Skip to main content
Log in

Cell line selection combined with jasmonic acid elicitation enhance camptothecin production in cell suspension cultures of Ophiorrhiza mungos L

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Ophiorrhiza mungos is a herbaceous medicinal plant which contains a quinoline alkaloid, camptothecin (CPT), an anticancer compound. A high-yielding cell line, O. mungos cell line-3 (OMC3) was selected from cell suspension cultures of O. mungos using cell aggregate cloning method and established cell suspension culture. OMC3 cell suspension produced significantly high biomass (9.25 ± 1.3 g/flask fresh weight (FW)) and CPT yield (0.095 ± 0.002 mg g−1 dry weight (DW)) compared with the original cell suspension. Inoculum size of OMC3 cell suspension culture was optimised as 14 g L−1. Media optimisation has shown that 5 % (w/v) sucrose and an increased ammonium/nitrate concentration of 40/20 mM favoured CPT production, whereas 3 % (w/v) sucrose, an ammonium/nitrate concentration of 20/40 mM and 1.25 mM of phosphate favoured biomass accumulation. Jasmonic acid, chitin and salicylic acid was used to elicit CPT production in the original cell suspension culture and achieved significantly high CPT production with jasmonic acid (JA) elicitation. Further, OMC3 cell suspension culture was elicited with JA (50 μM) and obtained 1.12 ± 0.08 mg g−1 DW CPT and 9.52 ± 1.4 g/flask FW (190.4 g L−1 FW). The combination of cell line selection and elicitation has produced 18.66-fold increases in CPT production together with significantly high biomass yield. The study is helpful in the scale-up studies of O. mungos cell suspension culture in suitable bioreactor systems for the production of CPT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akalezi CO, Liu S, Li QS, Yu JT, Zhong JJ (1999) Combined effects of initial sucrose concentration and inoculum size on cell growth and ginseng saponin production by suspension cultures of Panax ginseng. Process Biochem 34:639–642. doi:10.1016/S0032-9592(98)00132-0

    Article  CAS  Google Scholar 

  • Baker J, Mock NM (1994) An improved method for monitoring cell death in cell suspension and leaf disc assays using Evans blue. Plant Cell Tissue Organ Cult 39:7–12. doi:10.1007/BF00037585

    Article  Google Scholar 

  • Bao Do C, Cormier F (1991a) Effects of low nitrate and high sugar concentrations on anthocyanin content and composition of grape (Vitis vinifera L.) cell suspension. Plant Cell Rep 9:500–504. doi:10.1007/BF00232105

    Article  CAS  PubMed  Google Scholar 

  • Bao Do C, Cormier F (1991b) Effects of high ammonium concentrations on growth and anthocyanin formation in grape (Vitis vinifera L.) cell suspension cultured in a production medium. Plant Cell Tissue Organ Cult 27:169–174. doi:10.1007/BF00041286

  • Bensaddek L, Gillet F, Saucedo JEN, Fliniaux M-A (2001) The effect of nitrate and ammonium concentrations on growth and alkaloid accumulation of Atropa belladonna hairy roots. J Biotechnol 85:35–40. doi:10.1016/S0168-1656(00)00372-2

    Article  CAS  PubMed  Google Scholar 

  • Carvalho EB, Curtis WR (1999) The effect of inoculum size on the growth of cell and root cultures of Hyoscyamus muticus: implications for reactor inoculation. Biotechnol Bioprocess Eng 4:287–293. doi:10.1007/BF02933755

    Article  CAS  Google Scholar 

  • Chattopadhyay S, Farkya S, Srivastava AK, Bisaria VS (2002) Bioprocess considerations for production of secondary metabolites by plant cell suspension cultures. Biotechnol Bioprocess Eng 7:138–149. doi:10.1007/BF02932911

    Article  CAS  Google Scholar 

  • Chen Y-Q, Yi F, Cai M, Luo J-X (2003) Effects of amino acids, nitrate, and ammonium on the growth and taxol production in cell cultures of Taxus yunnanensis. Plant Growth Regul 41:265–268. doi:10.1023/B:GROW.0000007502.72108.e3

    Article  CAS  Google Scholar 

  • Chong TM, Abdullah MA, Lai OM, Nor’Aini FM, Lajis NH (2005) Effective elicitation factors in Morinda elliptica cell suspension culture. Process Biochem 40:3397–3405. doi:10.1016/j.procbio.2004.12.028

    Article  CAS  Google Scholar 

  • Clements MK, Jones CB, Cumming M, Daoud SS (1999) Antiangiogenic potential of camptothecin and topotecan. Cancer Chemother Pharmacol 44:411–416. doi:10.1007/s002800050997

