to Pieris brassicae eggs shares similarities with PAMP-triggered immunity. J Exp Bot 64:665–674

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grebner W, Stingl NE, Oenel A, Mueller MJ, Berger S (2013) Lipoxygensae6-dependent oxylipin synthesis in roots is required for abiotic and biotic stress resistance in Arabidopsis. Plant Physiol 161:2159–2170

    CAS  PubMed  PubMed Central  Google Scholar 

  • Green TR, Ryan CA (1972) Wound-induced proteinase inhibitor in plant leaves: A possible defense mechanism against insects. Science 175:776–777

    CAS  PubMed  Google Scholar 

  • Grunewald W, Vanholme B, Pauwels L, Plovie E, Inze D, Gheysen G, Goossens A (2009) Expression of the Arabidopsis jasmonate signaling repressor JAZ1/TIFY10A is stimulated by auxin. EMBO Rep 10:923–928

    CAS  PubMed  PubMed Central  Google Scholar 

  • Halitschke R, Schittko U, Pohnert G, Boland W, Baldwin IT (2001) Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata. III. Fatty acid-amino acid conjugates in herbivore oral secretions are necessary and sufficient for herbivore-specific plant responses. Plant Physiol 125:711–717

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heil M (2009) Damaged-self recognition in plant herbivore defence. Trends Plant Sci 14:356–363

    CAS  PubMed  Google Scholar 

  • Heil M, Ibarra-Laclette E, Adame-Alvarez RM, Martinez O, Ramirez-Chaves E, Molina-Torres J, Herrera-Estrella L (2012) How plants sense wounds: Damaged-self recognition is based on plant-derived elicitors and induces octadecanoid signaling. PLoS One 7:e30537

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heitz T, Widemann E, Lugan R, Miesch L, Ullmann P, Désaubry L, Holder E, Grausem B, Kandel S, Miesch M, Werck-Reinchhart D, Pinot F (2012) Cytochromes P450 CYP94C1 and CYP94B3 catalyze two successive oxidation steps of plant hormone jasmonoyl-isoleucine for catabolic turnover. J Biol Chem 287:6296–6306

    CAS  PubMed  PubMed Central  Google Scholar 

  • Herde M, Howe GA (2014) Host plant-specific remodeling of midgut physiology in the generalist insect herbivore Trichoplusia ni. Insect Biochem Mol Biol 50C:58–67

    Google Scholar 

  • Herms DA, Mattson WJ (1992) The dilemma of plants: to grow or defend. Q Rev Biol 67:283–335

    Google Scholar 

  • Hogenhout SA, Bos JI (2011) Effector proteins that modulate plant–insect interactions. Curr Opin Plant Biol 14:422–428

    CAS  PubMed  Google Scholar 

  • Hou X, Lee LYC, Xia K, Yan Y, Yu H (2010) DELLAs modulate jasmonate signaling via competitive binding to JAZs. Dev Cell 19:884–894

    CAS  PubMed  Google Scholar 

  • Howe GA, Jander G (2008) Plant immunity to insect herbivores. Annu Rev Plant Biol 59:41–66

    CAS  PubMed  Google Scholar 

  • Howe GA, Schilmiller AL (2002) Oxylipin metabolism in response to stress. Curr Op Plant Biol 5:230–236

    CAS  Google Scholar 

  • Howe GA, Lightner J, Browse J, Ryan CA (1996) An octadecanoid pathway mutant (JL5) of tomato is compromised in signaling for defense against insect attack. Plant Cell 8:2067–2077

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Y, Jiang L, Wang F, Yu D (2013a) Jasmonate regulates the inducer of CBF expression–c-repeat binding factor/DRE binding factor1 cascade and freezing tolerance in Arabidopsis. Plant Cell 25:2907–2924

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu P, Zhou W, Cheng Z, Fan M, Wang L, Xie D (2013b) JAV1 controls jasmonate-regulated plant defense. Mol Cell 50:504–515

    CAS  PubMed  Google Scholar 

  • Hudgins JW, Christiansen E, Franceschi VR (2004) Induction of anatomically based defense responses in stems of diverse conifers by methyl jasmonate: a phylogenetic perspective. Tree Physiol 24:251–264

    CAS  PubMed  Google Scholar 

  • Huffaker A, Pearce G, Ryan CA (2006) An endogenous peptide signal in Arabidopsis activates components of the innate immune response. Proc Natl Acad Sci U S A 103:10098–10103

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huffaker A, Dafoe NJ, Schmelz EA (2011) ZmPep1, an ortholog of Arabidopsis elicitor peptide 1, regulates maize innate immunity and enhances disease resistance. Plant Physiol 155:1325–1338

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huffaker A, Pearce G, Veyrat N, Erb M, Turlings TCJ, Sartor R, Shen Z, Briggs SP, Vaughan MM, Alborn HT, Teal PEA, Schmelz EA (2013) Plant elicitor peptides are conserved signals regulating direct and indirect antiherbivore defense. Proc Natl Acad Sci U S A 110:5707–5712

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huot B, Yao J, Montgomery BL, He SY (2014) Growth-defense tradeoffs in plants: a balancing act to optimize fitness. Mol Plant. doi:10.1093/mp/ssu049

    PubMed  Google Scholar 

  • Hyun Y, Choi S, Hwang HJ, Yu J, Nam S-J, Ko J, Park JY, Seo YS, Kim EY, Ryu SB, Kim WT, Lee YH, Kang H, Lee I (2008) Cooperation and functional diversification of two closely related galactolipase genes for jasmonate biosynthesis. Dev Cell 14:183–192

    CAS  PubMed  Google Scholar 

  • Izaguirre MM, Mazza CA, Astigueta MS, Ciarla AM (2013) No time for candy: passionfruit (Passiflora edulis) plants down-regulate damage-induced extra floral nectar production in response to light signals of competition. Oecologia 173:213–221