    Article  CAS  PubMed  Google Scholar 

  • Crawford NM (1995) Nitrate: nutrient and signal for plant growth. Plant Cell 7:859–868. doi:10.1105/tpc.7.7.859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui X-H, Murthy HN, Wu C-H, Paek K-Y (2010) Sucrose-induced osmotic stress affects biomass, metabolite, and antioxidant levels in root suspension cultures of Hypericum perforatum L. Plant Cell Tissue Organ Cult 103:7–14. doi:10.1007/s11240-010-9747-z

    Article  CAS  Google Scholar 

  • Deepthi S, Satheeshkumar K (2016) Enhanced camptothecin production induced by elicitors in the cell suspension cultures of Ophiorrhiza mungos Linn. Plant Cell Tissue Organ Cult 124:483–493. doi:10.1007/s11240-015-0908-y

    Article  CAS  Google Scholar 

  • Dougall KD (1987) Cell cloning and selection of high yielding strains. In: Constabel F, Vasil IK (eds) Cell culture and somatic cell genetic of plants. Academic Press, INC, San Diego, CA, pp. 117–123

    Google Scholar 

  • Fujita Y, Hara Y, Suga C, Morimoto T (1981) Production of shikonin derivatives by cell suspension cultures of Lithospermum erythrorhizon : II. A new medium for the production of shikonin derivatives. Plant Cell Rep 1:61–63. doi:10.1007/BF00269273

    Article  CAS  PubMed  Google Scholar 

  • Fujita Y, Takahashi S, Yamada Y (1985) Selection of cell lines with high productivity of shikonin derivatives by protoplast culture of Lithospermum erythrorhizon cells. Agric Biol Chem 49:37–41. doi:10.1080/00021369.1985.10866967

    Google Scholar 

  • Fulzele DP, Satdive RK, Pol BB (2001) Growth and production of camptothecin by cell suspension cultures of Nothapodytes foetida. Planta Med 67:150–152. doi:10.1055/s-2001-11519

    Article  CAS  PubMed  Google Scholar 

  • Gundlach H, Muller MJ, Kutchan TM, Zenk MH (1992) Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures. Proc Natl Acad Sci 89:2389–2393. doi:10.1073/pnas.89.6.2389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hombe Gowda HC, Vasudeva R, Mathachen GP, Uma Shaanker R, Ganeshaiah KN (2002) Breeding types in Nothapodytes nimmoniana Graham: an important medicinal tree. Curr Sci 83:1077–1078

    Google Scholar 

  • Huang B, Cheng J-K, Wu C-Y, Chen P-H, Tu P-S, Fu Y-S, Wu C-H (2015) Camptothecin promotes the production of nitric oxide that triggers subsequent S-nitrosoproteome-mediated signaling cascades in endothelial cells. Vasc Pharmacol. doi:10.1016/j.vph.2015.07.014

    Google Scholar 

  • Hussain MS, Fareed S, Ansari S, Rahman MA, Ahmad IZ, Saeed M (2012) Current approaches toward production of secondary plant metabolites. J Pharm Bioallied Sci 4:10–20. doi:10.4103/0975-7406.92725

    Article  PubMed  PubMed Central  Google Scholar 

  • Kang S-M, Min J-Y, Kim Y-D, Kang Y-M, Park D-J, Jung H-N, Kim S-W, Choi M-S (2006) Effects of methyl jasmonate and salicylic acid on the production of bilobalide and ginkgolides in cell cultures of Ginkgo biloba. Vitr Cell Dev Biol - Plant 42:44–49. doi:10.1079/IVP2005719

    Article  CAS  Google Scholar 

  • Karwasara VS, Dixit VK (2013) Culture medium optimization for camptothecin production in cell suspension cultures of Nothapodytes nimmoniana (J. Grah.) Mabberley. Plant Biotechnol Rep 7:357–369. doi:10.1007/s11816-012-0270-z

    Article  Google Scholar 

  • Koch KE (1996) Carbohydrate-modulated gene expression in plants. Annu Rev Plant Physiol Plant Mol Biol 47:509–540. doi:10.1146/annurev.arplant.47.1.509

    Article  CAS  PubMed  Google Scholar 

  • Krishnan SA, Dileepkumar R, Nair AS, Oommen OV (2014) Studies on neutralizing effect of Ophiorrhiza mungos root extract against Daboia russelii venom. J Ethnopharmacol 151:543–547. doi:10.1016/j.jep.2013.11.010