    PubMed  Google Scholar 

  • Jeter CR, Tang W, Henaff E, Butterfield T, Roux SJ (2004) Evidence of a novel cell signaling role for extracellular adenosine triphosphates and diphosphates in Arabidopsis. Plant Cell 16:2652–2664

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang S, Yao J, Ma K-W, Zhou H, Song J, He SY, Ma W (2013) Bacterial effector activates jasmonate signaling by directly targeting JAZ transcriptional repressors. PLoS Pathog 9:e1003715

    PubMed  PubMed Central  Google Scholar 

  • Jones DGJ, Dangl JL (2006) The plant immune system. Nature 444:323–329

    CAS  PubMed  Google Scholar 

  • Kadota Y, Sklenar J, Derbyshire P, Stransfeld L, Asai S, Ntoukakis V, Jones JD, Shirasu K, Menke F, Jones A, Zipfel C (2014) Direct regulation of the NADPH oxidase RBOHD by the PRR-associated kinase BIK1 during plant immunity. Mol Cell 54:43–55

    CAS  PubMed  Google Scholar 

  • Kallenbach M, Bonaventure G, Gilardoni PA, Wissgott A, Baldwin IT (2012) Empoasca leafhoppers attack wild tobacco plants in a jasmonate-dependent manner and identify jasmonate mutants in natural populations. Proc Natl Acad Sci U S A 109:E1548–E1557

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kandoth PK, Mitchum MG (2013) War of the worms: how plants fight underground attacks. Curr Opin Plant Biol 16:457–463

    PubMed  Google Scholar 

  • Kandoth PK, Ranf S, Pancholi SS, Jayanty S, Walla MD, Miller W, Howe GA, Lincoln DE, Stratmann JW (2007) Tomato MAPKs LeMPK1, LeMPK2, and LeMPK3 function in the systemin-mediated defense response against herbivorous insects. Proc Natl Acad Sci U S A 104:12205–12210

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kang JH, Wang L, Giri A, Baldwin IT (2006) Silencing threonine deaminase and JAR4 in Nicotiana attenuata impairs jasmonic acid-isoleucine-mediated defenses against Manduca sexta. Plant Cell 18:3303–3320

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kang JH, Liu G, Shi F, Jones AD, Beaudry RM, Howe GA (2010a) The tomato odorless-2 is defective in trichome-based production of diverse specialized metabolites and broad-spectrum resistance to insect herbivores. Plant Physiol 154:262–272

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kang JH, Shi F, Jones DA, Marks MD, Howe GA (2010b) Distortion of trichome morphology by the hairless mutation of tomato affects the leaf surface chemistry. J Exp Bot 61:1053–1064

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kang JH, McRoberts J, Shi F, Moreno J, Jones D, Howe GA (2014) The flavanoid biosynthetic enzyme chalcone isomerase modulate terpenoid production in glandular trichomes of tomato. Plant Physiol 164:1161–1174

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kästner J, von Knorre D, Himanshu H, Erb M, Baldwin IT, Meldau S (2014) Salicylic acid, a plant defense hormone, is specifically secreted by a molluscan herbivore. PLoS One 9:e86500

    PubMed  PubMed Central  Google Scholar 

  • Katagiri F, Tsuda K (2010) Understanding the plant immune system. Mol Plant Microbe Interact 23:1531–1536

    CAS  PubMed  Google Scholar 

  • Katsir L, Chung HS, Koo AJK, Howe GA (2008a) Jasmonate signaling: a conserved mechanism of hormone sensing. Curr Opin Plant Biol 11:428–435

    CAS  PubMed  PubMed Central  Google Scholar 

  • Katsir L, Schilmiller AL, Staswick PE, He SY, Howe GA (2008b) COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine. Proc Natl Acad Sci U S A 105:7100–7105

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kazan K, Manners JM (2008) Jasmonate signaling: toward an integrated view. Plant Physiol 146:1459–1468

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kazan K, Manners JM (2012) JAZ repressors and the orchestration of phytohormone crosstalk. Trends Plant Sci 17:22–31

    CAS  PubMed  Google Scholar 

  • Kazan K, Manners JM (2013) MYC2: The master in action. Mol Plant 6:686–673

    CAS  PubMed  Google Scholar 

  • Kessler A, Halitschke R, Baldwin IT (2004) Silencing the jasmonate cascade: induced plant defenses and insect populations. Science 305:665–668

    CAS  PubMed  Google Scholar 

  • Kidd BN, Cahill DM, Manners JM, Schenk PM, Kazan K (2011) Diverse roles of the Mediator complex in plants. Semin Cell Dev Biol 22:741–748

    CAS  PubMed  Google Scholar 

  • Kim Y, Tsuda K, Igarashi D, Hillmer RA, Sakakibara H, Myers CL, Katagiri F (2014) Mechanisms underlying robustness and tunability in a plant immune signaling network. Cell Host Microbe 15:84–94

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kitaoka N, Matsubara T, Sato M, Takahashi K, Wakuta S, Kawaide H, Matsui H, Nabeta K, Matsuura H (2011) Arabidopsis CYP94B3 encodes jasmonyl-L-isoleucine 12-hydroxylase, a key enzyme in the oxidative catabolism of jasmonate. Plant Cell Physiol 52:1757–1765

    CAS  PubMed  Google Scholar 

  • Kitaoka N, Kawaide H, Amano N, Matsubara T, Nabeta K, Takahashi K, Matsuura H (2014) CYP94B3 activity against jasmonic acid amino acid conjugates and the elucidation of 12-O-β-glucopyranosyl-jasmonoyl-L-isoleucine as an additional metabolite. Phytochemistry 99:6–13

    CAS  PubMed  Google Scholar 

  • Kliebenstein DJ (2012) Plant defense compounds: systems approaches to metabolic analysis. Annu Rev Phytopathol 50:155–173

    CAS  PubMed  Google Scholar 

  • Kombrink E (2012) Chemical and genetic exploration of jasmonate biosynthesis and signaling paths. Planta 236:1351–1366

    CAS  PubMed  Google Scholar 

  • Koo AJK, Howe GA (2009) The wound hormone jasmonate. Phytochemistry 70:1571–1580

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koo AJK, Howe GA (2012) Catabolism and deactivation of the lipid-derived hormone jasmonoyl-isoleucine. Frontiers Plant Sci 3:19

    CAS  Google Scholar 

  • Koo AJK, Chung HS, Kobayashi Y, Howe GA (2006) Identification of a peroxisomal acyl-activating enzyme involved in the biosynthesis of jasmonic acid in Arabidopsis. J Biol Chem 281:33511–33520

    CAS  PubMed  Google Scholar 

  • Koo AJK, Gao X, Jones AD, Howe GA (2009) A rapid wound signal activates the systemic synthesis of bioactive jasmonates in Arabidopsis. Plant J 59:974–986

    CAS  PubMed  Google Scholar 

  • Koo AJK, Cooke TF, Howe GA (2011) Cytochrome P450 CYP94B3 mediates catabolism and inactivation of the plant hormone jasmonoyl-L-isoleucine. Proc Natl Acad Sci U S A 108:9298–9303

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krol E, Mentzel T, Chinchilla D, Boller T, Felix G, Kemmerling B, Postel S, Arents M, Jeworutzki E, Al-Rasheid KAS, Becker D, Hedrich R (2010) Perception of the Arabidopsis danger signal peptide 1 involves the pattern recognition receptor AtPEPR1 and its close homologue AtPEPR2. J Biol Chem 285:13471–13479

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kunkel BN, Brooks DM (2002) Cross talk between signaling pathways in pathogen defense. Curr Opin Plant Biol 5:325–331

    CAS  PubMed  Google Scholar 

  • Lee GI, Howe GA (2003) The tomato mutant spr1 is defective in systemin perception and the production of a systemic wound signal for defense gene expression. Plant J 33:567–576

    CAS  PubMed  Google Scholar 

  • Levy M, Wang Q, Kaspi R, Parrella MP, Abel S (2005) Arabidopsis IQD1, a novel calmodulin–binding nuclear protein, stimulates glucosinolate accumulation and plant defense. Plant J 43:79–96

    CAS  PubMed  Google Scholar 

  • Li C, Williams M, Y-t L, Lee G-I, Howe GA (2002) Resistance of cultivated tomato to cell-content feeding herbivores is regulated by the octadecanoid signaling pathway. Plant Physiol 130:494–503

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Zhao Y, McCaig BC, Wingerd BA, Wang J, Whalon ME, Pichersky E, Howe GA (2004) The tomato homolog of CORONATINE-INSENSITIVE1 is required for the maternal control of seed maturation, jasmonate-signaled defense responses, and glandular trichome development. Plant Cell 16:126–143

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Li M, Yu L, Zhou Z, Liang X, Liu Z, Cai G, Gao L, Zhang X, Wang Y, Chen S, Zhou JM (2014) The FLS2-associated kinase BIK1 directly phosphorylates the NADPH oxidase RbohD to control plant immunity. Cell Host Microbe 15:329–338

    CAS  PubMed  Google Scholar 

  • Liu Y, Zhang S (2004) Phosphorylation of 1-aminocyclopropane-1-carboxylic acid synthase by MPK6, astress-responsive mitogen-activated protein kinase, induces ethylene biosynthesis in Arabidopsis. Plant Cell 16:3386–3399

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lotze MT, Zeh HJ, Rubartelli A, Sparvero LJ, Amoscato AA, Washburn NR, DeVera ME, Liang X, Tor M, Billiar T (2007) The grateful dead: damage-associated molecular patttern molecules and reduction/oxidation regulate immunity. Immunol Rev 220:60–81

    CAS  PubMed  Google Scholar 

  • Maffei M, Bossi S, Spiteller D, Mithöfer A, Boland W (2004) Effects of feeding Spodoptera littoralis on lima bean leaves. I. Membrane potentials, intracellular calcium variations, oral secretions, and regurgitate components. Plant Physiol 134:1752–1762

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maffei ME, Mithöfer A, Arimura G-I, Uchtenhagen H, Bossi S, Bertea CM, Cucuzza LS, Novero M, Volpe V, Quadro S, Boland W (2006) Effects of feeding Spodoptera littoralis on lima bean leaves. III. Membrane depolarization and involvement of hydrogen peroxide. Plant Physiol 140:1022–1035

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mafli A, Goudet J, Farmer EE (2012) Plants and tortoises: mutations in the Arabidopsis jasmonate pathway increase feeding in a vertebrate herbivore. Mol Ecol 21:2534–2541

    PubMed  Google Scholar 

  • Matzinger P (2002) The danger model: a renewed sense of self. Science 296:301–305

    CAS  PubMed  Google Scholar 

  • McCloud ES, Baldwin IT (1997) Herbivory and caterpillar regurgitants amplify the wound-induced increases in jasmonic acid but not nicotine in Nicotiana sylvestris. Planta 203:430–435

    CAS  Google Scholar 

  • McConn M, Creelman RA, Bell E, Mullet JE, Browse J (1997) Jasmonate is essential for insect defense in Arabidopsis. Proc Natl Acad Sci U S A 94:5473–5477

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meldau S, Erb M, Baldwin IT (2012) Defence and demand: mechanisms behind optimal defence patterns. Ann Bot 110:1503–1514

    CAS  PubMed  PubMed Central  Google Scholar 

  • Melotto M, Underwood W, Koczan J, Nomura K, He SY (2006) Plant stomata function in innate immunity against bacterial invasion. Cell 126:969–980

    CAS  PubMed  Google Scholar 

  • Melotto M, Mecey C, Niu Y, Chung HS, Katsir L, Yao J, Zeng W, Thines B, Staswick P, Browse J, Howe GA, He SY (2008) A critical role of two positively charged amino acids in the Jas motif of Arabidopsis JAZ proteins in mediating coronatine- and jasmonoyl isoleucine-dependent interactions with the COI1 F-box protein. Plant J 55:979–988