    Article  PubMed  Google Scholar 

  • Kubeš J, Tůmová L, Martin J, Vildová A, Hendrychová H, Sojková K (2014) The production of isoflavonoids in Genista tinctoria L. cell suspension culture after abiotic stressors treatment. Nat Prod Res 28:2253–2263. doi:10.1080/14786419.2014.938336

    Article  PubMed  Google Scholar 

  • Larkin PJ, Scowcroft WR (1981) Somaclonal variation—a novel source of variability from cell cultures for plant improvement. Theor Appl Genet 60:197–214. doi:10.1007/BF02342540

    Article  CAS  PubMed  Google Scholar 

  • Lee CWT, Shuler ML (2000) The effect of inoculum density and conditioned medium on the production of ajmalicine and catharanthine from immobilized Catharanthus roseus cells. Biotechnol Bioeng 67:61–71. doi:10.1002/(SICI)1097-0290(20000105)67:1<61::AID-BIT7>3.0.CO;2-J

    Article  CAS  PubMed  Google Scholar 

  • Liang LF, Keng CL, Lim BP (2006) Selection of cell lines for the production of rosmarinic acid from cell suspension cultures of Orthosihon stamineus benth. Vitr Cell Dev Biol - Plant 42:538–542. doi:10.1079/IVP2006813

    Article  CAS  Google Scholar 

  • Liu S, Zhong JJ (1998) Phosphate effect on production of ginseng saponin and polysaccharide by cell suspension cultures of Panax ginseng and Panax quinquefolium. Process Biochem 33:69–74. doi:10.1016/S0032-9592(97)00064-2

    Article  CAS  Google Scholar 

  • Liu Y-Q, Li W-Q, Morris-Natschke SL, Qian K, Yang L, Zhu G-X, Wu X-B, Chen A-L, Zhang S-Y, Nan X, Lee K-H (2015) Perspectives on biologically active camptothecin derivatives. Med Res Rev 35:753–789. doi:10.1002/med.21342

    Article  PubMed  PubMed Central  Google Scholar 

  • Lorence A, Nessler CL (2004) Camptothecin, over four decades of surprising findings. Phytochemistry 65:2735–2749. doi:10.1016/j.phytochem.2004.09.001

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto T, Kanno N, Ikeda T, Obi Y, Kisaki T, Noguchi M (1981) Selection of cultured tobacco cell strains producing high levels of ubiquinone 10 by a cell cloning technique. Agric Biol Chem 45:1627–1633. doi:10.1080/00021369.1981.10864769

    CAS  Google Scholar 

  • Mueller MJ, Brodschelm W, Spannagl E, Zenk MH (1993) Signaling in the elicitation process is mediated through the octadecanoid pathway leading to jasmonic acid. Proc Natl Acad Sci U S A 90:7490–7494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mulabagal V, Tsay H (2004) Plant cell cultures—an alternative and efficient source for the production of biologically important secondary metabolites. International Journal of Applied Science and Engineering 2:29–48

    Google Scholar 

  • Murthy HN, Lee E-J, Paek K-Y (2014) Production of secondary metabolites from cell and organ cultures: strategies and approaches for biomass improvement and metabolite accumulation. Plant Cell Tissue Organ Cult 118:1–16. doi:10.1007/s11240-014-0467-7

    Article  CAS  Google Scholar 

  • Nahálka J, Nahálková J, Gemeiner P, Blanárik P (1998) Elicitation of plumbagin by chitin and its release into the medium in Drosophyllum lusitanicum link. Suspension cultures. Biotechnol Lett 20:841–845. doi:10.1023/A:1005307408135

    Article  Google Scholar 

  • Namdeo AG (2007) Plant cell elicitation for production of secondary metabolites: a review. Pharmacogn Rev 1:69

    CAS  Google Scholar 

  • Namdeo AG, Priya T, Bhosale BB (2012) Micropropagation and production of camptothecin form in vitro plants of Ophiorrhiza mungos. Asian Pac J Trop Biomed 2:S662–S666. doi:10.1016/S2221-1691(12)60292-5

    Article  Google Scholar 

  • Ogino T, Hiraoka N, Tabata M (1978) Selection of high nicotine-producing cell lines of tobacco callus by single-cell cloning. Phytochemistry 17:1907–1910. doi:10.1016/S0031-9422(00)88731-2

    Article  CAS  Google Scholar 

  • Pan X-W, Xu H-H, Liu X, Gao X, Lu Y-T (2004) Improvement of growth and camptothecin yield by altering nitrogen source supply in cell suspension cultures of Camptotheca acuminata. Biotechnol Lett 26:1745–1748. doi:10.1007/s10529-004-4580-2