    CAS  PubMed  PubMed Central  Google Scholar 

  • Middleton AM, Úbeda-Tomás S, Griffiths J, Holman T, Hedden P, Thomas SG, Phillips AL, Holdsworth MJ, Bennett MJ, King JR, Owen MR (2012) Mathematical modeling elucidates the role of transcriptional feedback in gibberellin signaling. Proc Natl Acad Sci U S A 109:7571–7576

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miersch O, Neumerkel J, Dippe M, Stenzel I, Wasternack C (2008) Hydroxylated jasmonates are commonly occuring metabolites of jasmonic acid and contribute to a partial switch-off in jasmonate signaling. New Phytol 177:114–127

    CAS  PubMed  Google Scholar 

  • Miller G, Schlauch K, Tam R, Cortes D, Torres MA, Shulaev V, Dangl JL, Mittler R (2009) The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli. Sci Signal 2:ra45

    PubMed  Google Scholar 

  • Mithöfer A, Boland W (2008) Recognition of herbivory-associated molecular patterns. Plant Physiol 146:825–831

    PubMed  PubMed Central  Google Scholar 

  • Mitsuhara I, Iwai T, Seo S, Yanagawa Y, Kawahigasi H, Hirose S, Ohkawa Y, Ohashi Y (2008) Characteristic expression of twelve rice PR1 family genes in response to pathogen infection, wounding, and defense-related signal compounds. Mol Genet Genomics 279:415–427

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mohan S, Ma PWK, Pechan T, Bassford ER, Williams WP, Luthe DS (2006) Degradation of the S. frugiperda peritrophic matrix by an inducible maize cysteine protease. J Insect Physiol 52:21–28

    CAS  PubMed  Google Scholar 

  • Moreno JE, Tao Y, Chory J, Ballaré CL (2009) Ecological modulation of plant defenses via phytochrome control of jasmonate sensitivity. Proc Natl Acad Sci U S A 106:4935–4940

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moreno JE, Shyu C, Campos ML, Patel L, Chung HS, Yao J, He SY, Howe GA (2013) Negative feedback control of jasmonate signaling by an alternative splice variant of JAZ10. Plant Physiol 162:1006–1017

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mousavi SAR, Chauvin A, Pascaud F, Kellenberger S, Farmer EE (2013) GLUTAMATE RECEPTOR-LIKE genes mediate leaf-to-leaf wound signalling. Nature 500:422–426

    CAS  PubMed  Google Scholar 

  • Mukhtar, European Union Effectoromics Consortium et al (2011) Independently evolved virulence effectors converge onto hubs in a plant immune system network. Science 333:596–601

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nahar K, Kyndt T, De Vleesschauwer D, Höfte M, Gheysen G (2011) The jasmonate pathway is a key player in systemically induced defense against root knot nematodes in rice. Plant Physiol 157:305–316

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakata M, Mitsuda N, Herde M, Koo AJK, Moreno JE, Suzuki K, Howe GA, Ohme-Takagi M (2013) A bHLH-type transcription factor, ABA-inducible bhlh-type transcription factor/ja-associated myc2-like1, acts as a repressor to negatively regulate jasmonate signaling in Arabidopsis. Plant Cell 25:1641–1656

    CAS  PubMed  PubMed Central  Google Scholar 

  • Navarro L, Zipfel C, Rowland O, Keller I, Robatzek S, Boller T, Jones JDG (2004) The transcriptional innate immune response to flg22. Interplay and overlap with Avr gene-dependent defense responses and bacterial pathogenesis. Plant Physiol 135:1113–1128

    CAS  PubMed  PubMed Central  Google Scholar 

  • Norman-Setterblad C, Vidal S, Palva ET (2000) Interacting signal pathways control defense gene expression in Arabidopsis in response to cell wall-degrading enzymes from Erwinia carotovora. Mol Plant Microbe Inter 13:430–438

    CAS  Google Scholar 

  • Orozco-Cárdenas ML, Narváez-Vásquez J, Ryan CA (2001) Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, systemin, and methyl jasmonate. Plant Cell 13:179–191

    PubMed  PubMed Central  Google Scholar 

  • Paschold A, Bonaventure G, Kant MR, Baldwin IT (2008) Jasmonate perception regulates jasmonate biosynthesis and JA-Ile metabolism: the case of COI1 in Nicotiana attenuata. Plant Cell Physiol 49:1165–1175

    CAS  PubMed  Google Scholar 

  • Pauwels L, Goossens A (2011) The JAZ proteins: a crucial interface in the jasmonate signaling cascade. Plant Cell 23:3089–3100

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pauwels L, Barbero GF, Geerinck J, Tilleman S, Grunewald W, Pérez AC, Chico JM, Bossche RV, Sewell J, Gil E, Garcia-Casado G, Witters E, Inze D, Long JA, Jaeger GD, Solano R, Goossens A (2010) NINJA connects the co-repressor TOPLESS to jasmonate signalling. Nature 464:788–791

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pearce G, Strydom D, Johnson S, Ryan CA (1991) A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins. Science 23:895–897

    Google Scholar 

  • Peiffer M, Tooker JF, Luthe DS, Felton GW (2009) Plants on early alert: glandular trichomes as sensors for insect herbivores. New Phytol 184:644–656

    CAS  PubMed  Google Scholar 

  • Pieterse CM, Leon-Reyes A, Van der Ent S, Van Wees SC (2009) Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5:308–316

    CAS  PubMed  Google Scholar 

  • Plant Science Research Summit. (2013) Unleashing a decade of innovation in plant science: A vision for 2015–2025. http://plantsummit.wordpress.com/

  • Plett JM, Khachane A, Ouassou M, Sundberg B, Kohler A, Martin F (2014a) Ethylene and jasmonic acid act as negative modulators during mutualistic symbiosis between Laccaria bicolor and Populus roots. New Phytol 202:270–286

    CAS  PubMed  Google Scholar 

  • Plett JM, Daguerre Y, Wittulsky S, Vayssières A, Deveau A, Melton SJ, Kohler A, Morrell-Flavey JL, Brun A, Veneault-Fourrey C, Martin F (2014b) Effector MiSSP7 of the mutualistic fungus Laccaria bicolor stabilizes the Populus JAZ6 protein and represses jasmonic acid (JA) responsive genes. Proc Natl Acad Sci U S A. doi:10.1073/pnas.1322671111

    PubMed  PubMed Central  Google Scholar 

  • Prince DC, Drurey C, Zipfel C, Hogenhout SA (2014) The leucine-rich repeat receptor-like kinase brassinosteroid insensitive1-associated kinase1 and the cytochrome P450 phytoalexin deficient3 contribute to innate immunity to aphids in Arabidopsis. Plant Physiol 164:2207–2019

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qi Z, Stephens NR, Spalding EP (2006) Calcium entry mediated by GLR3.3, an Arabidopsis glutamate receptor with a broad agonist profile. Plant Physiol 142:963–971

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qi T, Song S, Ren Q, Wu D, Huang H, Chen Y, Fan M, Peng W, Ren C, Xie D (2011) The Jasmonate-ZIM-domain proteins interact with the WD-Repeat/bHLH/MYB complexes to regulate jasmonate-mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana. Plant Cell 23:1795–1814

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qi T, Huang H, Wu D, Yan J, Qi Y, Song S, Xie D (2014) Arabidopsis DELLA and JAZ proteins bind the WD-repeat/bHLH/MYB complex to modulate gibberellin and jasmonate signaling synergy. Plant Cell Early Edition 26(3):1118–1133

    CAS  Google Scholar 

  • Radhika V, Kost C, Mithöfer A, Boland W (2010) Regulation of extrafloral nectar secretion by jasmonates in lima bean is light dependent. Proc Natl Acad Sci U S A 107:17228–17233

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rasmann S, De Vos M, Casteel CL, Tian D, Halitschke R, Sun JY, Agrawal AA, Felton GW, Jander G (2012) Herbivory in the previous generation primes plants for enhanced insect resistance. Plant Physiol 158:854–863

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reymond P (2013) Perception, signaling and molecular basis of oviposition-mediated plant responses. Planta 238:247–258

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reymond P, Farmer EE (1998) Jasmonate and salicylate as global signals for defense gene expression. Curr Opin Plant Biol 1:404–411

    CAS  PubMed  Google Scholar 

  • Reymond P, Bodenhausen N, Van Poecke RMP, Krishnamurthy V, Dicke M, Farmer EE (2004) A conserved transcript pattern in response to a specialist and a generalist herbivore. Plant Cell 16:3132–3147

    CAS  PubMed  PubMed Central  Google Scholar 

  • Robert-Seilaniantz A, Grant M, Jones JDG (2011) Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. Annu Rev Phytopathol 49:317–343

    CAS  PubMed  Google Scholar 

  • Romeis T, Herde M (2014) From local to global: CDPKs in systemic defense signaling upon microbial and herbivore attack. Curr Opin Plant Biol 20:1–10

    Google Scholar 

  • Salvador-Recatalà V, Tjallingii WF, Farmer EE (2014) Real-time, in vivo intracellular recordings of caterpillar-induced depolarization waves in sieve elements using aphid electrodes. New Phytol 203(2):674–684

    PubMed  Google Scholar 

  • Sasaki-Sekimoto Y, Jikumaru Y, Obayashi T, Saito H, Masuda S, Kamiya Y, Ohta H, Shirasu K (2013) Basic-Loop-Helix transcription factors JASMONATE-ASSOCIATED MYC2-LIKE1 (JAM1), JAM2, and JAM3 are negative regulators of jasmonate responses in Arabidopsis. Plant Phys 163:291–304

    CAS  Google Scholar 

  • Sato M, Tsuda K, Wang L, Coller J, Watanabe Y, Glazebrook J, Katagiri F (2010) Network modeling reveals prevalent negative regulatory relationships between signaling sectors in Arabidopsis immune signaling. PLoS Pathog 6:e1001011

    PubMed  PubMed Central  Google Scholar 

  • Schaller A, Stintzi A (2009) Enzymes in jasmonate biosynthesis - Structure, function, regulation. Phytochemistry 70:1532–1538

    CAS  PubMed  Google Scholar 

  • Schilmiller AL, Howe GA (2005) Systemic signaling in the wound response. Curr Opin Plant Biol 8:369–377

    CAS  PubMed  Google Scholar 

  • Schmelz EA, Alborn HT, Banchio E, Tumlinson JH (2003) Quantitative relationships between induced jasmonic acid levels and volatile emission in Zea mays during Spodoptera exigua herbivory. Planta 216:665–673

    CAS  PubMed  Google Scholar 

  • Schmelz EA, LeClere S, Carroll MJ, Alborn HT, Teal PEA (2007) Cowpea chloroplastic ATP synthase is the source of multiple plant defense elicitors during insect herbivory. Plant Physiol 144:793–805

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmelz EA, Kaplan F, Huffaker A, Dafoe NJ, Vaughan MM, Ni X, Rocca JR, Alborn HT, Teal PE (2011) Identity, regulation, and activity of inducible diterpenoid phytoalexins in maize. Proc Natl Acad Sci U S A 108:5455–5460

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmelz EA, Huffaker A, Sims JW, Christensen SA, Lu X, Okada K, Peters RJ (2014) Biosynthesis, elicitation and roles of monocot terpenoid phytoalexins. Plant J. doi:10.1111/tpj.12436

    PubMed  Google Scholar 

  • Schwartzberg EG, Tumlinson JH (2013) Aphid honeydew alters plant defence responses. Funct Ecol 28:386–394