    Article  CAS  PubMed  Google Scholar 

  • Rajesh M, Sivanandhan G, Arun M, Vasudevan V, Theboral J, Girija S, Manickavasagam M, Selvaraj N, Ganapathi A (2014) Factors influencing podophyllotoxin production in adventitious root culture of Podophyllum hexandrum Royle. Acta Physiol Plant 36:1009–1021. doi:10.1007/s11738-013-1479-3

    Article  CAS  Google Scholar 

  • Remotti PC, Löffler HJM, van Vloten-Doting L (1997) Selection of cell-lines and regeneration of plants resistant to fusaric acid from Gladiolus × grandiflorus cv. “Peter Pears. Euphytica 96:237–245. doi:10.1023/A:1003034215722

    Article  Google Scholar 

  • Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol 57:675–709. doi:10.1146/annurev.arplant.57.032905.105441

    Article  CAS  PubMed  Google Scholar 

  • Rupley JA (1964) The hydrolysis of chitin by concentrated hydrochloric acid, and the preparation of low-molecular-weight substrate for lysozyme. Biochim Biophys Acta-Spec Sect Mucoproteins Mucopolysaccharides 83:245–255. doi:10.1016/0926-6526(64)90001-1

    CAS  Google Scholar 

  • Sakato K, Tanaka H, Mukai N, Misawa M (1974) Isolation and identification of camptothecin from cells of Camptotheca acuminata suspension cultures. Agric Biol Chem 38:217–218. doi:10.1080/00021369.1974.10861136

    Article  CAS  Google Scholar 

  • Sánchez-Sampedro MA, Fernández-Tárrago J, Corchete P (2005) Yeast extract and methyl jasmonate-induced silymarin production in cell cultures of Silybum marianum (L.) Gaertn. J Biotechnol 119:60–69. doi:10.1016/j.jbiotec.2005.06.012

    Article  PubMed  Google Scholar 

  • Sankar-Thomas YD, Saare-Surminski K, Lieberei R (2008) Plant regeneration via somatic embryogenesis of Camptotheca acuminata in temporary immersion system (TIS). Plant Cell Tissue Organ Cult 95:163–173. doi:10.1007/s11240-008-9428-3

    Article  Google Scholar 

  • Sato F, Yamada Y (1984) High berberine-producing cultures of Coptis japonica cells. Phytochemistry 23:281–285. doi:10.1016/S0031-9422(00)80318-0

    Article  CAS  Google Scholar 

  • Shiba T, Mii M (2005) Visual selection and maintenance of the cell lines with high plant regeneration ability and low ploidy level in Dianthus acicularis by monitoring with flow cytometry analysis. Plant Cell Rep 24:572–580. doi:10.1007/s00299-005-0011-7

    Article  CAS  PubMed  Google Scholar 

  • Sivanandhan G, Kapil Dev G, Jeyaraj M, Rajesh M, Arjunan A, Muthuselvam M, Manickavasagam M, Selvaraj N, Ganapathi A (2013) Increased production of withanolide A, withanone, and withaferin A in hairy root cultures of Withania somnifera (L.) Dunal elicited with methyl jasmonate and salicylic acid. Plant Cell Tissue Organ Cult 114:121–129. doi:10.1007/s11240-013-0297-z

    Article  CAS  Google Scholar 

  • Song SH, Byun SY (1998) Elicitation of camptothecin production in cell cultures of Camptotheca acuminata. Biotechnol Bioprocess Eng 3:91–95. doi:10.1007/BF02932509

    Article  Google Scholar 

  • Syono K, Furuya T (1968) Studies on plant tissue cultures I. Relationship between inocula sizes and growth of calluses in liquid culture. Plant Cell Physiol 9:103–114

    CAS  Google Scholar 

  • Tafur S, Nelson JD, DeLong DC, Svoboda GH (1976) Antiviral components of Ophiorrhiza mungos. Isolation of camptothecin and 10-methoxycamptothecin. Lloydia 39:261–262

    CAS  PubMed  Google Scholar 

  • Templeton MD, Lamb CJ (1988) Elicitors and defence gene activation. Plant Cell Environ 11:395–401. doi:10.1111/j.1365-3040.1988.tb01363.x

    Article  CAS  Google Scholar 

  • Theodorou ME, Plaxton WC (1993) Metabolic adaptations of plant respiration to nutritional phosphate deprivation. Plant Physiol 101:339–344. doi:10.1104/pp.101.2.339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uday Bhanu M, Kondapi AK (2010) Neurotoxic activity of a topoisomerase-I inhibitor, camptothecin, in cultured cerebellar granule neurons. Neurotoxicology 31:730–737. doi:10.1016/j.neuro.2010.06.008