    Google Scholar 

  • Schweighofer A, Kazanaviciute V, Scheikl E, Teige M, Doczi R, Hirt H, Schwanninger M, Kant M, Schuurink R, Mauch F, Buchala A, Cardinale F, Meskiene I (2007) The PP2C-type phosphatase AP2C1, which negatively regulates MPK4 and MPK6, modulates innate immunity, jasmonic acid, and ethylene levels in Arabidopsis. Plant Cell 19:2213–2224

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schweizer F, Fernández-Calvo P, Zander M, Diez-Diaz M, Fonseca S, Glauser G, Lewsey MG, Ecker JR, Solano R, Reymond P (2013) Arabidopsis basic helix-loop-helix transcription factors MYC2, MYC3, and MYC4 regulate glucosinolate biosynthesis, insect performance, and feeding behavior. Plant Cell 25:3117–3132

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seo S, Katou S, Seto H, Gomi K, Ohashi Y (2007) The mitogen-activated protein kinases WIPK and SIPK regulate the levels of jasmonic and salicylic acids in wounded tobacco plants. Plant J 49:899–909

    CAS  PubMed  Google Scholar 

  • Sheard LB, Tan X, Mao H, Withers J, Ben-Nissan G, Hinds TR, Kobayashi Y, Hsu F-F, Sharon M, Browse J, He SY, Rizo J, Howe GA, Zheng N (2010) Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature 468:400–405

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shyu C, Figueroa P, Depew CL, Cooke TF, Sheard LB, Moreno JE, Katsir L, Zheng N, Browse J, Howe GA (2012) JAZ8 lacks a canonical degron and has an EAR motif that mediates transcriptional repression of jasmonate responses in Arabidopsis. Plant Cell 24:536–550

    CAS  PubMed  PubMed Central  Google Scholar 

  • Silverman P, Seskar M, Kanter D, Schweizer P, Metraux JP, Raskin I (1995) Salicylic acid in rice (Biosynthesis, Conjugation, and Possible Role). Plant Physiol 108:633–639

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song CJ, Steinebrunner I, Wang X, Stout SC, Roux SJ (2006) Extracellular ATP induces the accumulation of superoxide via NADPH oxidases in Arabidopsis. Plant Physiol 140:1222–1232

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song S, Qi T, Huang H, Ren Q, Wu D, Chang C, Peng W, Liu Y, Peng J, Xie D (2011) The jasmonate-ZIM domain proteins interact with the R2R3-MYB transcription factors MYB21 and MYB24 to affect jasmonate-regulated stamen development in Arabidopsis. Plant Cell 23:1000–1013

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song S, Qi T, Fan M, Zhang X, Gao H, Huang H, Wu D, Guo H, Xie D (2013) The bHLH subgroup IIId factors negatively regulate jasmonate-mediated plant defense and development. PLoS Genet 9:e1003653

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song S, Huang H, Gao H, Wang J, Wu D, Liu X, Yang S, Zhai Q, Li C, Qi T, Xie D (2014) Interaction between MYC2 and ETHYLENE INSENSITIVE3 modulates antagonism between jasmonate and ethylene signaling in Arabidopsis. Plant Cell 26:263–279

    CAS  PubMed  Google Scholar 

  • Staswick PE (2008) JAZing up jasmonate signaling. Trends Plant Sci 13:66–71

    CAS  PubMed  Google Scholar 

  • Staswick PE, Tiryaki I (2004) The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. Plant Cell 16:2117–2127

    CAS  PubMed  PubMed Central  Google Scholar 

  • Staswick PE, Yuen GY, Lehman CC (1998) Jasmonate signaling mutants of Arabidopsis are susceptible to soil fungus Pythium irregulare. Plant J 15:747–754

    CAS  PubMed  Google Scholar 

  • Szemenyei H, Hannon M, Long JA (2008) TOPLESS mediates auxin-dependent transcriptional repression during Arabidopsis embryogenesis. Science 319:1384–1386

    CAS  PubMed  Google Scholar 

  • Tao Y, Xie Z, Chen W, Glazebrook J, Chang HS, Han B, Zhu T, Zou G, Katagiri F (2003) Quantitative nature of Arabidopsis responses during compatible and incompatible interactions with the bacterial pathogen Pseudomonas syringae. Plant Cell 15:317–330

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thaler JS, Stout MJ, Karban R, Duffey SS (2001) Jasmonate-mediated induced plant resistance affects a community of herbivores. Ecol Entomol 26:312–324

    Google Scholar 

  • Thaler JS, Humphrey PT, Whiteman NK (2012) Evolution of jasmonate and salicylate signal crosstalk. Trends Plant Sci 17:260–270

    CAS  PubMed  Google Scholar 

  • Thilmony R, Underwood W, He SY (2006) Genome-wide transcriptional analysis of the Arabidopsis thaliana interaction with the plant pathogen Pseudomonas syringae pv. tomato DC3000 and the human pathogen Escherichia coli O157:H7. Plant J 46:34–53

    CAS  PubMed  Google Scholar 

  • Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura K, He SY, Howe GA, Browse J (2007) JAZ repressor proteins are targets of the SCFCO11 complex during jasmonate signalling. Nature 448:661–666

    CAS  PubMed  Google Scholar 

  • Thomma BP, Eggermont K, Penninckx IA, Mauch-Mani B, Vogelsang R, Cammue BP, Broekaert WF (1998) Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc Natl Acad Sci U S A 95:15107–15111

    CAS  PubMed  PubMed Central  Google Scholar 

  • Toda Y, Tanaka M, Ogawa D, Kurata K, Kurotani KI, Habu Y, Ando T, Sugimoto K, Mitsuda N, Katoh E, Abe K, Miyao A, Hirochika H, Hattori T, Takeda S (2013) RICE SALT SENSITIVE 3 forms a ternary complex with JAZ and Class-C bHLH factors and regulates jasmonate-induced gene expression and root cell elongation. Plant Cell 25:1709–1725