    Article  CAS  PubMed  Google Scholar 

  • Veerashree V, Anuradha CM, Kumar V (2011) Elicitor-enhanced production of gymnemic acid in cell suspension cultures of Gymnema sylvestre R. Br. Plant Cell Tissue Organ Cult 108:27–35. doi:10.1007/s11240-011-0008-6

    Article  Google Scholar 

  • Walker TS, Bais HP, Vivanco JM (2002) Jasmonic acid-induced hypericin production in cell suspension cultures of Hypericum perforatum L. (St. John’s wort). Phytochemistry 60:289–293. doi:10.1016/S0031-9422(02)00074-2

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Ruan Y-L (2013) Regulation of cell division and expansion by sugar and auxin signaling. Front Plant Sci 4:163. doi:10.3389/fpls.2013.00163

    PubMed  PubMed Central  Google Scholar 

  • Watase I, Sudo H, Yamazaki M, Saito K (2004) Regeneration of transformed Ophiorrhiza pumila plants producing camptothecin. Plant Biotechnol 21:337–342. doi:10.5511/plantbiotechnology.21.337

    Article  CAS  Google Scholar 

  • Wink M, Alfermann AW, Franke R, Wetterauer B, Distl M, Windhovel J, Krohn O, Fuss E, Garden H, Mohagheghzadeh A, Wildi E, Ripplinger P (2005) Sustainable bioproduction of phytochemicals by plant in vitro cultures: anticancer agents. Plant Genet Resour Charact Util 3:90–100. doi:10.1079/PGR200575

    Article  CAS  Google Scholar 

  • Yamada Y, Watanabe K (1980) Selection of high vitamin B 6 producing strains in cultured green cells. Agric Biol Chem 44:2683–2687. doi:10.1080/00021369.1980.10864375

    CAS  Google Scholar 

  • Yamazaki Y, Kitajima M, Arita M, Takayama H, Sudo H, Yamazaki M, Aimi N, Saito K (2004) Biosynthesis of camptothecin. In silico and in vivo tracer study from [1-13C]glucose. Plant Physiol 134:161–170. doi:10.1104/pp.103.029389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yue W, Ming Q-L, Lin B, Rahman K, Zheng C-J, Han T, Qin L-P (2016) Medicinal plant cell suspension cultures: pharmaceutical applications and high-yielding strategies for the desired secondary metabolites. Crit Rev Biotechnol 36:215–232. doi:10.3109/07388551.2014.923986

    Article  CAS  PubMed  Google Scholar 

  • Zenk MH, El-Shagi H, Ulbrich B (1977) Production of rosmarinic acid by cell-suspension cultures of Coleus blumei. Naturwissenschaften 64:585–586. doi:10.1007/BF00450645

    Article  CAS  Google Scholar 

  • Zhao J, Davis LC, Verpoorte R (2005) Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv 23:283–333. doi:10.1016/j.biotechadv.2005.01.003

    Article  CAS  PubMed  Google Scholar 

  • Zhong J-J, Zhu Q-X (1995) Effect of initial phosphate concentration on cell growth and ginsenoside saponin production by suspended cultures of Panax notoginseng. Appl Biochem Biotechnol 55:241–247. doi:10.1007/BF02786863

    Article  CAS  Google Scholar 

  • Zhong J-J, Bai Y, Wang S-J (1996) Effects of plant growth regulators on cell growth and ginsenoside saponin production by suspension cultures of Panax quinquefolium. J Biotechnol 45:227–234. doi:10.1016/0168-1656(95)00170-0

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Council of Scientific and Industrial Research (CSIR), Government of India for the financial support as research fellowship and the Director of Jawaharlal Nehru Tropical Botanic Garden and Research Institute for providing the necessary facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Satheeshkumar.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no competing interests to declare.

Funding

This study was funded by the Council of Scientific and Industrial Research (CSIR), Government of India (grant number 09/592(0020)/2012-EMR-I).

Electronic supplementary material

ESM 1

(PDF 302 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deepthi, S., Satheeshkumar, K. Cell line selection combined with jasmonic acid elicitation enhance camptothecin production in cell suspension cultures of Ophiorrhiza mungos L. Appl Microbiol Biotechnol 101, 545–558 (2017). https://doi.org/10.1007/s00253-016-7808-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7808-x

Keywords

Navigation