    CAS  PubMed  PubMed Central  Google Scholar 

  • Traw MB, Bergelson J (2003) Interactive effects of jasmonic acid, salicylic acid, and gibberellin on induction of trichomes in Arabidopsis. Plant Physiol 133:1367–1375

    CAS  PubMed  PubMed Central  Google Scholar 

  • Truitt CL, Wei HX, Paré PW (2004) A plasma membrane protein from Zea mays binds with the herbivore elicitor volicitin. Plant Cell 16:523–532

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuda K, Sato M, Glazebrook J, Cohen JD, Katagiri F (2008) Interplay between MAMP-triggered and SA-mediated defense responses. Plant J 53:763–775

    CAS  PubMed  Google Scholar 

  • Tsuda K, Sato M, Stoddard T, Glazebrook J, Katagiri F (2009) Network properties of robust immunity in plants. PLoS Genet 12:e1000772

    Google Scholar 

  • Uppalapati SR, Ishiga Y, Wangdi T, Kunkel BN, Anand A, Mysore KS, Bender CL (2007) The phytotoxin coronatine contributes to pathogen fitness and is required for suppression of salicylic acid accumulation in tomato inoculated with Pseudomonas syringae pv. tomato DC3000. Mol Plant Microbe Inter 20:955–965

    CAS  Google Scholar 

  • van Loon LC, Rep M, Pieterse CM (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44:135–162

    PubMed  Google Scholar 

  • Van Poecke RMP, Dicke M (2002) Induced parasitoid attraction by Arabidopsis thaliana: involvement of the octadecanoid and the salicylic acid pathway. J Exp Bot 53:1793–1799

    PubMed  Google Scholar 

  • Vijayan P, Shockey J, Levesque CA, Cook RJ, Browse J (1998) A role for jasmoante in pathogen defense of Arabidopsis. Proc Natl Acad Sci U S A 95:7209–7214

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walling LL (2008) Avoiding effective defenses: strategies employed by phloem-feeding insects. Plant Physiol 146:859–866

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wan J, Zhang XC, Neece D, Ramonell KM, Clough S, Kim SY, Stacey MG, Stacey G (2008) A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis. Plant Cell 20:471–781

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wasternack C, Hause B (2013) Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann Bot 111:1021–1058

    CAS  PubMed  PubMed Central  Google Scholar 

  • Whiteman NK, Groen SC, Chevasco D, Bear A, Beckwith N, Gregory TR, Denoux C, Mammarella N, Ausubel FM, Pierce NE (2011) Mining the plant-herbivore interface with a leafmining Drosophila of Arabidopsis. Mol Ecol 20:995–1014

    CAS  PubMed  PubMed Central  Google Scholar 

  • Widemann E, Miesch L, Lugan R, Holder E, Heinrich C, Aubert Y, Miesch M, Pinot F, Heitz T (2013) The amidohydrolases IAR3 and ILL6 contribute to jasmonoyl-isoleucine hormone turnover and generate 12-hydroxyjasmonic acid upon wounding in Arabidopsis leaves. J Biol Chem 288:31701–31714

    CAS  PubMed  Google Scholar 

  • Wildon DC, Thain JF, Minchin PEH, Gubb IR, Reilly AJ, Skipper YD, Doherty HM, O’Donnell PJ, Bowles DJ (1992) Electrical signaling and systemic proteinase-inhibitor induction in the wounded plant. Nature 360:62–65

    CAS  Google Scholar 

  • Wise RP, Moscou MJ, Bogdanove AJ, Whitham SA (2007) Transcript profiling in host-pathogen interactions. Annu Rev Phytopathol 45:329–369

    CAS  PubMed  Google Scholar 

  • Withers J, Yao J, Mecey C, Howe GA, Melotto M, He SY (2012) Transcription factor-dependent nuclear localization of a transcriptional repressor in jasmonate hormone signaling. Proc Natl Acad Sci U S A 104:7483–7488

    Google Scholar 

  • Woldemariam MG, Onkokesung N, Baldwin IT, Galis I (2012) Jasmonoyl- l-isoleucine hydrolase 1 (JIH1) regulates jasmonoyl- l-isoleucine levels and attenuates plant defenses against herbivores. Plant J 72:758–767

    CAS  PubMed  Google Scholar 

  • Wu J, Baldwin IT (2010) New insights into plant responses to the attack from insect herbivores. Annu Rev Genet 44:1–24

    CAS  PubMed  Google Scholar 

  • Wu J, Hettenhausen C, Meldau S, Baldwin IT (2007) Herbivory rapidly activates MAPK signaling in attacked and unattacked leaf regions but not between leaves of Nicotiana attenuata. Plant Cell 19:1096–1122

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xie DX, Feys BF, James S, Nieto-Rostro M, Turner JG (1998) COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280:1091–1094

    CAS  PubMed  Google Scholar 

  • Yamada S, Kano A, Tamaoki D, Miyamoto A, Shishido H, Miyoshi S, Taniguchi S, Akimitsu K, Gomi K (2012) Involvement of OsJAZ8 in jasmonate-induced resistance to bacterial blight in rice. Plant Cell Physiol 53:2060–2072

    CAS  PubMed  Google Scholar 

  • Yamaguchi Y, Pearce G, Ryan CA (2006) The cell surface leucine-rich repeat receptor for AtPep1, an endogenous peptide elicitor in Arabidopsis, is functional in transgenic tobacco cells. Proc Natl Acad Sci U S A 103:10104–10109

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi Y, Huffaker A, Bryan AC, Tax FE, Ryan CA (2010) PEPR2 is a second receptor for the Pep1 and Pep2 peptides and contributes to defense responses in Arabidopsis. Plant Cell 22:508–522

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamane H (2013) Biosynthesis of phytoalexins and regulatory mechanisms of it in rice. Biosci Biotechnol Biochem 77:1141–1148

    CAS  PubMed  Google Scholar 

  • Yan Y, Stolz S, Chételat A, Reymond P, Pagni M, Dubugnon L, Farmer EE (2007) A downstream mediator in the growth repression limb of the jasmonate pathway. Plant Cell 19:2470–2483

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yan Y, Christensen S, Isakeit T, Engelberth J, Meeley R, Hayward A, Emery RJN, Kolomiets MV (2012) Disruption of OPR7 and OPR8 reveals the versatile function of jasmonic acid in maize development and defense. Plant Cell 24:1420–1436

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang DH, Hettenhausen C, Baldwin IT, Wu J (2011) BAK1 regulates the accumulation of jasmonic acid and the levels of trypsin proteinase inhibitors in Nicotiana attenuata’s responses to herbivory. J Exp Bot 62:641–652

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang DH, Hettenhausen C, Baldwin IT, Wu J (2012a) Silencing Nicotiana attenuata calcium-dependent protein kinases, CDPK4 and CDPK5, strongly up-regulates wound-and herbivory-induced jasmonic acid accumulations. Plant Phys 159:1591–1607

    CAS  Google Scholar 

  • Yang DL, Yao J, Mei C-S, Tong XH, Zeng LJ, Li Q, Xiao LT, Sun TP, Li J, Deng XW, Lee CM, Thomashow MF, Yang Y, Zuhua H, He SY (2012b) Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade. Proc Natl Acad Sci U S A 109:E1192–E1200

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ye M, Luo SM, Xie JF, Li YF, Xu T, Liu Y, Song YY, Zhu-Salzman K, Zeng RS (2012) Silencing COI1 in rice increases susceptibility to chewing insects and impairs inducible defense. PLoS One 7:e36214

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida Y, Sano R, Wada T, Takabayashi J, Okada K (2009) Jasmonic acid control of GLABRA3 links inducible defense and trichome patterning in Arabidopsis. Development 136:1039–1048

    CAS  PubMed  Google Scholar 

  • Zarate SI, Kempema LA, Walling LL (2007) Silverleaf whitefly induces salicylic acid defenses and suppresses effectual jasmonic acid defenses. Plant Physiol 143:866–875

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Klessig DF (2001) MAPK cascades in plant defense signaling. Trends Plant Sci 6:520–527

    CAS  PubMed  Google Scholar 

  • Zhang Y, Turner JG (2008) Wound-induced endogenous jasmonate stunt plant growth by inhibiting mitosis. PLoS One 3:e3699

    PubMed  PubMed Central  Google Scholar 

  • Zhang PJ, Li WD, Huang F, Zhang JM, Xu FC, Lu YB (2013) Feeding by whiteflies suppresses downstream jasmonic acid signaling by eliciting salicylic acid signaling. J Chem Ecol 39:612–619

    CAS  PubMed  Google Scholar 

  • Zhao Y, Thilmony R, Bender CL, Schaller A, He SY, Howe GA (2003) Virulence systems of Pseudomonas syringae pv. tomato promote bacterial speck disease in tomato by targeting the jasmonate signaling pathway. Plant J 36:485–499

    CAS  PubMed  Google Scholar 

  • Zheng XY, Spivey NW, Zeng W, Liu PP, Fu ZQ, Klessig DF, He SY, Dong X (2012) Coronatine promotes Pseudomonas syringae virulence in plants by activating a signaling cascade that inhibits salicylic acid accumulation. Cell Host Microbe 11:587–596

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Z, An F, Feng Y, Li P, Xue L, Mu A, Jiang Z, Kim JM, To TK, Li W, Zhang X, Yu Q, Dong Z, Chen WQ, Seki M, Zhou JM, Guo H (2011) Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in Arabidopsis. Proc Natl Acad Sci U S A 108:12539–12544

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhurov V, Navarro M, Bruinsma KA, Arbona V, Santamaria ME, Cazaux M, Wybouw N, Osborne EJ, Ens C, Rioja C, Vermeirssen V, Rubio-Somoza I, Krishna P, Diaz I, Schmid M, Gomez-Cardenas A, Peer YV, Grbic M, Clark RM, Leeuwen TV, Grbic V (2014) Reciprocal responses in the interaction between Arabidopsis and the cell-content-feeding chelicerate herbivore spider mite. Plant Physiol 164:384–399

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmermann MR, Maischak H, Mithöfer A, Boland W, Felle HH (2009) System potentials, a novel electrical long-distance apoplastic signal in plants, induced by wounding. Plant Physiol 149:1593–1600

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones JD, Boller T, Felix G (2006) perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125:749–760

    CAS  PubMed  Google Scholar 

  • Zou C, Sun K, Mackaluso JD, Seddon AE, Jin R, Thomashow MF, Shiu SH (2011) Cis-regulatory code of stress-responsive transcription in Arabidopsis thaliana. Proc Natl Acad Sci U S A 108:14992–14997

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zulak KG, Bohlmann J (2010) Terpenoid biosynthesis and specialized vascular cells of conifer defense. J Integr Plant Biol 52:86–97

    CAS  PubMed  Google Scholar 

  • Züst T, Heichinger C, Grossniklaus U, Harrington R, Kliebenstein DJ, Turnbull LA (2012) Natural enemies drive geographic variation in plant defenses. Science 338:116–119

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank Marlene Cameron for assistance with figure graphics and the MSU Diagnostic Lab for diagnosis of Pythium-mediated root rot disease on jai1 tomato plants. This work was supported in part by the National Institutes of Health (grant no. GM57795), the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, US Department of Energy (grant no. DE–FG02–91ER20021), and a College of Natural Science Dissertation Continuation Fellowship to M.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregg A. Howe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campos, M.L., Kang, JH. & Howe, G.A. Jasmonate-Triggered Plant Immunity. J Chem Ecol 40, 657–675 (2014). https://doi.org/10.1007/s10886-014-0468-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-014-0468-3

Keywords

Navigation